
2

Trademarks. Miranda is a trademark of Research Software Limited. Sun and
SuperSPARC are trademarks of Sun Microsystems. Unix is a trade mark of
AT&T Bell Laboratories. Poplog is a trademark of the University of Sussex.
MLWorks is a trademark of Harlequin Limited. DEC and PDP are trademarks
of Digital Equipment Corporation.

Dedication. For Sue, Nathan and Sarah.

DISCLAIMER OF WARRANTY
The programs listed in this book are provided ‘as is’ without warranty of

any kind. We make no warranties, express or implied, that the programs
are free of error, or are consistent with any particular standard of mer-
chantability, or that they will meet your requirements for any particular
application. They should not be relied upon for solving a problem whose
incorrect solution could result in injury to a person or loss of property. If
you do use the programs or procedures in such a manner, it is at your own
risk. The author and publisher disclaim all liability for direct, incidental or
consequential damages resulting from your use of the programs, modules
or functions in this book.

Copyright c© 2017 by Cambridge University Press



C O N T E N T S

Preface to the Second Edition vii

Preface ix

1 Standard ML 1
Functional Programming 2
Standard ML 11

2 Names, Functions and Types 17
Chapter outline 18
Value declarations 18
Numbers, character strings and truth values 22
Pairs, tuples and records 28
The evaluation of expressions 38
Writing recursive functions 48
Local declarations 53
Introduction to modules 59
Polymorphic type checking 63
Summary of main points 67

3 Lists 69
Chapter outline 69
Introduction to lists 70
Some fundamental list functions 74
Applications of lists 82
The equality test in polymorphic functions 96
Sorting: A case study 107
Polynomial arithmetic 114
Summary of main points 121

v



vi Contents

4 Trees and Concrete Data 123
Chapter outline 123
The datatype declaration 124
Exceptions 134
Trees 141
Tree-based data structures 149
A tautology checker 165
Summary of main points 171

5 Functions and Infinite Data 173
Chapter outline 173
Functions as values 174
General-purpose functionals 181
Sequences, or infinite lists 194
Search strategies and infinite lists 206
Summary of main points 214

6 Reasoning About Functional Programs 215
Chapter outline 215
Some principles of mathematical proof 216
Structural induction 226
A general induction principle 239
Specification and verification 250
Summary of main points 259

7 Abstract Types and Functors 261
Chapter outline 262
Three representations of queues 262
Signatures and abstraction 267
Functors 275
Building large systems using modules 289
Reference guide to modules 313
Summary of main points 316

8 Imperative Programming in ML 319
Chapter outline 319
Reference types 320
References in data structures 332
Input and output 346



Contents vii

Summary of main points 362

9 Writing Interpreters for the λ-Calculus 363
Chapter outline 363
A functional parser 363
Introducing the λ-calculus 378
Representing λ-terms in ML 384
The λ-calculus as a programming language 391
Summary of main points 402

10 A Tactical Theorem Prover 403
Chapter outline 403
A sequent calculus for first-order logic 404
Processing terms and formulæ in ML 413
Tactics and the proof state 426
Searching for proofs 436
Summary of main points 450

Project Suggestions 451

Bibliography 455

Syntax Charts 463

Index 475



PREFACE TO THE SECOND EDITION

With each reprinting of this book, a dozen minor errors have silently disap-
peared. But a reprinting is no occasion for making improvements, however
valuable, that would affect the page numbering: we should then have several
slightly different, incompatible editions. An accumulation of major changes
(and the Editor’s urgings) have prompted this second edition.

As luck would have it, changes to ML have come about at the same time. ML

has a new standard library and the language itself has been revised. It is worth
stressing that the changes do not compromise ML’s essential stability. Some ob-
scure technical points have been simplified. Anomalies in the original definition
have been corrected. Existing programs will run with few or no changes. The
most visible changes are the new character type and a new set of top level library
functions.

The new edition brings the book up to date and greatly improves the presen-
tation. Modules are now introduced early — in Chapter 2 instead of Chapter 7
— and used throughout. This effects a change of emphasis, from data structures
(say, binary search trees) to abstract types (say, dictionaries). A typical section
introduces an abstract type and presents its ML signature. Then it explains the
ideas underlying the implementation, and finally presents the code as an ML

structure. Though reviewers have been kind to the first edition, many readers
have requested such a restructuring.

The programs have not just been moved about, but rewritten. They now reflect
modern thoughts on how to use modules. The open declaration, which obscures
a program’s modular structure, seldom appears. Functors are only used where
necessary. Programs are now indented with greater care. This, together with the
other changes, should make them much more readable than hitherto. They are
also better: there is a faster merge sort and simpler, faster priority queues.

The new standard library would in any case have necessitated an early men-
tion of modules. Although it entails changes to existing code, the new library
brings ML firmly into the fold of realistic languages. The library has been de-
signed, through a long process of consultation, to provide comprehensive sup-
port without needless complication. Its organization demonstrates the benefits

ix



x Preface to the Second Edition

of ML modules. The string processing, input/output and system interface mod-
ules provide real gains in power.

The library forced much rewriting. Readers would hardly like to read about
the function foldleft when the library includes a similar function called foldl .
But these functions are not identical; the rewriting involved more than a change
of name. Many sections that previously described useful functions now survey
corresponding library structures.

The updated bibliography shows functional programming and ML used in a
wide variety of applications. ML meets the requirements for building reliable
systems. Software engineers expect a language to provide type safety, modular-
ity, compile-time consistency checking and fault tolerance (exceptions). Thanks
in part to the library, ML programs are portable. Commercially supported com-
pilers offer increasing quality and efficiency. ML can now run as fast as C,
especially in applications requiring complicated storage management. The title
of this book, which has attracted some jibes, may well prove to be prophetic.

My greatest surprise was to see the first edition in the hands of beginning pro-
grammers, when the first page told them to look elsewhere. To help beginners
I have added a few especially simple examples, and removed most references
from the main text. The rewritten first chapter attempts to introducing basic pro-
gramming concepts in a manner suitable both to beginners and to experienced
C programmers. That is easier than it sounds: C does not attempt to give pro-
grammers a problem-solving environment, merely to dress up the underlying
hardware. The first chapter still presupposes some basic knowledge of comput-
ers. Instructors may still wish to start with Chapter 2, with its simple on-line
sessions.

At the end of the book is a list of suggested projects. They are intentionally
vague; the first step in a major project is to analyse the requirements precisely.
I hope to see ML increasingly adopted for project work. The choice of ML,
especially over insecure languages like C, may eventually be recognized as a
mark of professionalism.

I should like to thank everyone whose comments, advice or code made an im-
pact on this edition. They include Matthew Arcus, Jon Fairbairn, Andy Gordon,
Carl Gunter, Michael Hansen, Andrew Kennedy, David MacQueen, Brian Mon-
ahan, Arthur Norman, Chris Okasaki, John Reppy, Hans Rischel, Peter Sestoft,
Mark Staples and Mads Tofte. Sestoft also gave me a pre-release of Moscow ML,
incorporating library updates. Alison Woollatt of CUP coded the LATEX class file.
Franklin Chen and Namhyun Hur reported errors in previous printings.



PREFACE

This book originated in lectures on Standard ML and functional programming.
It can still be regarded as a text on functional programming — one with a prag-
matic orientation, in contrast to the rather idealistic books that are the norm —
but it is primarily a guide to the effective use of ML. It even discusses ML’s
imperative features.

Some of the material requires an understanding of discrete mathematics: el-
ementary logic and set theory. Readers will find it easier if they already have
some programming experience, but this is not essential.

The book is a programming manual, not a reference manual; it covers the
major aspects of ML without getting bogged down with every detail. It devotes
some time to theoretical principles, but is mainly concerned with efficient algo-
rithms and practical programming.

The organization reflects my experience with teaching. Higher-order func-
tions appear late, in Chapter 5. They are usually introduced at the very beginning
with some contrived example that only confuses students. Higher-order func-
tions are conceptually difficult and require thorough preparation. This book be-
gins with basic types, lists and trees. When higher-order functions are reached,
a host of motivating examples is at hand.

The exercises vary greatly in difficulty. They are not intended for assessing
students, but for providing practice, broadening the material and provoking dis-
cussion.

Overview of the book. Most chapters are devoted to aspects of ML. Chapter 1
introduces the ideas behind functional programming and surveys the history of
ML. Chapters 2–5 cover the functional part of ML, including an introduction
to modules. Basic types, lists, trees and higher-order functions are presented.
Broader principles of functional programming are discussed.

Chapter 6 presents formal methods for reasoning about functional programs.
If this seems to be a distraction from the main business of programming, con-
sider that a program is worth little unless it is correct. Ease of formal reasoning
is a major argument in favour of functional programming.

xi



xii Preface

Chapter 7 covers modules in detail, including functors (modules with param-
eters). Chapter 8 covers ML’s imperative features: references, arrays and in-
put/output. The remainder of the book consists of extended examples. Chapter 9
presents a functional parser and a λ-calculus interpreter. Chapter 10 presents a
theorem prover, a traditional ML application.

The book is full of examples. Some of these serve only to demonstrate some
aspect of ML, but most are intended to be useful in themselves — sorting, func-
tional arrays, priority queues, search algorithms, pretty printing. Please note:
although I have tested these programs, they undoubtedly contain some errors.

Information and warning boxes. Technical asides, descriptions of library func-
tions, and notes for further study appear from place to place. They are high-
lighted for the benefit of readers who wish to skip over them:

King Henry’s claim. There is no bar to make against your highness’ claim
to France but this, which they produce from Pharamond, In terram Salicam

mulieres ne succedant, ‘No woman shall succeed in Salique land’: which Salique land
the French unjustly gloze to be the realm of France, and Pharamond the founder of this
law and female bar. But their own authors faithfully affirm that the land Salique is in
Germany . . .1

ML is not perfect. Certain pitfalls can allow a simple coding error to waste
hours of a programmer’s time. The new standard library introduces incompat-
ibilities between old and new compilers. Warnings of possible hazards appear
throughout the book. They look like this:

Beware the Duke of Gloucester. O Buckingham! take heed of yonder dog.
Look, when he fawns, he bites; and when he bites, his venom tooth will rankle

to the death. Have not to do with him, beware of him; Sin, Death, and Hell have set
their marks on him, and all their ministers attend on him.

I hasten to add that nothing in ML can have consequences quite this dire.
No fault in a program can corrupt the ML system itself. On the other hand,
programmers must remember that even correct programs can do harm in the
outside world.

How to get a Standard ML compiler. Because Standard ML is fairly new on the
scene, many institutions will not have a compiler. The following is a partial list
of existing Standard ML compilers, with contact addresses. The examples in this

1 No technical aside in this book is as long as the Archbishop’s speech, which
extends to 62 lines.



Preface xiii

book were developed under Moscow ML, Poly/ML and Standard ML of New
Jersey. I have not tried the other compilers.

To obtain MLWorks, contact Harlequin Limited, Barrington Hall, Barrington,
Cambridge, CB2 5RG, England. Their email address is web@harlequin.com.

To obtain Moscow ML, contact Peter Sestoft, Mathematical Section, Royal
Veterinary and Agricultural University, Thorvaldsensvej 40, DK-1871 Frede-
riksberg C, Denmark. Or get the system from the World Wide Web:

http:/www.dina.kvl.dk/˜sestoft/mosml.html

To obtain Poly/ML, contact Abstract Hardware Ltd, 1 Brunel Science Park,
Kingston Lane, Uxbridge, Middlesex, UB8 3PQ, England. Their email address
is lambda@ahl.co.uk.

To obtain Poplog Standard ML, contact Integral Solutions Ltd, Berk House,
Basing View, Basingstoke, Hampshire, RG21 4RG, England. Their email ad-
dress is isl@isl.co.uk.

To obtain Standard ML of New Jersey, contact Andrew Appel, Computer
Science Department, Princeton University, Princeton NJ 08544-2087, USA. Bet-
ter still, fetch the files from the World Wide Web:

http://www.cs.princeton.edu/˜appel/smlnj/

The programs in this book and answers to some exercises are available by
email; my address is lcp@cl.cam.ac.uk. If possible, please use the World
Wide Web; my home page is at

http://www.cl.cam.ac.uk/users/lcp/

Acknowledgements. The editor, David Tranah, assisted with all stages of the
writing and suggested the title. Graham Birtwistle, Glenn Bruns and David
Wolfram read the text carefully. Dave Berry, Simon Finn, Mike Fourman, Kent
Karlsson, Robin Milner, Richard O’Keefe, Keith van Rijsbergen, Nick Roth-
well, Mads Tofte, David N. Turner and the staff of Harlequin also commented
on the text. Andrew Appel, Gavin Bierman, Phil Brabbin, Richard Brooksby,
Guy Cousineau, Lal George, Mike Gordon, Martin Hansen, Darrell Kindred,
Silvio Meira, Andrew Morris, Khalid Mughal, Tobias Nipkow, Kurt Olender,
Allen Stoughton, Reuben Thomas, Ray Toal and Helen Wilson found errors in
previous printings. Piete Brooks, John Carroll and Graham Titmus helped with
the computers. I wish to thank Dave Matthews for developing Poly/ML, which
was for many years the only efficient implementation of Standard ML.

Of the many works in the bibliography, Abelson and Sussman (1985), Bird



xiv Preface

and Wadler (1988) and Burge (1975) have been especially helpful. Reade (1989)
contains useful ideas for implementing lazy lists in ML.

The Science and Engineering Research Council has supported LCF and ML in
numerous research grants over the past 20 years.

I wrote most of this book while on leave from the University of Cambridge.
I am grateful to the Computer Laboratory and Clare College for granting leave,
and to the University of Edinburgh for accommodating me for six months.

Finally, I should like to thank Sue for all she did to help, and for tolerating
my daily accounts of the progress of every chapter.


