
9
Writing Interpreters for the λ-Calculus

This chapter brings together all the concepts we have learned so far. For an ex-
tended example, it presents a collection of modules to implement the λ-calculus
as a primitive functional programming language. Terms of the λ-calculus can be
parsed, evaluated and the result displayed. It is hardly a practical language. Triv-
ial arithmetic calculations employ unary notation and take minutes. However,
its implementation involves many fundamental techniques: parsing, represent-
ing bound variables and reducing expressions to normal form. These techniques
can be applied to theorem proving and computer algebra.

Chapter outline
We consider parsing and two interpreters for λ-terms, with an overview

of the λ-calculus. The chapter contains the following sections:
A functional parser. An ML functor implements top-down recursive descent

parsing. Parsers can be combined using infix operators that resemble the sym-
bols for combining grammatical phrases.

Introducing the λ-calculus. Terms of this calculus can express functional
programs. They can be evaluated using either the call-by-value or the call-by-
name mechanism. Substitution must be performed carefully, avoiding variable
name clashes.

Representing λ-terms in ML. Substitution, parsing and pretty printing are
implemented as ML structures.

The λ-calculus as a programming language. Typical data structures of func-
tional languages, including infinite lists, are encoded in the λ-calculus. The
evaluation of recursive functions is demonstrated.

A functional parser
Before discussing the λ-calculus, let us consider how to write scanners

and parsers in a functional style. The parser described below complements the
pretty printer of the previous chapter. Using these tools, ML programs can read
and write λ-terms, ML types and logical formulæ.

363

364 9 Writing Interpreters for the λ-Calculus

9.1 Scanning, or lexical analysis
A parser seldom operates directly on a string of characters. The char-

acters are first scanned: processed into tokens such as keywords, identifiers,
special symbols and numbers. The parser is supplied a list of tokens.

This two-level approach simplifies the grammar used for parsing. The scanner
removes spaces, line breaks and comments in some uniform fashion, leaving the
parser to deal with more complex matters of syntax. Scanning can be performed
by a finite-state machine. Such a machine, driven by character-indexed arrays,
can run extremely fast. For small inputs, the scanning functions in the library
structure Substring do the job quite well.

A lexical analyser, or lexer, is a structure with the following signature:

signature LEXICAL =
sig
datatype token = Id of string | Key of string
val scan : string -> token list
end;

A token is either an identifier or a keyword. This simple scanner does not rec-
ognize numbers. Calling scan performs lexical analysis on a string and returns
the resulting list of tokens.

Before we can parse a language, we must specify its vocabulary. To classify
tokens as identifiers or keywords, the scanner must be supplied with an instance
of the signature KEYWORD:

signature KEYWORD =
sig
val alphas : string list
and symbols : string list
end;

The list alphas defines the alphanumeric keywords like "if" and "let",
while symbols lists symbolic keywords like "(" and ")". The two kinds of
keywords are treated differently:

• A string of alphanumeric characters is scanned as far as possible — until
it is not followed by another letter or digit. It is classified as a keyword
if it belongs to alphas , and as an identifier otherwise.
• A string of symbolic characters is scanned until it matches some element

of symbols , or until it is not followed by another symbolic character.
It is always classified as a keyword. For instance, if "(" belongs to
symbols then the string "((" is scanned as two "(" tokens, and as one
"((" token otherwise.

9.1 Scanning, or lexical analysis 365

Figure 9.1 The lexical analysis functor

functor Lexical (Keyword: KEYWORD) : LEXICAL =
struct
datatype token = Key of string | Id of string;

fun member (x:string, l) = List.exists (fn y => x=y) l;

fun alphaTok a =
if member(a, Keyword.alphas) then Key(a) else Id(a);

(*scanning of a symbolic keyword*)
fun symbolic (sy, ss) =

case Substring.getc ss of
NONE => (Key sy, ss)

| SOME (c,ss1) =>
if member(sy, Keyword.symbols)

orelse not (Char.isPunct c)
then (Key sy, ss)
else symbolic (sy ˆ String.str c, ss1);

(*Scanning a substring into a list of tokens*)
fun scanning (toks, ss) =

case Substring.getc ss of
NONE => rev toks (*end of substring*)

| SOME (c,ss1) =>
if Char.isAlphaNum c

then (*identifier or keyword*)
let val (id, ss2) = Substring.splitl Char.isAlphaNum ss

val tok = alphaTok (Substring.string id)
in scanning (tok::toks, ss2)
end

else if Char.isPunct c
then (*special symbol*)

let val (tok, ss2) = symbolic (String.str c, ss1)
in scanning (tok::toks, ss2)
end

else (*ignore spaces, line breaks, control characters*)
scanning (toks, Substring.dropl (not o Char.isGraph) ss);

fun scan a = scanning([], Substring.all a);
end;

366 9 Writing Interpreters for the λ-Calculus

Functor Lexical (Figure 9.1 on the preceding page) implements the scanner
using several Substring functions: getc, splitl , string , dropl and all . The
function getc splits a substring into its first character, paired with the rest of
the substring; if the substring is empty, the result is NONE. In Section 8.9 we
met the functions all and string , which convert between strings and substrings.
We also met splitl , which scans a substring from the left, splitting it into two
parts. The function dropl is similar but returns only the second part of the sub-
string; the scanner uses it to ignore spaces and other non-printing characters.
The library predicate Char.isAlphaNum recognizes letters and digits, while
Char.isGraph recognizes all printing characters and Char.isPunct recog-
nizes punctuation symbols.

The code is straightforward and efficient, as fast as the obvious imperative
implementation. The Substring functions yield functional behaviour, but they
work by incrementing indices. This is better than processing lists of characters.

The functor declares function member for internal use. It does not depend
upon the infix mem declared in Chapter 3, or on any other top level functions
not belonging to the standard library. The membership test is specific to type
string because polymorphic equality can be slow.

The lexical analyser is implemented as a functor because the information in
signature KEYWORD is static. We only need to change the list of keywords or
special symbols when parsing a new language. Applying the functor to some
instance of KEYWORD packages that information into the resulting structure.
We could have implemented the lexer as a curried function taking similar infor-
mation as a record, but this would complicate the lexer’s type in exchange for
needless flexibility.

Exercise 9.1 Modify the scanner to recognize decimal numerals in the input.
Let a new constructor Num : integer → token return the value of a scanned
integer constant.

Exercise 9.2 Modify the scanner to ignore comments. The comment brackets,
such as "(*" and "*)", should be supplied as additional components of the
structure Keyword .

9.2 A toolkit for top-down parsing
A top-down recursive descent parser closely resembles the grammar that

it parses. There are procedures for all the syntactic phrases, and their mutually
recursive calls precisely mirror the grammar rules.

9.2 A toolkit for top-down parsing 367

The resemblance is closer in functional programming. Higher-order functions
can express syntactic operations such as concatenation of phrases, alternative
phrases and repetition of a phrase. With an appropriate choice of infix operators,
a functional parser can be coded to look almost exactly like a set of grammar
rules. Do not be fooled; the program has all the limitations of top-down parsing.
In particular, a left-recursive grammar rule such as

exp = exp "*"

makes the parser run forever! Compiler texts advise on coping with these limi-
tations.

Outline of the approach. Suppose that the grammar includes a certain class of
phrases whose meanings can be represented by values of type τ . A parser for
such phrases must be a function of type

token list → τ × token list,

henceforth abbreviated as type τ phrase. When the parser is given a list of
tokens that begins with a valid phrase, it removes those tokens and computes
their meaning as a value of type τ . The parser returns the pair of this meaning
and the remaining tokens. If the token list does not begin with a valid phrase,
then the parser rejects it by raising exception SyntaxErr .

Not all functions of type τ phrase are parsers. A parser must only remove
tokens from the front of the token list; it must not insert tokens, or modify the
token list in any other way.

To implement complex parsers, we define some primitive parsers and some
operations for combining parsers.

Parsing primitive phrases. The trivial parsers recognize an identifier, a specific
keyword, or the empty phrase. They remove no more than one token from their
input:

• The parser id , of type string phrase, removes an Id token from its input
and returns this identifier as a string (paired with the tail of the token
list).
• The parser $a has type string phrase if a is a string. It removes the

keyword token Key a from its input and returns a paired with the tail
of the token list.
• The parser empty has the polymorphic type (α list) phrase. It returns []

paired with the original token list.

368 9 Writing Interpreters for the λ-Calculus

The first two of these reject their input unless it begins with the required token,
while empty always succeeds.

Alternative phrases. If ph1 and ph2 have type τ phrase then so does ph1||ph2.
The parser ph1||ph2 accepts all the phrases that are accepted by either of the
parsers ph1 or ph2. This parser, when supplied with a list of tokens, passes them
to ph1 and returns the result if successful. If ph1 rejects the tokens then ph2 is
attempted.

The parser !!ph is the same as ph , except that if ph rejects the tokens then the
entire parse fails with an error message. This prevents an enclosing || operator
from attempting to parse the phrase in another way. The operator !! is typically
used in phrases that start with a distinguishing keyword, and therefore have no
alternative parse; see $-- below.

Consecutive phrases. The parser ph1--ph2 accepts a ph1 phrase followed by a
ph2 phrase. This parser, when supplied with a list of tokens, passes them to ph1.
If ph1 parses a phrase and returns (x , toks2) then the remaining tokens (toks2)
are passed to ph2. If ph2 parses a phrase and returns (y, toks3) then ph1--ph2
returns ((x , y), toks3). Note that toks3 consists of the tokens remaining after
both parses. If either parser rejects its input then so does ph1--ph2.

Thus, the meaning of ph1--ph2 is the pair of the meanings of ph1 and ph2,
applied to consecutive segments of the input. If ph1 has type τ1 phrase and
ph2 has type τ2 phrase then ph1--ph2 has type (τ1 × τ2) phrase.

The operator $-- covers a common case. The parser a $-- ph resembles
$a -- ph; it parses a phrase that begins with the keyword token a and contin-
ues as ph . But it returns the meaning of ph , not paired with a . Moreover, if ph
rejects its tokens then (using !!) it fails with an error message. The operator
$-- is appropriate if only one grammar rule starts with the symbol a .

Modifying the meaning. The parser ph>>f accepts the same inputs as ph , but
returns (f (x), toks) when ph returns (x , toks). Thus, it assigns the meaning
f (x) when ph assigns the meaning x . If ph has type σ phrase and f has
type σ → τ then ph>>f has type τ phrase.

Repetition. To illustrate these operators, let us code a parsing functional. If ph
is any parser then repeat ph will parse zero or more repetitions of ph:

fun repeat ph toks = (ph -- repeat ph >> (op::)
|| empty) toks;

9.3 The ML code of the parser 369

The precedences of the infix operators are --, >>, || from highest to lowest.
The body of repeat consists of two parsers joined by ||, resembling the obvious
grammatical definition: a repetition of ph is either a ph followed by a repetition
of ph , or is empty.

The parser ph -- repeat ph returns ((x , xs), toks), where xs is a list. The
operator >> applies a list ‘cons’ (the operator ::), converting the pair (x , xs)
to x :: xs . In the second line, empty yields [] as the meaning of the empty
phrase. In short, repeat ph constructs the list of the meanings of the repeated
phrases. If ph has type τ phrase then repeat ph has type (τ list) phrase.

Beware of infinite recursion. Can the declaration of repeat be simplified by
omitting toks from both sides? No — calling repeat ph would immediately

produce a recursive call to repeat ph , resulting in disaster:

fun repeat ph = ph -- repeat ph >> (op::) || empty;

Mentioning the formal parameter toks is a device to delay evaluation of the body of
repeat until it is given a token list; the inner repeat ph is normally given a shorter token
list and therefore terminates. Lazy evaluation would eliminate the need for this device.

9.3 The ML code of the parser
Infix directives for the operators $--, --, >> and || assign appropriate

precedences to them. The exact numbers are arbitrary, but $--must have higher
precedence than -- in order to attract the string to its left. Also >> must have
lower precedence than -- in order to encompass an entire grammar rule. Finally,
|| must have the lowest precedence so that it can combine grammar rules.

infix 6 $--;
infix 5 --;
infix 3 >>;
infix 0 ||;

These directives have global effect because they are made at top level. We
should also open the structure containing the parsing operators: compound
names cannot be used as infix operators.

Functor Parsing (Figure 9.3 on page 371) implements the parser. The functor
declaration has the primitive form that takes exactly one argument structure, in
this case Lex . Its result signature is PARSE (Figure 9.2).

You may notice that many of the types in this signature differ from those given
in the previous section. The type abbreviation

α phrase = token list → α × token list

370 9 Writing Interpreters for the λ-Calculus

Figure 9.2 Signature for functional parsers

signature PARSE =
sig
exception SyntaxErr of string
type token
val id : token list -> string * token list
val $: string -> token list -> string * token list
val empty : ′a -> ′b list *

′a
val || : (′a -> ′b) * (′a -> ′b) -> ′a -> ′b
val !! : (′a -> ′b *

′c) -> ′a -> ′b *
′c

val -- : (′a -> ′b *
′c) * (′c -> ′d *

′e) -> ′a -> (′b *
′d) *

′e
val $-- : string * (token list -> ′a *

′b) -> token list -> ′a *
′b

val >> : (′a -> ′b *
′c) * (′b -> ′d) -> ′a -> ′d *

′c
val repeat : (′a -> ′b *

′a) -> ′a -> ′b list *
′a

val infixes :
(token list -> ′a * token list) * (string -> int) *
(string -> ′a -> ′a -> ′a) -> token list -> ′a * token list

val reader : (token list -> ′a *
′b list) -> string -> ′a

end;

is not used; more importantly, some of the types in the signature are more gen-
eral than is necessary for parsing. They are not restricted to token lists.

ML often assigns a function a type that is more polymorphic than we ex-
pect. If we specify the signature prior to coding the functor — which is a dis-
ciplined style of software development — then any additional polymorphism is
lost. When designing a signature, it is sometimes useful to consult the ML top
level and note what types it suggests.

Signature PARSE specifies the type token in order to specify the types of id
and other items. Accordingly, Parsing declares the type token to be equivalent
to Lex.token .

The function reader packages a parser for outside use. Calling reader ph a
scans the string a into tokens and supplies them to the parsing function ph . If
there are no tokens left then reader returns the meaning of the phrase; otherwise
it signals a syntax error.

Parsing infix operators. The function infixes constructs a parser for infix oper-
ators, when supplied with the following arguments:

• ph accepts the atomic phrases that are to be combined by the operators.

9.3 The ML code of the parser 371

Figure 9.3 The parsing functor

functor Parsing (Lex: LEXICAL) : PARSE =
struct
type token = Lex.token;

exception SyntaxErr of string;

fun id (Lex.Id a :: toks) = (a,toks)
| id toks = raise SyntaxErr "Identifier expected";

fun $a (Lex.Key b :: toks) = if a=b then (a,toks)
else raise SyntaxErr a

| $a _ = raise SyntaxErr "Symbol expected";

fun empty toks = ([],toks);

fun (ph1 || ph2) toks = ph1 toks handle SyntaxErr _ => ph2 toks;

fun !! ph toks = ph toks handle SyntaxErr msg =>
raise Fail ("Syntax error: " ˆ msg);

fun (ph1 -- ph2) toks =
let val (x,toks2) = ph1 toks

val (y,toks3) = ph2 toks2
in ((x,y), toks3) end;

fun (ph>>f) toks =
let val (x,toks2) = ph toks
in (f x, toks2) end;

fun (a $-- ph) = ($a -- !!ph >> #2);

fun repeat ph toks = (ph -- repeat ph >> (op::)
|| empty) toks;

fun infixes (ph,preco f ,apply) =
let fun over k toks = next k (ph toks)

and next k (x, Lex.Key(a)::toks) =
if preco f a < k then (x, Lex.Key a :: toks)
else next k ((over (preco f a) >> apply a x) toks)

| next k (x, toks) = (x, toks)
in over 0 end;

(*Scan and parse, checking that no tokens remain*)
fun reader ph a =

(case ph (Lex.scan a) of
(x, []) => x

| (_, _::_) => raise SyntaxErr "Extra characters in phrase");
end;

372 9 Writing Interpreters for the λ-Calculus

• prec of gives the precedences of the operators, returning −1 for all
keywords that are not infix operators.
• apply combines the meanings of phrases; apply a x y applies the oper-

ator a to operands x and y .

The resulting parser recognizes an input like

ph ⊕ ph ⊗ ph 	 ph � ph

and groups the atomic phrases according to the precedences of the operators. It
employs the mutually recursive functions over and next .

Calling over k parses a series of phrases, separated by operators of prece-
dence k or above. In next k (x , toks) the argument x is the meaning of the
preceding phrase and k is the governing precedence. The call does nothing un-
less the next token is an operator a of precedence k or above; in this case, tokens
are recursively parsed by over(prec of a) and their result combined with x . The
result and the remaining tokens are then parsed under the original precedence k .

The algorithm does not handle parentheses; this should be done by ph . Sec-
tion 10.6 demonstrates the use of infixes .

Writing a backtracking parser. A grammar is ambiguous if some token list ad-
mits more than one parse. Our method is easily modified such that each parsing
function returns a sequence (lazy list) of successful outcomes. Inspecting ele-
ments of this sequence causes backtracking over all parses of the input.

The parser ph1--ph2 returns the sequence of all possible ways of parsing a
ph1 followed by a ph2. It applies ph1 to the input, which yields a sequence
of (x , toks2) pairs. For each element of this sequence it applies ph2 to toks2,
obtaining a sequence of (y, toks3) pairs. Finally it returns the sequence of all
successful outcomes ((x , y), toks3). For each outcome, the meaning (x , y) con-
sists of a pair of meanings returned by ph1 and ph2.

A parser rejects its input by returning the empty sequence rather than by rais-
ing an exception. Note that if ph1 rejects its input or if ph2 rejects each of the
outcomes of ph1 then ph1--ph2 yields the empty sequence, rejecting its input.

This is an enjoyable exercise in sequence processing, but it suffers from the
drawbacks of backtracking parsers: it is slow and handles errors poorly. It can
take exponential time to parse the input; bottom-up parsing would be much
faster. If the input contains a syntax error, a backtracking parser returns no
information other than an empty sequence. Our parser can easily be made to
pinpoint syntax errors. Modify type token so that each token carries its position
in the input string, and make !! include that information in its error messages.

9.4 Example: parsing and displaying types 373

Backtracking is valuable in theorem proving. A ‘tactic’ for finding proofs can
be expressed as a function that takes a goal and returns a sequence of solutions.
Tactics can be combined to form effective search procedures. The next chapter
presents this technique, which is related to our treatment of parsing functions.

Exercise 9.3 Give an example of a parser ph such that, for all inputs, ph ter-
minates successfully but repeat ph runs forever.

Exercise 9.4 A parse tree is a tree representing the structure of a parsed token
list. Each node stands for a phrase, with branches to its constituent symbols
and sub-phrases. Modify our parsing method so that it constructs parse trees.
Declare a suitable type partree of parse trees such that each parsing function
can have type

token list → partree × token list .

Code the operators ||, --, id , $, empty and repeat ; note that >> no longer
serves any purpose.

Exercise 9.5 Modify the parsing method to generate a sequence of successful
results, as described above.

Exercise 9.6 Code the parsing method in a procedural style, where each pars-
ing ‘function’ has type unit → α and updates a reference to a token list by
removing tokens from it. Does the procedural approach have any drawbacks, or
is it superior to the functional approach?

Exercise 9.7 Modify signature PARSE to specify a substructure Lex of signa-
ture LEXICAL rather than a type token , so that other signature items can refer to
the type Lex.token . Modify the functor declaration accordingly.

Exercise 9.8 When an expression contains several infix operators of the same
precedence, does infixes associate them to the left or to the right? Modify this
function to give the opposite association. Describe an algorithm to handle a
mixture of left and right-associating operators.

9.4 Example: parsing and displaying types
The parser and pretty printer will now be demonstrated using a grammar

for ML types. For purposes of the example, ML’s type system can be simplified
by dropping record and product types. There are two forms of type to consider:

374 9 Writing Interpreters for the λ-Calculus

Types such as int , bool list and (α list) → (β list) consist of a type con-
structor applied to zero or more type arguments. Here the type constructor int
is applied to zero arguments; list is applied to the type bool ; and→ is applied
to the types α list and β list . ML adopts a postfix syntax for most type construc-
tors, but→ has an infix syntax. Internally, such types can be represented by a
string paired with a list of types.

A type can consist merely of a type variable, which can be represented by a
string. Our structure for types has the following signature:

signature TYPE =
sig
datatype t = Con of string * t list | Var of string
val pr : t -> unit
val read : string -> t
end;

It specifies three components:

• The datatype t comprises the two forms of type, with Con for type
constructors and Var for type variables.
• Calling pr ty prints the type ty at the terminal.
• The function read converts a string to a type.

We could implement this signature using a functor whose formal parameter list
would contain the signatures PARSE and PRETTY. But it is generally simpler
to avoid writing functors unless they will be applied more than once. Let us
therefore create structures for the lexical analyser and the parser, for parsing
types. They will be used later to implement the λ-calculus.

Structure LamKey defines the necessary symbols. Structure LamLex pro-
vides lexical analysis for types and the λ-calculus, while LamParsing provides
parsing operators.

structure LamKey =
struct val alphas = []

and symbols = ["(", ")", "’", "->"]
end;

structure LamLex = Lexical (LamKey);
structure LamParsing = Parsing (LamLex);

Structure Type (Figure 9.4) matches signature TYPE. For simplicity, it only
treats the → symbol; the other type constructors are left as an exercise. The
grammar defines types and atomic types in mutual recursion. An atomic type is

9.4 Example: parsing and displaying types 375

Figure 9.4 Parsing and displaying ML types

structure Type : TYPE =
struct

datatype t = Con of string * t list
| Var of string;

local (** Parsing **)
fun makeFun (ty1,ty2) = Con("->",[ty1,ty2]);
open LamParsing

fun typ toks =
(atom -- "->" $-- typ >> makeFun
|| atom

) toks
and atom toks =
($"’" -- id >> (Var o opˆ)
|| "(" $-- typ -- $")" >> #1

) toks;
in
val read = reader typ;

end;

local (** Display **)
fun typ (Var a) = Pretty.str a

| typ (Con("->",[ty1,ty2])) = Pretty.blo(0, [atom ty1,
Pretty.str " ->",
Pretty.brk 1,
typ ty2])

and atom (Var a) = Pretty.str a
| atom ty = Pretty.blo(1, [Pretty.str"(",

typ ty,
Pretty.str")"]);

in
fun pr ty = Pretty.pr (TextIO.stdOut, typ ty, 50)

end

end;

376 9 Writing Interpreters for the λ-Calculus

either a type variable or any type enclosed in parentheses:

Type = Atom -> Type

| Atom

Atom = ’ Id

| (Type)

This grammar treats→ as an infix operator that associates to the right. It inter-
prets ’a->’b->’c as ’a->(’b->’c) rather than (’a->’b)->’c because
’a -> ’b is not an Atom .

The structure contains two local declarations, one for parsing and one for
pretty printing. Each declares mutually recursive functions typ and atom corre-
sponding to the grammar. Opening structure LamParsing makes its operations
available at top level; recall that the infix directives were global.

Parsing of types. Using the top-down parsing operators, the function definitions
in the parser are practically identical to the grammar rules. The operator >>,
which applies a function to a parser’s result, appears three times. Function typ
uses >> to apply makeFun to the result of the first grammar rule, combining
two types to form a function type. Using $-- in the rule prevents the arrow
symbol from being returned as a constituent of the phrase.

Both cases of atom involve >>, with two mysterious functions. During pars-
ing of the type variable ’a, in the first case, >> applies Var o opˆ to the pair
("’","a"). This function consists of Var composed with string concatenation;
it concatenates the strings to "’a" and returns the type Var "’a".

In the second case of atom , parsing the phrase (Type) calls the function
#1, which selects the first component of its argument. Here it takes the pair
(ty,")") and yields ty . Had we not used $-- to parse the left parenthesis, we
should have needed the even more mysterious function (#2 o #1).

The parsing functions mention the argument toks to avoid looping (like repeat
above) and because a fun declaration must mention an argument.

Pretty printing of types. The same mutual recursion works for displaying as for
parsing. Functions typ and atom both convert a type into a symbolic expression
for the pretty printer, but atom encloses its result in parentheses unless it is just
an identifier. Parentheses appear only when necessary; too many parentheses
are confusing.

The functions blo, str and brk of structure Pretty are used in typical fashion
to describe blocks, strings and breaks. Function atom calls blo with an inden-

9.4 Example: parsing and displaying types 377

tation of one to align subsequent breaks past the left parenthesis. Function typ
calls blo with an indentation of zero, since it includes no parentheses; after the
string " ->", it calls brk 1 to make a space or a line break.

The function pr writes to the terminal (stream TextIO.stdOut), with a right
margin of fifty.

Trying some examples. We can enter types, note their internal representations
(as values of Type.t) after parsing, and check that they are displayed correctly:

Type.read"’a->’b->’c";
> Con ("->", [Var "’a",
> Con ("->", [Var "’b", Var "’c"])])
> : Type.t
Type.pr it;
> ’a -> ’b -> ’c
Type.read"(’a->’b)->’c";
> Con ("->", [Con ("->", [Var "’a", Var "’b"]),
> Var "’c"])
> : Type.t
Type.pr it;
> (’a -> ’b) -> ’c

Our parsing of types is naı̈ve. A string of the form (Type) must be parsed
twice. The first grammar rule for Type fails: there is no -> token after the right
parenthesis. The second grammar rule parses it successfully as an Atom . We
could modify the grammar to remove the repeated occurrence of Atom .

More on parsing. LR parsing is the method of choice for complicated gram-
mars, like those of programming languages. This bottom-up technique is reli-

able, efficient and general; it supports good error recovery. LR parsers are not written
by hand but generated using a tool such as Yacc (yet another compiler-compiler). The
tool accepts a grammar, constructs parsing tables and outputs the parser in source form.
Each syntax rule may be augmented with a semantic action: code to be executed when-
ever that rule applies. Most parser generators are based upon the C language.

ML-Yacc (Tarditi and Appel, 1994) uses ML for semantic actions and for the gener-
ated parser. ML-Yacc is fairly complicated to set up, but it is worth considering for any
non-trivial grammar. You must supply ML-Yacc with a lexical analyser, which might be
hand-coded or generated using a tool such as ML-Lex (Appel et al., 1994).

The functional approach to top-down parsing has been understood for a long time.
Burge (1975) contains one of the earliest published descriptions, including the use of
lazy lists for backtracking. Reade (1989) gives a more modern account. Frost and
Launchbury (1989) use the method to parse a subset of English for a question-answering
system. Tobias Nipkow, who suggested !! and $--, has used the approach to parse
Isabelle theory files.

378 9 Writing Interpreters for the λ-Calculus

Aho et al. (1986) describes lexical analysis and parsing extremely well. It covers both
the top-down approach implemented here using functions, and the bottom-up approach
that underlies ML-Yacc.

Exercise 9.9 Implement parsing and pretty printing of arbitrary type construc-
tors. First, define a grammar for ML’s postfix syntax, as in the examples

’c list list (string,int) sum
(’a -> ’b) list ’a list -> ’b list

Parentheses are optional when a type constructor is applied to one argument not
involving the arrow; thus ’a -> ’b list stands for ’a -> ((’b) list)

rather than (’a -> ’b) list.

Exercise 9.10 Use the parsing primitives, or alternatively ML-Yacc, to imple-
ment a parser for propositions — type prop of Section 4.17.

Introducing the λ-calculus
Turing machines, recursive functions and register machines are formal

models of computation. The λ-calculus, developed by Alonzo Church, is one
of the earliest models and perhaps the most realistic. It can express computa-
tions over pairs, lists, trees (even infinite ones) and higher-order functions. Most
functional languages are nothing more than elaborated forms of the λ-calculus,
and their implementations are founded in λ-calculus theory.

Church’s thesis asserts that the effectively computable functions are precisely
those functions that can be computed in the λ-calculus. Because ‘effective’ is
a vague notion, Church’s thesis cannot be proved, but the λ-calculus is known
to have the same power as the other models of computation. Functions coded
in these models can be computed effectively, given sufficient time and space,
and nobody has exhibited a computable function that cannot be coded in these
models.

9.5 λ-terms and λ-reductions
The λ-calculus is a simple formal theory of functions. Its terms, called

λ-terms, are constructed recursively from variables x , y , z , . . . and other λ-
terms. Let t , u , . . . stand for arbitrary λ-terms. They may take one of three

9.5 λ-terms and λ-reductions 379

forms:

x a variable

(λx .t) functional abstraction
(t u) function application

A term t1 is a subterm of t2 if t1 is contained in t2 or is identical to it. For
instance, y is a subterm of (λz .(z y)).

In the abstraction (λx .t), we call x the bound variable and t the body. Every
occurrence of x in t is bound by the abstraction. Conversely, an occurrence of
a variable y is free if it is not bound — if it is not contained within the body
of some abstraction (λy .u). For example, x occurs bound and y occurs free in
(λz .(λx .(y x)). From now on, let a , b, c, . . . denote free variables.

The names of bound variables have little significance. If they are renamed
consistently in an abstraction, the new abstraction is essentially the same as the
old. This principle is known throughout mathematics. In the integral

∫ b
a f (x)dx ,

the variables a and b are free while x is bound. In the product 5n
k=0 p(k), the

variable n is free while k is bound.
The abstraction (λx .t) represents the function f with f (x) = t for all x . Ap-

plying (λx .t) to an argument u yields the term that results when u is substituted
for all free occurrences of x in t . Write the result of this substitution as t[u/x].
Substitution involves some delicate points, but let us leave them for later.

λ-conversions. These are rules for transforming a λ-term while preserving its
intuitive meaning. Conversions should not be confused with equations such
as x + y = y + x , which are statements about known arithmetic operations.
The λ-calculus is not concerned with previously existing mathematical objects.
The λ-terms themselves are the objects, and the λ-conversions are symbolic
transformations upon them.

Most important is β-conversion, which transforms a function application by
substituting the argument into the body:

((λx .t)u)⇒β t[u/x]

In this example, the argument is (g a):

((λx .((f x)x))(g a))⇒β ((f (g a))(g a))

Here is an example of two successive β-conversions:

((λz .(z a))(λx .x))⇒β ((λx .x)a)⇒β a

380 9 Writing Interpreters for the λ-Calculus

An α-conversion renames the bound variable in an abstraction:

(λx .t)⇒α (λy .t[y/x])

The abstraction over x is transformed into an abstraction over y , and x is re-
placed by y . Examples:

(λx .a x)⇒α (λy .a y)

(λx .(x (λy .(y x))))⇒α (λz .(z (λy .(y z))))

Two λ-terms are congruent if one can be transformed into the other using α-
conversions (possibly applied to subterms). Intuitively, we may regard congru-
ent terms as being the same, renaming bound variables whenever necessary.
Free variables are significant, however; thus a is distinct from b while (λx .x) is
congruent to (λy .y).

Notation. Nested abstractions and applications can be abbreviated:

(λx1.(λx2. . . . (λxn .t) . . .)) as (λx1x2 . . . xn .t)

(. . . (t1t2) . . . tn) as (t1t2 . . . tn)

The outer parentheses are dropped when the term is not enclosed in another term
or is the body of an abstraction. For example,

(λx .(x (λy .(y x)))) can be written as λx .x (λy .y x).

Reduction to normal form. A reduction step t ⇒ u transforms t to u by apply-
ing a β-conversion to any subterm of t . If a term admits no reductions then it is
in normal form. To normalize a term means to apply reductions until a normal
form is reached.

Some terms can be reduced in more than one way. The Church-Rosser The-
orem states that different reduction sequences starting from a term can always
be brought together again. In particular, no two sequences of reductions can
reach distinct (non-congruent) normal forms. The normal form of a term can
be regarded as its value; it is independent of the order in which reductions are
performed.

For instance, (λx .a x)((λy .b y)c) has two different reduction sequences, both
leading to the same normal form. The affected subterm is underlined at each
step:

(λx .a x)((λy .b y)c)⇒ a((λy .b y)c) ⇒ a(b c)

(λx .a x)((λy .b y)c)⇒ (λx .a x)(b c)⇒ a(b c)

9.6 Preventing variable capture in substitution 381

Many λ-terms have no normal form. For instance, (λx .x x)(λx .x x) reduces to
itself by β-conversion. Any attempt to normalize this term must fail to termi-
nate:

(λx .x x)(λx .x x)⇒ (λx .x x)(λx .x x)⇒ · · ·

A term t can have a normal form even though certain reduction sequences never
terminate. Typically, t contains a subterm u that has no normal form, but u can
be erased by a reduction step. For example, the reduction sequence

(λy .a)((λx .x x)(λx .x x))⇒ a

reaches normal form directly, erasing the term (λx .x x)(λx .x x). This corre-
sponds to a call-by-name treatment of functions: the argument is not evaluated
but simply substituted into the body of the function. Attempting to normalize
the argument generates a nonterminating reduction sequence:

(λy .a)((λx .x x)(λx .x x))⇒ (λy .a)((λx .x x)(λx .x x))⇒ · · ·

Evaluating the argument prior to substitution into the function body corresponds
to a call-by-value treatment of function application. In this example, the call-
by-value strategy never reaches the normal form. The reduction strategy corre-
sponding to call-by-name evaluation always reaches a normal form if one exists.

You may well ask, in what sense is λx .x x a function? It can be applied to
any object and applies that object to itself! In classical mathematics, a function
can only be defined over some previously existing set of values. The λ-calculus
does not deal with functions as they are classically understood.1

9.6 Preventing variable capture in substitution
Substitution must be defined carefully: otherwise the conversions could

go wrong. For instance, the term λx y .y x ought to behave like a curried function
that, when applied to arguments t and u , returns u t as its result. For all λ-
terms t and u , we should expect to have the reductions

(λx y .y x)t u ⇒ (λy .y t)u ⇒ u t .

The following reduction sequence is certainly wrong:

(λx y .y x)y b ⇒ (λy .y y)b ⇒ b b ???

1 Dana Scott has constructed models in which every abstraction, including
λx .x x , denotes a function (Barendregt, 1984). However, this chapter regards
the λ-calculus from a purely syntactic point of view.

382 9 Writing Interpreters for the λ-Calculus

The β-conversion of (λx y .y x)y to λy .y y is incorrect because the free vari-
able y has become bound. The substitution has captured this free variable. By
first renaming the bound variable y to z , the reduction can be performed safely:

(λx z .z x)y b ⇒ (λz .z y)b ⇒ b y

In general, the substitution t[u/x] will not capture any variables provided no
free variable of u is bound in t .

If bound variables are represented literally, then substitution must sometimes
rename bound variables of t to avoid capturing free variables. Renaming is
complicated and can be inefficient. It is essential that the new names do not
appear elsewhere in the term. Preferably they should be similar to the names
that they replace; nobody wants to see a variable called G6620094.

A name-free representation. Changing the representation of λ-terms can sim-
plify the substitution algorithm. The name x of a bound variable serves only to
match each occurrence of x with its binding λx so that reductions can be per-
formed correctly. If these matches can be made by other means, then the names
can be abolished.

We can achieve this using the nesting depth of abstractions. Each occurrence
of a bound variable is represented by an index, giving the number of abstractions
lying between it and its binding abstraction. Two λ-terms are congruent —
differing only by α-conversions — if and only if their name-free representations
are identical.

In the name-free notation, no variable name appears after the λ symbol and
bound variable indices appear as numbers. The first occurrence of x in the
body of λx .(λy .x)x is represented by 1 because it is enclosed in an abstraction
over y . The second occurrence of x is not enclosed in any other abstraction and
is represented by 0. Therefore the name-free representation of λx .(λy .x)x is
λ.(λ.1)0.

Here is a term where the bound variables occur at several nesting depths:

λx .x (λy .x y(λz .x y z))

Viewing the term as a tree emphasizes its nesting structure:

λ x

x

λ y

λ z

z

x

y

x

y

9.6 Preventing variable capture in substitution 383

In the name-free notation, the three occurrences of x are represented by 0, 1
and 2:

λ.0(λ.1 0(λ.2 1 0))

Operations such as abstraction and substitution are easily performed in the name-
free representation. It is a good data structure for variable binding, but is un-
readable as a notation. The original variable names should be retained for later
display, so that the user sees the traditional notation.

Abstraction. Suppose that t is a λ-term that we would like to abstract over all
free occurrences of the variable x , constructing the abstraction λx .t . Take, for
instance, x (λy .a x y), which in the name-free notation is

x (λ.a x 0).

To bind all occurrences of x , we must replace them by the correct indices, here 0
and 1, and insert a λ symbol:

λ.0(λ.a 1 0)

This can be performed by a recursive function on terms that keeps count of the
nesting depth of abstractions. Each occurrence of x is replaced by an index
equal to its depth.

Substitution. To perform the β-conversion

(λx .t)u ⇒β t[u/x],

the term t must be recursively transformed, replacing all the occurrences of x
by u . In the name-free notation, x could be represented by several different
indices. The index is initially 0 and increases with the depth of abstractions in t .
For instance, the conversion

(λx .x (λy .a x y))b ⇒β b(λy .a b y)

becomes

(λ.0(λ.a 1 0))b ⇒β b(λ.a b 0)

in the name-free notation. Observe that x has index 0 in the outer abstraction
and index 1 in the inner one.

Performing β-conversion on a subterm (λx .t)u is more complex. The argu-
ment u may contain variables bound outside, namely indices with no matching
abstraction in u . These indices must be increased by the current nesting depth

384 9 Writing Interpreters for the λ-Calculus

before substitution into t ; this ensures that they refer to the same abstractions
afterwards.

For instance, in

λz .(λx .x (λy .x))(a z)⇒β λz .a z (λy .a z),

the argument a z is substituted in two places, one of which lies in the scope
of λy . In the name-free approach, a z receives two different representations:

λ.(λ.0(λ.1))(a 0)⇒β λ.a 0(λ.a 1)

Exercise 9.11 Show all the reduction sequences for normalizing the term

(λf .f (f a))((λx .x x)((λy .y)(λy .y))).

Exercise 9.12 For each term, show its normal form or demonstrate that it has
none:

(λf x y .f x y)(λu v .u)

(λx .f (x x))(λx .f (x x))

(λx y .y x)(λx .f (f x))(λx .f (f (f (f x))))

(λx .x x)(λx .x)

Exercise 9.13 Give the name-free representations of the following terms:

λx y z .x z (y z)

λx y .(λz .x y z)y x

λf .(λx .f (λy .x x y))(λx .f (λy .x x y))

(λp x y .p x y)(λx y .y) a b

Exercise 9.14 Consider a representation of λ-terms that designates bound vari-
ables internally by unique integers. Give algorithms for constructing λ-terms
and for performing substitution.

Representing λ-terms in ML
Implementing the λ-calculus in ML is straightforward under the name-

free representation. The following sections present ML programs for abstraction
and substitution, and for parsing and pretty printing λ-terms.

We shall need StringDict , the dictionary structure declared in Section 7.10.
It allows us to associate any information, in this case λ-terms, with strings. We
can evaluate λ-terms with respect to an environment of defined identifiers.

9.7 The fundamental operations 385

9.7 The fundamental operations
Here is the signature for the name-free representation:

signature LAMBDA =
sig
datatype t = Free of string

| Bound of int
| Abs of string * t
| Apply of t * t;

val abstract : int -> string -> t -> t
val absList : string list * t -> t
val applyList : t * t list -> t
val subst : int -> t -> t -> t
val inst : t StringDict.t -> t -> t
end;

Datatype t comprises free variables (as strings), bound variables (as indices),
abstractions and applications. Each Abs node stores the bound variable name
for use in printing.

Calling abstract i b t converts each occurrence of the free variable b in t to
the index i (or a greater index within nested abstractions). Usually i = 0 and the
result is immediately enclosed in an abstraction to match this index. Recursive
calls over abstractions in t have i > 0.

Calling absList([x1, . . . , xn], t) creates the abstraction λx1 . . . xn .t .
Calling applyList(t, [u1, . . . , un]) creates the application t u1 . . . un .
Calling subst i u t substitutes u for the bound variable index i in t . Usually

i = 0 and t is the body of an abstraction in the β-conversion (λx .t)u . The
case i > 0 occurs during recursive calls over abstractions in t . All indices
exceeding i are decreased by one to compensate for the removal of that index.

Calling inst env t copies t , replacing all occurrences of variables defined in
env by their definitions. The dictionary env represents an environment, and
inst expands all the definitions in a term. This process is called instantiation.
Definitions may refer to other definitions; instantiation continues until defined
variables no longer occur in the result.

Signature LAMBDA is concrete, revealing all the internal details. Many val-
ues of type t are improper: they do not correspond to real λ-terms because
they contain unmatched bound variable indices. No term has the representation
Bound i , for any i . Moreover, abstract returns improper terms and subst ex-
pects them. An abstract signature for the λ-calculus would provide operations
upon λ-terms themselves, hiding their representation.

Structure Lambda (Figure 9.5) implements the signature. Function shift is
private to the structure because it is called only by subst . Calling shift i d u

386 9 Writing Interpreters for the λ-Calculus

Figure 9.5 The name-free representation of λ-terms

structure Lambda : LAMBDA =
struct
datatype t = Free of string

| Bound of int
| Abs of string * t
| Apply of t * t;

(*Convert occurrences of b to bound index i in a term*)
fun abstract i b (Free a) = if a=b then Bound i else Free a
| abstract i b (Bound j) = Bound j
| abstract i b (Abs(a,t)) = Abs(a, abstract (i+1) b t)
| abstract i b (Apply(t,u)) = Apply(abstract i b t, abstract i b u);

(*Abstraction over several free variables*)
fun absList (bs,t) = foldr (fn (b,u) => Abs(b, abstract 0 b u)) t bs;

(*Application of t to several terms*)
fun applyList (t0,us) = foldl (fn (u,t) => Apply(t,u)) t0 us;

(*Shift a term’s non-local indices by i*)
fun shift 0 d u = u
| shift i d (Free a) = Free a
| shift i d (Bound j) = if j>=d then Bound(j+i) else Bound j
| shift i d (Abs(a,t)) = Abs(a, shift i (d+1) t)
| shift i d (Apply(t,u)) = Apply(shift i d t, shift i d u);

(*Substitute u for bound variable i in a term t*)
fun subst i u (Free a) = Free a

| subst i u (Bound j) =
if j<i then Bound j (*locally bound*)
else if j=i then shift i 0 u
else (*j>i*) Bound(j-1) (*non-local to t*)

| subst i u (Abs(a,t)) = Abs(a, subst (i+1) u t)
| subst i u (Apply(t1,t2)) = Apply(subst i u t1, subst i u t2);

(*Substitution for free variables*)
fun inst env (Free a) = (inst env (StringDict.lookup(env,a))

handle StringDict.E _ => Free a)
| inst env (Bound i) = Bound i
| inst env (Abs(a,t)) = Abs(a, inst env t)
| inst env (Apply(t1,t2)) = Apply(inst env t1, inst env t2);

end;

9.8 Parsing λ-terms 387

adds i to all the unmatched indices j in u such that j ≥ d . Initially d = 0 and d
is increased in recursive calls over abstractions in u . Before substituting some
term u into another term, any unmatched indices in u must be shifted.

Function inst substitutes for free variables, not bound variables. It expects
to be given proper λ-terms having no unmatched indices. It therefore does not
keep track of the nesting depth or call shift .

Exercise 9.15 Explain the use of the fold functionals in the declarations of
absList and applyList .

Exercise 9.16 Declare a signature for the λ-calculus that hides its internal rep-
resentation. It should specify predicates to test whether a λ-term is a variable,
an abstraction or an application, and specify functions for abstraction and sub-
stitution. Sketch the design of two structures, employing two different represen-
tations of λ-terms, that would have this signature.

9.8 Parsing λ-terms
In order to apply the parser and pretty printer, we require a grammar

for λ-terms, including the abbreviations for nested abstractions and applications.
The following grammar distinguishes between ordinary terms and atomic terms.
A per cent sign (%) serves as the λ symbol:

Term = % Id Id∗ Term

| Atom Atom∗

Atom = Id

| (Term)

Note that phrase∗ stands for zero or more repetitions of phrase. A term consist-
ing of several Atoms in a row, such as a b c d , abbreviates the nested application
(((a b)c)d). A more natural grammar would define the phrase class Applic:

Applic = Atom

| Applic Atom

Then we could replace the Atom Atom∗ in Term by Applic. But the second
grammar rule for Applic is left-recursive and would cause our parser to loop.
Eliminating this left recursion in the standard way yields our original grammar.

Structure ParseTerm (Figure 9.6) uses structures Parse and Lambda , con-
taining the parser and the λ-term operations, to satisfy signature PARSE TERM:

388 9 Writing Interpreters for the λ-Calculus

Figure 9.6 The λ-calculus parser

structure ParseTerm : PARSET ERM =
struct

fun makeLambda ((b,bs),t) = Lambda.absList (b::bs, t);

open LamParsing

fun term toks =
("%" $-- id -- repeat id -- "." $-- term >> makeLambda
|| atom -- repeat atom >> Lambda.applyList
) toks

and atom toks =
(id >> Lambda.Free
|| "(" $-- term -- $")" >> #1
) toks;

val read = reader term;

end;

signature PARSET ERM =
sig val read: string -> Lambda.t end;

The structure’s only purpose is to parse λ-terms. Its signature specifies just one
component: the function read converts a string to a λ-term. Its implementa-
tion is straightforward, using components absList and applyList of structure
Lambda .

Exercise 9.17 In function makeLambda , why does the argument pattern have
the form it does?

Exercise 9.18 What is the result of parsing "%x x.x(%x x.x)"?

9.9 Displaying λ-terms

Structure DisplayTerm (Figure 9.7 on page 390) implements pretty
printing for λ-terms. Using structures Pretty and Lambda — the pretty printer
and the term operations — it satisfies signature DISPLAY TERM:

9.9 Displaying λ-terms 389

signature DISPLAYT ERM =
sig
val rename : string list * string -> string
val stripAbs : Lambda.t -> string list * Lambda.t
val pr : Lambda.t -> unit
end;

The signature specifies several components:

• rename([a1, . . . , an], a) appends prime (’) characters to a to make it
differ from each of a1, . . . , an .
• stripAbs analyses an abstraction into its bound variables and body, as

described below.
• Calling pr t prints the term t at the terminal.

Even with the name-free representation, bound variables may have to be re-
named when a term is displayed. The normal form of (λxy .x)y is shown as
%y’. y, not as %y. y. Function stripAbs and its auxiliary function strip
handle abstractions. Given λx1 . . . xm .t , the bound variables are renamed to dif-
fer from all free variables in t . The new names are substituted into t as free
variables. Thus, all indices are eliminated from a term as it is displayed.

The mutually recursive functions term , applic and atom prepare λ-terms for
pretty printing. A Free variable is displayed literally. A Bound variable index
should never be encountered unless it has no matching Abs node (indicating
that the term is improper). For an Abs node, the bound variables are renamed;
then foldleft joins them into a string, separated by spaces. An Apply node is
displayed using applic, which corresponds to the grammatical phrase Applic
mentioned in the previous section. Finally, atom encloses a term in parentheses
unless it is simply an identifier.

Exercise 9.19 How will the normal form of (λx y .x)(λy .y) be displayed?
Modify DisplayTerm to ensure that, when a term is displayed, no variable name
is bound twice in overlapping scopes.

Exercise 9.20 Terms can be displayed without substituting free variables for
bound variables. Modify DisplayTerm to keep a list of the variables bound in
the abstractions enclosing the current subterm. To display the term Bound i ,
locate the i th name in the list.

390 9 Writing Interpreters for the λ-Calculus

Figure 9.7 The λ-calculus pretty printer

structure DisplayTerm : DISPLAYT ERM =
struct

(*Free variable in a term*)
fun vars (Lambda.Free a) = [a]

| vars (Lambda.Bound i) = []
| vars (Lambda.Abs(a,t)) = vars t
| vars (Lambda.Apply(t1,t2)) = vars t1 @ vars t2;

(*Rename variable "a" to avoid clashes*)
fun rename (bs,a) =

if List.exists (fn x => x=a) bs then rename (bs, a ˆ "’") else a;

(*Remove leading lambdas; return bound variable names*)
fun strip (bs, Lambda.Abs(a,t)) =

let val b = rename (vars t, a)
in strip (b::bs, Lambda.subst 0 (Lambda.Free b) t)
end

| strip (bs, u) = (rev bs, u);

fun stripAbs t = strip ([],t);

fun spaceJoin (b,z) = " " ˆ b ˆ z;

fun term (Lambda.Free a) = Pretty.str a
| term (Lambda.Bound i) = Pretty.str "??UNMATCHED INDEX??"
| term (t as Lambda.Abs _) =

let val (b::bs,u) = stripAbs t
val binder = "%" ˆ b ˆ (foldr spaceJoin ". " bs)

in Pretty.blo(0, [Pretty.str binder, term u])
end

| term t = Pretty.blo(0, applic t)
and applic (Lambda.Apply(t,u)) = applic t @ [Pretty.brk 1, atom u]

| applic t = [atom t]
and atom (Lambda.Free a) = Pretty.str a

| atom t = Pretty.blo(1, [Pretty.str"(",
term t,
Pretty.str")"]);

fun pr t = Pretty.pr (TextIO.stdOut, term t, 50);
end;

9.10 Data structures in the λ-calculus 391

The λ-calculus as a programming language
Despite its simplicity, the λ-calculus is rich enough to model the full

range of functional programming. Data structures such as pairs and lists can be
processed under either call-by-value or call-by-name evaluation strategies. After
a brief discussion of these topics we shall demonstrate them using ML. First, we
must make some definitions.

Write t ⇒∗ u whenever t can be transformed into u by zero or more reduc-
tion steps. If u is in normal form then t ⇒∗ u can be viewed as evaluating t
to obtain the result u . Not every evaluation strategy will succeed in finding this
normal form.

Write t1 = t2 whenever there is some term u (not necessarily in normal form!)
such that t1 ⇒

∗ u and t2 ⇒
∗ u . If t1 = t2 then both terms have the same normal

form, if any. Viewing normal forms as values, t1 = t2 means that t1 and t2 have
the same value.

Write a ≡ t , where a is a free variable, to mean ‘a abbreviates t by defini-
tion.’

9.10 Data structures in the λ-calculus
We now consider how to encode boolean values, ordered pairs, natural

numbers and lists. The codings given below are arbitrary; all that matters is that
the data structures and their operations satisfy certain standard properties. An
encoding of the booleans must define the truth values true and false and the
conditional operator if as λ-terms, satisfying (for all t and u)

if true t u = t

if false t u = u

Once we have two distinct truth values and the conditional operator, we can
define negation, conjunction and disjunction. Analogously, the ML compiler
may represent true and false by any bit patterns provided the operations behave
properly.

The booleans. The booleans can be coded by defining

true ≡ λx y .x

false ≡ λx y .y

if ≡ λp x y .p x y

392 9 Writing Interpreters for the λ-Calculus

The necessary properties are easily verified. For instance:

if true t u ≡ (λp x y .p x y)true t u

⇒ (λx y .true x y)t u

⇒ (λy .true t y)u

⇒ true t u

⇒ (λy .t)u

⇒ t

This establishes if true t u ⇒∗ t and therefore if true t u = t .

Ordered pairs. An encoding must specify a function pair (to construct pairs)
and projection functions fst and snd (to select the components of a pair). The
usual encoding is

pair ≡ λx y f .f x y

fst ≡ λp.p true

snd ≡ λp.p false

where true and false are defined as above. These reductions, and the corre-
sponding equations, are easily verified for all t and u:

fst(pair t u)⇒∗ t

snd(pair t u)⇒∗ u

The natural numbers. Of the several known encodings of the natural numbers,
Church’s is the most elegant. Underlined numbers 0, 1, . . . , denote the Church
numerals:

0 ≡ λf x .x

1 ≡ λf x .f x

2 ≡ λf x .f (f x)
...

n ≡ λf x .f n(x)

Here f n(x) abbreviates f (· · · (f︸ ︷︷ ︸
n times

x) · · ·).

9.10 Data structures in the λ-calculus 393

The function suc computes the successor of a number, and iszero tests whether
a number equals zero:

suc ≡ λn f x .n f (f x)

iszero ≡ λn.n(λx .false)true

It is not difficult to verify the following reductions, where n is an arbitrary
Church numeral:

suc n ⇒∗ n + 1

iszero 0⇒∗ true

iszero(suc n)⇒∗ false

Church numerals allow wonderfully succinct definitions of addition, multiplica-
tion and exponentiation:

add ≡ λm n f x .m f (n f x)

mult ≡ λm n f .m(n f)

expt ≡ λm n f x .n m f x

These can be formally verified by induction, and their underlying intuitions are
simple. Each Church numeral n is an operator to apply a function n times. Note
that

add m n f x = f m(f n(x)) = f m+n(x);

the others are understood similarly.
An encoding of the natural numbers must also specify a predecessor function

pre such that

pre(suc n) = n

for all numbers n . With Church numerals, computing n from n + 1 is complex
(and slow!); given f and x , we must compute f n(x) from gn+1(y) for some g
and y . A suitable g is a function on pairs such that g(z , z ′) = (f (z), z) for all
(z , z ′); then

gn+1(x , x) = (f n+1(x), f n(x))

and we take the second component. To formalize this, define prefn to con-
struct g . Then define the predecessor function pre and the subtraction func-

394 9 Writing Interpreters for the λ-Calculus

tion sub:

prefn ≡ λf p.pair(f (fst p)) (fst p)

pre ≡ λn f x .snd(n(prefn f)(pair x x))

sub ≡ λm n.n pre m

For subtraction, sub m n = pren(m); this computes the nth predecessor of m .

Lists. Lists are encoded using pairing and the booleans. A non-empty list with
head x and tail y is coded as (false, (x , y)). The empty list nil could be coded
as (true, true), but a simpler definition happens to work:

nil ≡ λz .z

cons ≡ λx y .pair false (pair x y)

null ≡ fst

hd ≡ λz .fst(snd z)

tl ≡ λz .snd(snd z)

The essential properties are easy to check for all t and u:

null nil ⇒∗ true

null(cons t u)⇒∗ false

hd(cons t u)⇒∗ t

tl(cons t u)⇒∗ u

A call-by-name evaluation reduces hd(cons t u) to t without evaluating u , and
can process infinite lists.

Exercise 9.21 Define an encoding of ordered pairs in terms of an arbitrary
encoding of the booleans. Demonstrate it by encoding the booleans with true =
λx y .y and false = λx y .x .

Exercise 9.22 Verify, for all Church numerals m and n:

iszero(suc n) = false

add m n = m + n

mult m n = m × n

expt m n = mn

Exercise 9.23 Define an encoding of the natural numbers that has a simple
predecessor function.

9.11 Recursive definitions in the λ-calculus 395

Exercise 9.24 Define an encoding of labelled binary trees.

Exercise 9.25 Write an ML function numeral of type int → Lambda.t such
that numeral n constructs the Church numeral n , for all n ≥ 0.

9.11 Recursive definitions in the λ-calculus
There is a λ-term fact that computes factorials of Church numerals by

the recursion

fact n = if (iszero n) 1 (mult n (fact(pre n))).

There is a λ-term append that joins two lists by the recursion

append z w = if (null z) w (cons(hd z)(append(tl z)w)).

There even is a λ-term inflist satisfying the recursion

inflist = cons MORE inflist,

encoding the infinite list [MORE ,MORE , . . .].
Recursive definitions are encoded with the help of the λ-term Y :

Y ≡ λf .(λx .f (x x))(λx .f (x x))

Although the intuition behind Y is obscure, a simple calculation verifies that Y
satisfies the fixed point property

Y f = f (Y f)

for all λ-terms f . We can exploit this property to expand the body of a recursive
object repeatedly. Define

fact ≡ Y (λg n.if (iszero n) 1 (mult n (g(pre n))))

append ≡ Y (λg z w .if (null z) w (cons(hd z)(g(tl z)w)))

inflist ≡ Y (λg .cons MORE g)

In each definition, the recursive occurrence is replaced by the bound variable g
in Y (λg). Let us verify the recursion equation for inflist ; the others are
similar. The first and third lines hold by definition, while the second line uses
the fixed point property:

inflist ≡ Y (λg .cons MORE g)

= (λg .cons MORE g)(Y (λg .cons MORE g)))

≡ (λg .cons MORE g)inflist

⇒ cons MORE inflist

396 9 Writing Interpreters for the λ-Calculus

Recursive functions coded using Y execute correctly under call-by-name reduc-
tion. In order to use call-by-value reduction, recursive functions must be coded
using a different fixed point operator (discussed below); otherwise execution
will not terminate.

9.12 The evaluation of λ-terms
The structure Reduce (Figure 9.8) implements the call-by-value and

call-by-name reduction strategies. Its signature is REDUCE:

signature REDUCE =
sig
val eval : Lambda.t -> Lambda.t
val byValue : Lambda.t -> Lambda.t
val headNF : Lambda.t -> Lambda.t
val byName : Lambda.t -> Lambda.t
end;

The signature specifies four evaluation functions:

• eval evaluates a term using a call-by-value strategy resembling ML’s.
Its result need not be in normal form.
• byValue normalizes a term using call-by-value.
• headNF reduces a term to head normal form, which is discussed below.
• byName normalizes a term using call-by-name.

Call-by-value. In ML, evaluating the abstraction fn x => E does not evalu-
ate E , for there is no general way to evaluate E without having a value for x .
We have often exploited ML’s treatment of abstractions, writing fn () => E
to delay the evaluation of E . This allows a kind of lazy evaluation.

The situation in the λ-calculus is different. The abstraction λx .(λy .a y)x
reduces to the normal form λx .a x with no question of whether x has a value.
Even so, it is advantageous not to reduce the bodies of abstractions. This permits
the delaying of evaluation, like in ML. It is essential for handling recursion.

The function eval , given the application t1 t2, evaluates t1 to u1 and t2 to u2.
(Assume these evaluations terminate.) If u1 is the abstraction λx .u then eval
calls itself on u[u2/x], substituting the value of the argument into the body; if
u1 is anything else then eval returns u1u2. Given an abstraction or variable, eval
returns its argument unchanged. Although eval performs most of the work of
reduction, its result may contain abstractions not in normal form.

The function byValue uses eval to reduce a term to normal form. It calls eval
on its argument, then recursively scans the result to normalize the abstractions
in it.

9.12 The evaluation of λ-terms 397

Figure 9.8 Reduction of λ-terms

structure Reduce : REDUCE =
struct

fun eval (Lambda.Apply(t1,t2)) =
(case eval t1 of

Lambda.Abs(a,u) => eval(Lambda.subst 0 (eval t2) u)
| u1 => Lambda.Apply(u1, eval t2))

| eval t = t;

fun byValue t = bodies (eval t)
and bodies (Lambda.Abs(a,t)) = Lambda.Abs(a, byValue t)

| bodies (Lambda.Apply(t1,t2)) = Lambda.Apply(bodies t1, bodies t2)
| bodies t = t;

fun headNF (Lambda.Abs(a,t)) = Lambda.Abs(a, headNF t)
| headNF (Lambda.Apply(t1,t2)) =

(case headNF t1 of
Lambda.Abs(a,t) => headNF(Lambda.subst 0 t2 t)

| u1 => Lambda.Apply(u1, t2))
| headNF t = t;

fun byName t = args (headNF t)
and args (Lambda.Abs(a,t)) = Lambda.Abs(a, args t)

| args (Lambda.Apply(t1,t2)) = Lambda.Apply(args t1, byName t2)
| args t = t;

end;

398 9 Writing Interpreters for the λ-Calculus

Suppose that t equals true . When eval is given if t u1 u2, it evaluates
both u1 and u2 although only u1 is required. If this is the body of a recursive
function then it will run forever, as discussed in Section 2.12. We should insert
abstractions to delay evaluation. Choose any variable x and code the conditional
expression as

(if t (λx .u1) (λx .u2)) x .

Given this term, eval will return λx .u1 as the result of the if and then apply it
to x . Thus it will evaluate u1 but not u2. If t equals false then only u2 will be
evaluated. Conditional expressions must be coded this way under call-by-value.

Recursive definitions encoded using Y fail under call-by-value because the
evaluation of Y f never terminates. Abstractions may be inserted into Y to
delay evaluation. The operator

YV ≡ λf .(λx .f (λy .x x y))(λx .f (λy .x x y))

enjoys the fixed point property and can express recursive functions for evalua-
tion using byValue .

Call-by-name. A λ-term is in head normal form if, for m ≥ 0 and n ≥ 0, it
can be viewed as follows:

λx1 . . . xm .x t1 . . . tn .

The variable x may either be free or bound (one of x1, . . . , xm).
Observe that the term’s normal form (if it exists) must be

λx1 . . . xm .x u1 . . . un ,

where ui is the normal form of ti for i = 1, . . . , n . Head normal form describes
a term’s outer structure, which cannot be affected by reductions. We can nor-
malize a term by computing its head normal form, then recursively normalizing
the subterms t1, . . . , tn . This procedure will reach the normal form if one exists,
because every term that has a normal form also has a head normal form.

For example, the term λx .a((λz .z)x) is in head normal form and its normal
form is λx .a x . A term not in head normal form can be viewed as

λx1 . . . xm .(λx .t) t1 . . . tn ,

where n > 0. It admits a reduction in the leftmost part of the body. For instance,
(λx y .y x)t reduces to the head normal form λy .y t , for any term t . Many terms
without a normal form have a head normal form; consider

Y = λf .f (Y f).

9.13 Demonstrating the evaluators 399

A few terms, such as (λx .x x)(λx .x x), lack even a head normal form. Such
terms can be regarded as undefined.

The function headNF computes the head normal form of t1 t2 by recursively
computing headNF t1 and then, if an abstraction results, doing a β-conversion.
The argument t2 is not reduced before substitution; this is call-by-name.2

Function byName normalizes a term by computing its headNF and then nor-
malizing the arguments of the outermost application. This achieves call-by-
name reduction with reasonable efficiency.

Exercise 9.26 Show that YV f = f (λy .YV f y).

Exercise 9.27 Derive a head normal form of Y Y , or demonstrate that none
exists.

Exercise 9.28 Derive a head normal form of inflist , or demonstrate that none
exists.

Exercise 9.29 Describe how byValue and byName would compute the normal
form of fst(pair t u), for arbitrary λ-terms t and u .

9.13 Demonstrating the evaluators
To demonstrate our implementation of the λ-calculus, we create an en-

vironment stdEnv . It defines the λ-calculus encodings of the booleans, ordered
pairs and so forth (Figure 9.9 on the next page). Function insert of StringDict
adds a definition to a dictionary, provided that string is not already defined there.

Function stdRead reads a term and instantiates it using stdEnv , expand-
ing the definitions. Note that "2" expands to something large, derived from
suc(suc 0):

fun stdRead a = inst stdEnv (ParseLam.read a);
> val stdRead = fn : string -> term
DisplayTerm.pr (stdRead "2");
> (%n f x. n f (f x))
> ((%n f x. n f (f x)) (%f x. x))

This term could do with normalization. We define a function try such that
try evfn reads a term, applies evfn to it, and displays the result. Using call-
by-value, we reduce "2" to a Church numeral:

2 headNF exploits Proposition 8.3.13 of Barendregt (1984): if t u has a head
normal form then so does t .

400 9 Writing Interpreters for the λ-Calculus

Figure 9.9 Constructing the standard environment

fun insertEnv ((a,b),env) =
StringDict.insert (env, a, ParseTerm.read b);

val stdEnv = foldl insertEnv StringDict.empty
[(*booleans*)
("true", "%x y.x"), ("false", "%x y.y"),
("if", "%p x y. p x y"),

(*ordered pairs*)
("pair", "%x y f.f x y"),
("fst", "%p.p true"), ("snd", "%p.p false"),

(*natural numbers*)
("suc", "%n f x. n f (f x)"),
("iszero", "%n. n (%x.false) true"),
("0", "%f x. x"), ("1", "suc 0"),
("2", "suc 1"), ("3", "suc 2"),
("4", "suc 3"), ("5", "suc 4"),
("6", "suc 5"), ("7", "suc 6"),
("8", "suc 7"), ("9", "suc 8"),
("add", "%m n f x. m f (n f x)"),
("mult", "%m n f. m (n f)"),
("expt", "%m n f x. n m f x"),
("prefn", "%f p. pair (f (fst p)) (fst p)"),
("pre", "%n f x. snd (n (prefn f) (pair x x))"),
("sub", "%m n. n pre m"),

(*lists*)
("nil", "%z.z"),
("cons", "%x y. pair false (pair x y)"),
("null", "fst"),
("hd", "%z. fst(snd z)"), ("tl", "%z. snd(snd z)"),

(*recursion for call-by-name*)
("Y", "%f. (%x.f(x x))(%x.f(x x))"),
("fact", "Y(%g n. if (iszero n) 1 (mult n (g (pre n))))"),
("append", "Y(%g z w.if (null z) w (cons (hd z) (g(tl z)w)))"),
("inflist", "Y(%z. cons MORE z)"),

(*recursion for call-by-value*)
("YV", "%f. (%x.f(%y.x x y)) (%x.f(%y.x x y))"),
("factV",
"YV (%g n.(if (iszero n) (%y.1) (%y.mult n (g (pre n))))y)")

];

9.13 Demonstrating the evaluators 401

fun try evfn = DisplayTerm.pr o evfn o stdRead;
> val try = fn : (term -> term) -> string -> unit
try Reduce.byValue "2";
> %f x. f (f x)

Call-by-value can perform simple arithmetic on Church numerals: 2 + 3 = 5,
2× 3 = 6, 23

= 8:

try Reduce.byValue "add 2 3";
> %f x. f (f (f (f (f x))))
try Reduce.byValue "mult 2 3";
> %f x. f (f (f (f (f (f x)))))
try Reduce.byValue "expt 2 3";
> %f x. f (f (f (f (f (f (f (f x)))))))

The environment defines factV , which encodes a recursive factorial function
using YV and with abstractions to delay evaluation of the arguments of the if .
It works under call-by-value reduction, computing 3! = 6:

try Reduce.byValue "factV 3";
> %f x. f (f (f (f (f (f x)))))

Call-by-name reduction can do the same computations as call-by-value can,
and more. It handles recursive definitions involving Y and if , without need-
ing any tricks to delay evaluation. Here, we append the lists [FARE ,THEE]
and [WELL]:

try Reduce.byName
"append (cons FARE (cons THEE nil)) (cons WELL nil)";

> %f. f (%x y. y)
> (%f. f FARE
> (%f. f (%x y. y)
> (%f. f THEE
> (%f. f (%x y. y)
> (%f. f WELL (%z. z))))))

Let us take the head of the infinite list [MORE ,MORE , . . .]:

try Reduce.byName "hd inflist";
> MORE

Execution is extremely slow, especially with call-by-name. Computing fact 3
takes 330 msec, compared with 60 msec for factV 3. Computing fact 4 takes
forty seconds! This should hardly be surprising when arithmetic employs unary
notation and recursion works by copying. Even so, we have all the elements of
functional programming.

With a little more effort, we can obtain a real functional language. Rather than
encoding data structures in the pure λ-calculus, we can take numbers, arithmetic

402 9 Writing Interpreters for the λ-Calculus

operations and ordered pairs as primitive. Rather than interpreting the λ-terms,
we can compile them for execution on an abstract machine. For call-by-value
reduction, the SECD machine is suitable. For call-by-name reduction we can
compile λ-terms into combinators and execute them by graph reduction. The
design and implementation of a simple functional language makes a challenging
project.

Further reading. M. J. C. Gordon (1988) describes the λ-calculus from the
perspective of a computer scientist; he discusses ways of representing data and

presents Lisp code for reducing and translating λ-expressions. Barendregt (1984) is the
comprehensive reference on the λ-calculus. Boolos and Jeffrey (1980) introduce the
theory of computability, including Turing machines, register machines and the general
recursive functions.

N. G. de Bruijn (1972) developed the name-free notation for the λ-calculus, and used
it in his AUTOMATH system (Nederpelt et al., 1994). It is also used in Isabelle (Paulson,
1994) and in Hal, the theorem prover of Chapter 10.

Field and Harrison (1988) describe basic combinator reduction. Modern implemen-
tations of lazy evaluation use more sophisticated techniques (Peyton Jones, 1992).

Exercise 9.30 What is the result when try Reduce.byName is applied to
these strings?

"hd (tl (Y (%z. append (cons MORE (cons AND nil)) z)))"
"hd (tl (tl (Y (%g n. cons n (g (suc n))) 0)))"

Summary of main points
• Top-down parsers can be expressed in a natural way using higher-order

functions.
• The λ-calculus is a theoretical model of computation with close simi-

larities to functional programming.
• The name-free representation of variable binding is easily implemented

on the computer.
• Data structures such as numbers and lists, with their operations, can be

encoded as λ-terms.
• The λ-term Y encodes recursion by repeated copying.
• There exist call-by-value and call-by-name evaluation strategies for the
λ-calculus.

