
Real quantifier elimination

John Harrison

Intel Corporation, JF1-13
2111 NE 25th Avenue
Hillsboro OR 97124

johnh@ichips.intel.com

Abstract. This material is taken from the author’s current manuscript
version of “Introduction to Logic and Automated Theorem Proving”.

We now consider a similar theory of real arithmetic with addition and multi-
plication. A decision procedure for this theory, based on quantifier elimination,
was first demonstrated by Tarski (1951).1 However, Tarski’s procedure, a gener-
alization of the classical technique due to Sturm (1835) for finding the number
of real roots of a univariate polynomial, was both difficult to understand and
highly inefficient in practice. Seidenberg (1954) gave a simpler algorithm; indeed
the possibility of quantifier elimination for this theory is often dually attributed
as ‘Tarski-Seidenberg’. Other relatively simple algorithms were given by Cohen
(1969) and by Kreisel and Krivine (1971). Perhaps the most efficient general
algorithm currently known, and the first actually to be implemented on a com-
puter, is the Cylindrical Algebraic Decomposition (CAD) method introduced by
Collins (1976).2 The rather simple algorithm we develop here is from Hörmander
(1983) based on an unpublished manuscript by Paul Cohen.

In our language we will allow both equations s = t and inequalities s < t,
s ≤ t, s > t and s ≥ t. Our algorithm necessarily has a somewhat different
flavour from the complex number procedure, not just because of the presence
of inequalities, but because the reals are not algebraically closed. For example,
since the quadratic equation x2 + 1 = 0 has no solution over R, the following
are both valid, yet there is no simple divisibility relation between powers of the
antecedent and consequent polynomials:

∀x. x2 + 1 = 0 =⇒ x + 2 = 0
∀x. x3 + 2x2 + x + 2 = 0 =⇒ x2 + 4x + 4 = 0

1 Tarski actually discovered the procedure in 1930, but it remained unpublished for
many years afterwards. Tarski’s procedure, and the one we will describe, work not
only for the reals but for any ‘real closed field’, a point to which we will return.

2 A related technique was earlier proposed by Lojasiewicz (1964). Another relatively
efficient method was developed by L. Monk, working with Solovay. This is briefly
described by Rabin (1991) and in more detail in Monk’s UC Berkeley PhD thesis.

The algorithm will essentially use ordering properties, and we will freely
exploit basic facts about polynomials over the reals.3 Some of our reasoning will
involve derivatives, so we start with a function to differentiate a polynomial with
respect to the top variable. The derivative of a p(x) = c0 +c1x+c2x

2 + · · ·+cnxn

is just p′(x) = c1 + 2c2 + · · ·+ncnxn−1, but we need to operate on the canonical
form. This auxiliary function takes as additional parameters the top variable x
(as a term) and the implicit power of x by which the polynomial is multiplied;
this determines the multiplier for the first coefficient:

let rec poly_diffn x n p =

match p with

Fn("+",[c; Fn("*",[y; q])]) when y = x ->

Fn("+",[poly_cmul(Int n) c; Fn("*",[x; poly_diffn x (n+1) q])])

| _ -> poly_cmul(Int n) p;;

Now to differentiate a polynomial p(x) = c + x · q(x), we just apply the
auxiliary function to q(x) with n = 1; if p(x) is constant we just return zero.

let poly_diff vars p =

match p with

Fn("+",[c; Fn("*",[Var x; q])]) when x = hd vars ->

poly_diffn (Var x) 1 q

| _ -> zero;;

The key component of the quantifier elimination algorithm is a procedure to
obtain a ‘sign matrix’ for a set of univariate polynomials p1(x), . . . , pn(x). Such
a matrix is based on a division of the real line into a (possibly empty) ordered
sequence of m points x1 < x2 < · · · < xm representing precisely the zeros of the
polynomials, with the rows of the matrix representing, in alternating fashion, the
points themselves and the intervals between adjacent pairs and the two intervals
at the ends:

(−∞, x1), x1, (x1, x2), x2, . . . , xm−1, (xm−1, xm), xm, (xm, +∞)

and columns representing the polynomials p1(x), . . . , pn(x), with the matrix en-
tries giving the signs, either positive (+), negative (−) or zero (0), of each poly-
nomial pi at the points and on the intervals. For example, for the collection of
polynomials:

p1(x) = x2 − 3x + 2
p2(x) = 2x− 3

the sign matrix looks like this:

3 Most of these are familiar from elementary calculus applied to differentiable functions
of one variable. With more work, the properties we need can be deduced just from
the real-closed field axioms.

Point/Interval p1 p2

(−∞, x1) + −
x1 0 −

(x1, x2) − −
x2 − 0

(x2, x3) − +
x3 0 +

(x3, +∞) + +

Here x1 and x3 represent the roots 1 and 2 of p1(x) while x2 represents 3/2,
the root of p2(x). However the sign matrix contains no numerical information
about the location of the points xi, merely specifying their order and what
signs the various polynomials take on each point and each intermediate interval.
Crucially, the sign matrix for a set of univariate polynomials p1(x), . . . , pn(x) is
sufficient to answer any question of the form ∃x. P [x] where the body P [x] is
quantifier-free and all atoms are of the form pi(x) ./i 0 for any of the relations
=, <, >, ≤, ≥ or their negations. Each relation ./ is associated with a set of
signs for p for which p ./ 0 holds:

let rel_signs =

["=",[Zero]; "<=",[Zero;Negative]; ">=",[Zero;Positive];

"<",[Negative]; ">",[Positive]];;

Now, given an association list pmat of polynomials with their signs, we can
evaluate a formula by just:

let testform pmat fm =

eval fm (fun (R(a,[p;z])) -> mem (assoc p pmat) (assoc a rel_signs));;

As we will see, the generalization to multivariate polynomials is straightfor-
ward, so being able to find the sign matrix is the core of our enterprise. And
a fairly simple recursive algorithm to find sign matrices can be based on the
following observation. We can construct the sign matrix for the polynomials:

p, p1, . . . , pn

given a sign matrix for the following polynomials, where p′ is the derivative of p,
and each qi is the remainder on dividing p by pi (where p0 = p′ for regularity):

p′, p1, . . . , pn, q0, q1, . . . , qn

The procedure for deriving the sign matrix for the first set, given one for
the second, is as follows. First, we split the sign matrix into two equally-sized
parts, one for the p′, p1, . . . , pn and one for the q0, q1, . . . , qn, but for the moment
keeping all the points, even if no polynomial in one set has a zero at some of
them. We can now infer the sign of p(xi) for each point xi that is a zero of one
of the polynomials pk, as follows. Since qk is the remainder on dividing p by pk,

we have p(x) = sk(x)pk(x) + qk(x) for some sk(x). Therefore, since pk(xi) = 0
we have p(xi) = qk(xi) and so we can derive the sign of p at xi from that of
the corresponding qk. If the point xi is not a zero of one of the p′, p1, . . . , pn,
or we are dealing with an interval, we just assign Nonzero; such points will be
eliminated in the next step. The following code implements this process for two
corresponding rows pd and qd of the sign matrices for p′, p1, . . . , pn and q0, . . . , qn

respectively.

let inferpsign (pd,qd) =

try let i = index Zero pd in el i qd :: pd

with Failure _ -> Nonzero :: pd;;

Having applied this to all rows, we throw away the second sign matrix, giving
signs for the q0, . . . , qn, and retain the (partial) matrix for p, p′, p1, . . . , pn, which
we ‘condense’ to remove points that are not zeros of one of the p′, p1, . . . , pn. The
signs of the p′, p1, . . . , pn in an interval from which some other points have been
removed can be read off from any of the subintervals in the original subdivision
— they cannot change because there are no zeros for the relevant polynomials
there.

let rec condense ps =

match ps with

int::pt::other -> let rest = condense other in

if mem Zero pt then int::pt::rest else rest

| _ -> ps;;

Now we have a sign matrix with correct signs at all the points, but undeter-
mined signs for p on the intervals, and the possibility that there may be addi-
tional zeros of p inside these intervals. However, note that there can be at most
one zero of p in each interval, even including its endpoint(s). For if there were
two zeros, then p would reach a maximum or minimum somewhere in between
them, contradicting the fact that p′ is nonzero on the interior of the interval.

Consider first an internal interval (xi, xi+1). By the observation above, if
p(xi) = 0 or p(xi+1) = 0 we know that there can be no other zero in the interval.
If both p(xi) and p(xi+1) are nonzero and their signs are different then there
is a zero of p in the interval, by the intermediate value property. Finally, if the
signs are both nonzero but are the same, there is no root in the interval, because
in that case p would reach a maximum or minimum there (whether it crosses
or just touches the x-axis), and this is impossible since p′ 6= 0. To summarize,
there is one root of p inside the interval if the signs of p(xi) and p(xi+1) are both
nonzero and different, and there is no root otherwise.

What about the two semi-infinite intervals? For sufficiently large |x|, a poly-
nomial is dominated by the term of highest degree, and if p(x) ∼ anxn we
have p′(x) ∼ nanxn−1, so the ratio between the two eventually has positive
sign as x → +∞ and negative sign as x → −∞. Let us temporarily introduce
pseudo-endpoints −∞ and +∞ to denote ‘points at infinity’. Based on the above
observation, we define the sign of p(−∞) by flipping the sign of p′ on the lowest

interval (−∞, x1) and the sign of p(+∞) by copying the sign of p′ on the highest
interval (xn, +∞). Now exactly the same decision method works for this case
too, which makes the implementation more regular.

The following function implements these observations to complete the partial
sign matrix, assuming that the ‘points at infinity’ have been added first. When
this is called, the first three elements of ps are the lists of polynomial signs for
respectively the leftmost point, the interval following it, and the next point to its
right. We pick out the signs of p (the head of each list) at the left (l) and right
(r) endpoints of the interval. It should actually be impossible for both signs to
be zero, since that would imply a point of zero derivative between. And we hope
never to encounter just Nonzero; by design we will always have a more precise
sign whenever inferisign function is used. Otherwise, if just one sign is zero,
we infer the sign on the interval from the sign at the nonzero end. If both are
negative or both positive, we infer the sign from l (we could equally well use
r). The more complex case is where l and r are opposites, and we insert a new
point and its surrounding intervals. The signs of p on the new subintervals are
taken from the corresponding endpoints, and it is zero at the new point. Nothing
changes for the other polynomials throughout the original interval, so we just
duplicate ints for them. In each case we recursively call inferisign to deal
with the remaining points and intervals. And finally, when there are fewer than
three elements, we assume we have reached the rightmost endpoint, so there are
no intervals to infer the sign of p on, and we return the original sign matrix
unchanged.

let rec inferisign ps =

match ps with

((l::ls) as x)::(_::ints)::((r::rs)::xs as pts) ->

(match (l,r) with

(Zero,Zero) -> failwith "inferisign: inconsistent"

| (Nonzero,_)

| (_,Nonzero) -> failwith "inferisign: indeterminate"

| (Zero,_) -> x::(r::ints)::inferisign pts

| (_,Zero) -> x::(l::ints)::inferisign pts

| (Negative,Negative)

| (Positive,Positive) -> x::(l::ints)::inferisign pts

| _ -> x::(l::ints)::(Zero::ints)::(r::ints)::inferisign pts)

| _ -> ps;;

Now we’re ready for the overall function to convert a sign matrix mat for
p′, p1, . . . , pn, q0, q1, . . . , qn into one for p, p1, . . . , pn. Rather than returning the
result, it applies the given continuation function cont to it, since this fits in with
the later code structure. Otherwise it’s just a question of putting together the
earlier pieces. We set l = n+ 1, and apply inferpsign to all rows of the matrix,
first splitting them into the pieces for p′, p1, . . . , pn and for q0, q1, . . . , qn. After
condensation to remove extraneous points, we get a partial sign matrix mat1 for
p, p′, p1, . . . , pn. The points at infinity are added, just for p since nothing else

will be looked at, to give mat2. We then infer the signs on the intervals and
remove the points at infinity again to give mat3. Finally, we remove p′ from this
matrix, condense again to remove points that were just zeros of p′, and apply
the continuation to the result.

let dedmatrix cont mat =

let l = length (hd mat) / 2 in

let mat1 = condense(map (inferpsign ** chop_list l) mat) in

let mat2 = [swap true (el 1 (hd mat1))]::mat1@[[el 1 (last mat1)]] in

let mat3 = butlast(tl(inferisign mat2)) in

cont(condense(map (fun l -> hd l :: tl(tl l)) mat3));;

The reasoning underlying dedmatrix is based on fairly straightforward ob-
servations of real analysis. Essentially the same procedure can be used even for
multivariate polynomials, treating other variables as parameters while eliminat-
ing one variable. The only complication is that instead of literally dividing one
polynomial s by another one p:

s(x) = p(x)q(x) + r(x)

we may instead have only a pseudo-division

aks(x) = p(x)q(x) + r(x)

where a is the leading coefficient of p, in general a polynomial in the other
variables. As with the complex numbers, we will need to perform case splits over
polynomials in other variables to make sure a 6= 0. Even then, to infer the sign
of r from that of s, we need to know the sign of ak. Our solution is an enhanced
pseudo-division function that ensures that r has the same sign as s as follows.
We obtain the head coefficient a of p(x) and perform pseudo-division as usual,
say aks(x) = p(x)q(x) + r(x). We then examine what we know from the context
about the sign of a. If it is zero, we fail, and if the context does not determine it,
findsign will fail. Otherwise if we know either that a > 0 or that k is even, we
have ak > 0 and can safely return r(x). Otherwise, k must be odd. If we know
a < 0, then also ak < 0 so we need to return −r(x). Otherwise, all we know is
a 6= 0, so we implicitly multiply through again by a and return ar(x); note that
ak+1s(x) = ap(x)q(x) + ar(x), and since k is odd, k + 1 is even.

let pdivide_pos vars sgns s p =

let a = head vars p and (k,r) = pdivide vars s p in

let sgn = findsign sgns a in

if sgn = Zero then failwith "pdivide_pos: zero head coefficient"

else if sgn = Positive or k mod 2 = 0 then r

else if sgn = Negative then poly_neg r else poly_mul vars a r;;

We will also need to case-split over positive/negative status of coefficients,
and the following function is analogous to the function split_zero that we

wrote for the complex numbers and will shortly use again. It is assumed that by
the time we use this function, we already know from the context at least that
the polynomial concerned is nonzero.

let split_sign sgns pol cont =

match findsign sgns pol with

Nonzero -> let fm = Atom(R(">",[pol; zero])) in

Or(And(fm,cont(assertsign sgns (pol,Positive))),

And(Not fm,cont(assertsign sgns (pol,Negative))))

| _ -> cont sgns;;

In the later algorithm, the most convenient thing is to perform a three-way
case-split over the zero, positive or negative cases, but call the same continuation
on the positive and negative cases:

let split_trichotomy sgns pol cont_z cont_pn =

split_zero sgns pol cont_z (fun s’ -> split_sign s’ pol cont_pn);;

Sign matrix determination is now implemented by a set of three mutually
recursive functions. The first function casesplit takes two lists of polynomials:
dun (so named because ‘done’ is a reserved word in OCaml) is the list whose
head coefficients have known sign, and pols is the list that are to be checked.
As soon as we have determined all the head coefficient signs, we call matrix.
For each polynomial p in the list pols we perform appropriate case splits. In the
zero case we chop off its head coefficient and recurse, and in the other cases we
just add it to the ‘done’ list. But if any of the polynomials is a constant with
respect to the top variable, we recurse to a delconstant function to remove it.

let rec casesplit vars dun pols cont sgns =

match pols with

[] -> matrix vars dun cont sgns

| p::ops -> split_trichotomy sgns (head vars p)

(if is_constant vars p then delconst vars dun p ops cont

else casesplit vars dun (behead vars p :: ops) cont)

(if is_constant vars p then delconst vars dun p ops cont

else casesplit vars (dun@[p]) ops cont)

The delconstant function just removes the polynomial from the list and
returns to case-splitting, except that it also modifies the continuation appropri-
ately to put the sign back in the matrix before calling the original continuation:

and delconst vars dun p ops cont sgns =

let cont’ m = cont(map (insertat (length dun) (findsign sgns p)) m) in

casesplit vars dun ops cont’ sgns

Finally, we come to the main function matrix, where we assume that all
the polynomials in the list pols are non-constant and have a head coefficient of

known nonzero sign. If the list of polynomials is empty, then trivially the empty
sign matrix is the right answer, so we call the continuation on that. Note the
exception trap, though! Because of our rather naive case-splitting, we may reach
situations where an inconsistent set of sign assumptions is made — for example
a < 0 and a3 > 0 or just a2 < 0. This can in fact lead to the ‘impossible’
situation that the sign matrix has two zeros of some p(x) with no zero of p′(x)
in between them — in which case inferisign will generate an exception. We
don’t actually want to fail here, but we’re at liberty to return whatever formula
we like, such as ⊥.

Otherwise, we pick a polynomial p of maximal degree, so that we make
definite progress in the recursive step: we remove at least one polynomial of
maximal degree and replace it only with polynomials of lower degree, hence
making the recursion wellfounded. We reshuffle the polynomials slightly to move
it from position i to the head of the list, and add its derivative in front of that,
giving qs. Then we form all the remainders gs from pseudo-division of p by each
member of the qs, and recurse again on the new list of polynomials, starting
with the case splits. The continuation is modified to apply dedmatrix and also
to compensate for the shuffling of p to the head of the list:

and matrix vars pols cont sgns =

if pols = [] then try cont [[]] with Failure _ -> False else

let p = hd(sort(decreasing (degree vars)) pols) in

let p’ = poly_diff vars p and i = index p pols in

let qs = let p1,p2 = chop_list i pols in p’::p1 @ tl p2 in

let gs = map (pdivide_pos vars sgns p) qs in

let cont’ m = cont(map (fun l -> insertat i (hd l) (tl l)) m) in

casesplit vars [] (qs@gs) (dedmatrix cont’) sgns;;

To perform quantifier elimination from an existential formula, we first pick
out all the polynomials (we assume atoms have already been normalized), set
up the continuation to test the body on the resulting sign matrix, and call
casesplit with the initial sign context.

let basic_real_qelim vars (Exists(x,p)) =

let pols = atom_union

(function (R(a,[t;Fn("0",[])])) -> [t] | _ -> []) p in

let cont mat = if exists (fun m -> testform (zip pols m) p) mat

then True else False in

casesplit (x::vars) [] pols cont init_sgns;;

Note that we can test any quantifier-free formula using the matrix, not just
a conjunction of literals. So we may elect to do no logical normalization of the
formula at all, certainly not a full DNF transformation. We will however evaluate
and simplify all the time:

let real_qelim =

simplify ** evalc **

lift_qelim polyatom (simplify ** evalc) basic_real_qelim;;

Examples

We can try out the algorithm by testing if univariate polynomials have solutions:

real_qelim <<exists x. x^4 + x^2 + 1 = 0>>;;

- : fol formula = <<false>>

real_qelim <<exists x. x^3 - x^2 + x - 1 = 0>>;;

- : fol formula = <<true>>

and even, though not very efficiently, count them:

real_qelim <<exists x y. x^3 - x^2 + x - 1 = 0 /\

y^3 - y^2 + y - 1 = 0 /\ ~(x = y)>>;;

- : fol formula = <<false>>

If you’re still a bit puzzled by all the continuation-based code, you might find
it instructive to see the sign matrix that gets passed to testform. One way is
to switch on tracing; e.g. compare the output here with the example of a sign
matrix we gave at the beginning:

#trace testform;;

real_qelim <<exists x. x^2 - 3 * x + 2 = 0 /\ 2 * x - 3 = 0>>;;

#untrace testform;;

We can eliminate quantifiers however they are nested, e.g.

real_qelim

<<forall a f k. (forall e. k < e ==> f < a * e) ==> f <= a * k>>;;

- : fol formula = <<true>>

and we can obtain parametrized solutions to root existence questions, albeit not
very compact ones:

real_qelim <<exists x. a * x^2 + b * x + c = 0>>;;

- : fol formula =

<<0 + a * 1 = 0 /\

(0 + b * 1 = 0 /\ 0 + c * 1 = 0 \/

~0 + b * 1 = 0 /\ (0 + b * 1 > 0 \/ ~0 + b * 1 > 0)) \/

~0 + a * 1 = 0 /\

(0 + a * 1 > 0 /\

(0 + a * ((0 + b * (0 + b * -1)) + a * (0 + c * 4)) = 0 \/

~0 + a * ((0 + b * (0 + b * -1)) + a * (0 + c * 4)) = 0 /\

~0 + a * ((0 + b * (0 + b * -1)) + a * (0 + c * 4)) > 0) \/

~0 + a * 1 > 0 /\

(0 + a * ((0 + b * (0 + b * -1)) + a * (0 + c * 4)) = 0 \/

~0 + a * ((0 + b * (0 + b * -1)) + a * (0 + c * 4)) = 0 /\ 0 + a *

((0 + b * (0 + b * -1)) + a * (0 + c * 4)) > 0))>>

Moreover, we can check our own simplified condition by eliminating all quan-
tifiers from a claimed equivalence, perhaps first guessing:

real_qelim <<forall a b c. (exists x. a * x^2 + b * x + c = 0) <=>

b^2 >= 4 * a * c>>;;

- : fol formula = <<false>>

and then realizing we need to consider the degenerate case a = 0:

real_qelim <<forall a b c. (exists x. a * x^2 + b * x + c = 0) <=>

a = 0 /\ (b = 0 ==> c = 0) \/

~(a = 0) /\ b^2 >= 4 * a * c>>;;

- : fol formula = <<true>>

In section ?? we derived a canonical term rewriting system for groups, and
we can prove that it is terminating using the following polynomial interpretation
(Huet and Oppen 1980). To each term t in the language of groups we associate an
integer value v(t) > 1, by assigning some arbitrary integer > 1 to each variable
and then calculating the value of a composite term according to the following
rules:

v(s · t) = v(s)(1 + 2v(t))
v(i(t)) = v(t)2

v(1) = 2

We should first verify that this is indeed ‘closed’, i.e. that if v(s) and v(t) are
both > 1, so are v(s · t), v(i(t)) and v(1). (The other required property, being
an integer, is preserved by addition and multiplication.) We can do this pretty
quickly:

real_qelim <<1 < 2 /\ (forall x. 1 < x ==> 1 < x^2) /\

(forall x y. 1 < x /\ 1 < y ==> 1 < x * (1 + 2 * y))>>;;

- : fol formula = <<true>>

To avoid tedious manual transcription, we automatically translate terms
to their corresponding “valuations”, where the variables in a term are simply
mapped to similarly-named variables in the value polynomial.

let rec grpterm tm =

match tm with

Fn("*",[s;t]) -> let t2 = Fn("*",[Fn("2",[]); grpterm t]) in

Fn("*",[grpterm s; Fn("+",[Fn("1",[]); t2])])

| Fn("i",[t]) -> Fn("^",[grpterm t; Fn("2",[])])

| Fn("1",[]) -> Fn("2",[])

| Var x -> tm;;

Now to show that a set of equations {si = ti | 1 ≤ i ≤ n} terminates, it
suffices to show that v(si) > v(ti) for each one. So let us map an equation s = t
to a new formula v(s) > v(t), then generalize over all variables, relativized to
reflect the assumptions that they are all > 1:

let grpform (Atom(R("=",[s;t]))) =

let fm = generalize(Atom(R(">",[grpterm s; grpterm t]))) in

relativize(fun x -> Atom(R(">",[Var x;Fn("1",[])]))) fm;;

After running completion to regenerate the set of equations:

let eqs = complete_and_simplify ["1"; "*"; "i"]

[<<1 * x = x>>; <<i(x) * x = 1>>; <<(x * y) * z = x * y * z>>];;

Now we can create the critical formula and test it:

let fm = list_conj (map grpform eqs);;

val fm : fol formula =

<<(forall x4.

x4 > 1 ==>

(forall x5.

x5 > 1 ==> (x4 * (1 + 2 * x5))^2 > x5^2 * (1 + 2 * x4^2))) /\

(forall x1. x1 > 1 ==> x1^2^2 > x1) /\

...

>>;;

real_qelim fm;;

- : fol formula = true

Improvements

The decidability of the theory of reals is a remarkable and theoretically useful
result. In principle, we could use real_qelim to settle unsolved problems such as
finding kissing numbers for spheres in various dimensions (Conway and Sloane
1993). In practice, such a course is completely hopeless even for much simpler
quantifier elimination problems like ∀x.x4 +px2 +qx+r ≥ 0 (Lazard 1988). The
bad theoretical complexity bounds (Vorobjov 1990) seem to be an insuperable
practical obstacle. Motivated by the ‘feeling that a single algorithm for the full
elementary theory of R can hardly be practical’ (Dries 1988), many authors have
investigated special heuristic mixtures of algorithms for restricted subcases. We
discuss a quite different approach to proving purely universal formulas over R in
section ?? below.

One particularly notable failing of our algorithm is that it does not exploit
equations in the initial problem to perform cancellation by pseudo-division, yet
in many cases this would be a dramatic improvement — see exercise ?? below.
Indeed, even Collins’s original CAD algorithm, according to Loos and Weispfen-
ning (1993), performed badly on the following:

∃c. ∀b. ∀a. (a = d ∧ b = c) ∨ (a = c ∧ b = 1) =⇒ a2 = b

We do poorly here too, but if we first split the formula up into DNF:

let real_qelim’ =

simplify ** evalc **

lift_qelim polyatom (dnf ** cnnf (fun x -> x) ** evalc)

basic_real_qelim;;

the situation is much better:

real_qelim’

<<forall d.

(exists c. forall a b. (a = d /\ b = c) \/ (a = c /\ b = 1)

==> a^2 = b)

<=> d^4 = 1>>;;

- : fol formula = <<true>>

A refinement of this idea of elimination using equations, developed and suc-
cessfully applied by Weispfenning (1997), is to perform ‘virtual term substitu-
tion’ to replace other instances of x constrained by a polynomial p(x) = 0 by
expressions for the roots of that polynomial. In the purely linear case, things
are better still. Given an existentially quantied conjunction, we can eliminate
variables completely using substitution with any linear equations. For inequali-
ties we can use a slight elaboration of the DLO procedure to eliminate variables
based on:

(∃x. (
∧
i

si < x) ∧ (
∧
j

x < tj)) ⇔
∧
i,j

si < tj

However, even this can have exponential worst-case complexity, because each
variable elimination can roughly square the number of inequalities. For large
problems, one might turn instead to traditional linear programming techniques.
The classic simplex method (Dantzig 1963) often works well in practice, and more
recent interior-point algorithms following Karmarkar (1984) even have provable
polynomial-time bounds.4

4 This only implies polynomial time solvability for quantifier elimination problems
without quantifier alternations. The linear programming problem was famously
proved to be solvable in polynomial time by Khachian (1979), using a reduction
to approximate convex optimization, solvable in polynomial time using the ellispoid
algorithm. However, the implicit algorithm was seldom competitive with simplex in
practice. See Grotschel, Lovsz, and Schrijver (1993) for a detailed discussion of the
ellipsoid algorithm and its remarkable generality.

Bibliography

[Caviness and Johnson (1998]Caviness, B. F. and Johnson, J. R. (eds.) (1998)
Quantifier Elimination and Cylindrical Algebraic Decomposition, Texts and
monographs in symbolic computation. Springer-Verlag.

[Cohen (1969]Cohen, P. J. (1969) Decision procedures for real and p-adic fields.
Communications in Pure and Applied Mathematics, 22, 131–151.

[Collins (1976]Collins, G. E. (1976) Quantifier elimination for real closed fields by
cylindrical algebraic decomposition. In Brakhage, H. (ed.), Second GI Confer-
ence on Automata Theory and Formal Languages, Volume 33 of Lecture Notes
in Computer Science, Kaiserslautern, pp. 134–183. Springer-Verlag.

[Conway and Sloane (1993]Conway, J. H. and Sloane, N. J. A. (1993) The kissing
number problem. In Sphere Packings, Lattices, and Groups (second ed.)., pp.
21–24. Springer-Verlag.

[Dantzig (1963]Dantzig, G. B. (1963) Linear Programming and Extensions. Prince-
ton University Press.

[Dries (1988]Dries, L. v. d. (1988) Alfred Tarski’s elimination theory for real closed
fields. Journal of Symbolic Logic, 53, 7–19.

[Grotschel, Lovsz, and Schrijver (1993]Grotschel, M., Lovsz, L., and Schrijver, A.
(1993) Geometric algorithms and combinatorial optimization. Springer-Verlag.

[Hörmander (1983]Hörmander, L. (1983) The Analysis of Linear Partial Differ-
ential Operators II, Volume 257 of Grundlehren der mathematischen Wis-
senschaften. Springer-Verlag.

[Huet and Oppen (1980]Huet, G. and Oppen, D. C. (1980) Equations and rewrite
rules: a survey. In Book, R. V. (ed.), Formal Language Theory: Perspectives
and Open Problems, pp. 349–405. Academic Press.

[Karmarkar (1984]Karmarkar, N. (1984) A new polynomial-time algorithm for lin-
ear programming. Combinatorica, 4, 373–395.

[Khachian (1979]Khachian, L. G. (1979) A polynomial algorithm in linear program-
ming. Soviet Mathematics Doklady , 20, 191–194.

[Kreisel and Krivine (1971]Kreisel, G. and Krivine, J.-L. (1971) Elements of math-
ematical logic: model theory (Revised second ed.). Studies in Logic and the
Foundations of Mathematics. North-Holland. First edition 1967. Translation
of the French ‘Eléments de logique mathématique, théorie des modeles’ pub-
lished by Dunod, Paris in 1964.

[Lazard (1988]Lazard, D. (1988) Quantifier elimination: Optimal solution for two
classical examples. Journal of Symbolic Computation, 5, 261–266.

[Lojasiewicz (1964] Lojasiewicz, S. (1964) Triangulations of semi-analytic sets. An-
nali della Scuola Normale Superiore di Pisa, ser. 3 , 18, 449–474.

[Loos and Weispfenning (1993]Loos, R. and Weispfenning, V. (1993) Applying lin-
ear quantifier elimination. The Computer Journal , 36, 450–462.

[Rabin (1991]Rabin, M. O. (1991) Decidable theories. In Barwise, J. and Keisler,
H. (eds.), Handbook of mathematical logic, Volume 90 of Studies in Logic and
the Foundations of Mathematics, pp. 595–629. North-Holland.

[Seidenberg (1954]Seidenberg, A. (1954) A new decision method for elementary
algebra. Annals of Mathematics, 60, 365–374.

[Sturm (1835]Sturm, C. (1835) Mémoire sue la résolution des équations numériques.
Mémoire des Savants Etrangers, 6, 271–318.

[Tarski (1951]Tarski, A. (1951) A Decision Method for Elementary Algebra and
Geometry. University of California Press. Previous version published as a
technical report by the RAND Corporation, 1948; prepared for publication by
J. C. C. McKinsey. Reprinted in Caviness and Johnson (1998), pp. 24–84.

[Vorobjov (1990]Vorobjov, N. N. (1990) Deciding consistency of systems of poly-
nomial in exponent inequalities in subexponential time. In Mora, T. and
Traverso, C. (eds.), Proceedings of the MEGA-90 Symposium on Effective
Methods in Algebraic Geometry, Volume 94 of Progress in Mathematics, Cas-
tiglioncello, Livorno, Italy, pp. 491–500. Birkhäuser.

[Weispfenning (1997]Weispfenning, V. (1997) Quantifier elimination for real alge-
bra — the quadratic case and beyond. Applicable Algebra in Engineering
Communications and Computing , 8, 85–101.

