
7
Abstract Types and Functors

Everyone accepts that large programs should be organized as hierarchical mod-
ules. Standard ML’s structures and signatures meet this requirement. Structures
let us package up declarations of related types, values and functions. Signatures
let us specify what components a structure must contain. Using structures and
signatures in their simplest form we have treated examples ranging from the
complex numbers in Chapter 2 to infinite sequences in Chapter 5.

A modular structure makes a program easier to understand. Better still, the
modules ought to serve as interchangeable parts: replacing one module by an
improved version should not require changing the rest of the program. Standard
ML’s abstract types and functors can help us meet this objective too.

A module may reveal its internal details. When the module is replaced, other
parts of the program that depend upon such details will fail. ML provides several
ways of declaring an abstract type and related operations, while hiding the type’s
representation.

If structure B depends upon structure A, and we wish to replace A by another
structure A′, we could edit the program text and recompile the program. That is
satisfactory if A is obsolete and can be discarded. But what if A and A′ are both
useful, such as structures for floating point arithmetic in different precisions?

ML lets us declare B to take a structure as a parameter. We can then invoke
B(A) and B(A′), possibly at the same time. A parametric structure, such as B ,
is called a functor. Functors let us treat A and A′ as interchangeable parts.

The language of modules is distinct from the core language of types and ex-
pressions. It is concerned with program organization, not with computation it-
self. Modules may contain types and expressions, but not the other way around.
The main module constructs have counterparts in the core language:

structure ∼ value

signature ∼ type

functor ∼ function
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This analogy is a starting point to understanding, but it fails to convey the full
potential of ML modules.

Chapter outline
This chapter examines structures and signatures in greater depth, and

introduces abstract types and functors. Many features of the module language
are provided mainly to support functors. The chapter contains the following
sections:

Three representations of queues. Three different structures implement queues,
illustrating the idea of multiple data representations. But structures do not hide
the representation of queues; it could be abused elsewhere in the program.

Signatures and abstraction. Signature constraints on the queue structures can
hide details, declaring an abstract type of queues. The abstype declaration is a
more flexible means of declaring abstract types. The three queue representations
have their own concrete signatures.

Functors. Functors let us use the three queue implementations as interchange-
able parts, first in a test harness and then for breadth-first search. Another exam-
ple is generic matrix arithmetic, with numerical and graph applications. Func-
tors allow dictionaries and priority queues to be expressed generically, for an
arbitrary ordered type.

Building large systems using modules. A variety of deeper topics are covered:
multiple arguments to functors, sharing constraints and the fully-functorial pro-
gramming style. New declaration forms, such as open and include, help
manage the deep hierarchies found in large programs.

Reference guide to modules. The full modules language is presented system-
atically and concisely.

Three representations of queues
A queue is a sequence whose elements may be inserted only at the end

and removed only from the front. Queues enforce a first-in-first-out (FIFO) dis-
cipline. They provide the following operations:

• empty : the empty queue
• enq(q, x ): the queue obtained by inserting x on the end of q
• null(q): the boolean-valued test of whether q is empty
• hd(q): the front element of q
• deq(q): the queue obtained by removing the front element of q
• E : the exception raised by hd and deq if the queue is empty
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The queue operations are functional; enq and deq create new queues rather
than modifying existing queues. We shall discuss several ways of represent-
ing queues and defining their operations as ML structures, eventually finding an
efficient representation.

The names enq and deq abbreviate the words enqueue and dequeue, while
null and hd clash with existing list operations. As we shall package the oper-
ations into structures, we can get away with short names without concern for
clashes.

It is a simple exercise to write down the corresponding signature, but let us
defer signatures until the next section. Then we shall also consider how to hide
the representation of queues by declaring abstract data types.

7.1 Representing queues as lists
Representation 1, perhaps the most obvious, maintains a queue as the

list of its elements. The structure Queue1 is declared as follows:

structure Queue1 =
struct
type ′a t = ′a list;
exception E;

val empty = [];

fun enq(q,x) = q @ [x];

fun null(x::q) = false
| null _ = true;

fun hd(x::q) = x
| hd [] = raise E;

fun deq(x::q) = q
| deq [] = raise E;

end;

The type of queues is simply α t ; outside the structure it is αQueue1.t . The
type abbreviation makes αQueue1.t a synonym for α list . (Recall how in
Section 2.7 we made vec a synonym for real × real .) Since a value of type
αQueue1.t can be used with any list operations, the type name is little more
than a comment.

Function enq uses append, while deq uses pattern-matching. The other queue
operations are implemented easily and efficiently. But enq(q, x ) takes time
proportional to the length of q : quite unsatisfactory.

Structures do not hide information. Declaring a structure hardly differs from
declaring its items separately, except that a structure declaration is taken as a
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unit and introduces compound names. Each item behaves as if it were declared
separately. Structure Queue1 makes no distinction between queues and lists:

Queue1.deq ["We","happy","few"];
> ["happy", "few"] : string list

7.2 Representing queues as a new datatype
Representation 2 declares a datatype with constructors empty and enq .

The operation enq(q, x ) now takes constant time, independent of the length of q ,
but hd(q) and deq(q) are slow. Calling deq(q) copies the remaining elements
of q . Even hd(q) requires recursive calls.

structure Queue2 =
struct
datatype ′a t = empty

| enq of ′a t *
′a;

exception E;

fun null (enq _) = false
| null empty = true;

fun hd (enq(empty,x)) = x
| hd (enq(q,x)) = hd q
| hd empty = raise E;

fun deq (enq(empty,x)) = empty
| deq (enq(q,x)) = enq(deq q, x)
| deq empty = raise E;

end;

Representation 2 gains little by defining a new datatype. It is essentially no
different from representing a queue by a reversed list. Then

enq(q, x ) = x :: q,

while deq is a recursive function to remove the last element from a list. We
could call this Representation 2a.

The type of queues, αQueue2.t , is not abstract: it is a datatype with con-
structors Queue2.empty and Queue2.enq . Pattern-matching with the con-
structors can remove the last element of the queue, violating its FIFO discipline:

fun last (Queue2.enq(q,x)) = x;
> val last = fn : ’a Queue2.t -> ’a

Such declarations abuse the data structure. Enough of them scattered through-
out a program can make it virtually impossible to change the representation of
queues. The program can no longer be maintained.
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Again, structures do not hide information. The differences between Queue1
and Queue2 are visible outside. The function Queue1.null may be applied to
any list, while Queue2.null may only be applied to values of type αQueue2.t .
Both Queue1.enq and Queue2.enq are functions, but Queue2.enq is a con-
structor and may appear in patterns.

Our datatype declaration flouts the convention that constructor names start
with a capital letter (Section 4.4). Within the confines of a small structure this is
a minor matter, but to export such a constructor is questionable.

7.3 Representing queues as pairs of lists
Representation 3 (Burton, 1982) maintains a queue as a pair of lists.

The pair

([x1, x2, . . . , xm ], [y1, y2, . . . , yn ])

denotes the queue

x1x2 · · · xmyn · · · y2y1.

The queue has a front part and a rear part. The elements of the rear part are
stored in reverse order so that new ones can quickly be added to the end of the
queue; enq(q, y) modifies the queue thus:

(xs, [y1, . . . , yn ]) 7→ (xs, [y, y1, . . . , yn ])

The elements of the front part are stored in correct order so that they can quickly
be removed from the queue; deq(q) modifies the queue thus:

([x1, x2, . . . , xm ], ys) 7→ ([x2, . . . , xm ], ys)

When the front part becomes empty, the rear part is reversed and moved to the
front:

([], [y1, y2, . . . , yn ]) 7→ ([yn , . . . , y2, y1], [])

The rear part then accumulates further elements until the front part is again
emptied. A queue is in normal form provided it does not have the form

([], [y1, y2, . . . , yn ])

for n ≥ 1. The queue operations ensure that their result is in normal form.
Therefore, inspecting the first element of a queue does not perform a reversal.
A normal queue is empty if its front part is empty.

Here is a structure for this approach. The type of queues is declared as a
datatype with one constructor, not as a type abbreviation. We used a similar
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technique for flexible arrays (page 158). The constructor costs nothing at run-
time, while making occurrences of queues stand out in the code.

structure Queue3 =
struct
datatype ′a t = Queue of (′a list *

′a list);
exception E;

val empty = Queue([],[]);

fun norm (Queue([],tails)) = Queue(rev tails, [])
| norm q = q;

fun enq(Queue(heads,tails), x) = norm(Queue(heads, x::tails));

fun null(Queue([],[])) = true
| null _ = false;

fun hd(Queue(x::_,_)) = x
| hd(Queue([],_)) = raise E;

fun deq(Queue(x::heads,tails)) = norm(Queue(heads,tails))
| deq(Queue([],_)) = raise E;

end;

The function norm puts a queue into normal form by reversing the rear part, if
necessary. It is called by enq and deq , since a queue must be put into normal
form every time an element is added or removed.

Once again, none of the internal details are hidden. Users can tamper with the
constructor Queue3.Queue and the function Queue3.norm . Pattern-matching
with the constructor Queue exposes a queue as consisting of a pair of lists. In-
side the structure, such access is essential; used outside, it could violate the
queue’s FIFO discipline. Calling Queue3.norm from outside the structure can
serve no purpose.

How efficient is this representation? The use of reverse may seem expensive.
But the cost of an enq or deq operation is constant when averaged over the

lifetime of the queue. At most two cons (::) operations are performed per queue element,
one when it is put on the rear part and one when it is moved to the front part.

Measuring a cost over the lifetime of the data structure is called an amortized cost
(Cormen et al., 1990). Sleator and Tarjan (1985) present another data structure, self-
adjusting trees, designed for a good amortized cost. The main drawback of such a data
structure is that the costs are not evenly distributed. When normalization takes place,
the reverse operation could cause an unexpected delay.

Also, the amortized cost calculation assumes that the queue usage follows an imper-
ative style: is single-threaded. Every time the data structure is updated, the previous
value should be discarded. If we violate this assumption by repeatedly applying deq to
a queue of the form

([x ], [y1, y2, . . . , yn ])



7.4 The intended signature for queues 267

then additional normalizations will result, incurring greater costs.
Flexible arrays can represent queues without these drawbacks. But the cost of each

operation is greater, order log n where n is the number of elements in the queue. Rep-
resentation 3 is simple and efficient, and can be recommended for most situations re-
quiring functional queues.

Exercise 7.1 Under Representation 1, how much time does it take to build an
n-element queue by applying enq operations to the empty queue?

Exercise 7.2 Discuss the relative merits of the three representations of func-
tional queues. For example, are there any circumstances under which Represen-
tation 1 might be more efficient than Representation 3?

Exercise 7.3 Code Representation 2a in ML.

Exercise 7.4 Representation 4 uses flexible arrays, with hiext implementing
enq and lorem implementing deq . Code Representation 4 and compare its effi-
ciency with Representation 3.

Exercise 7.5 A queue is conventionally represented using an array, with in-
dices to its first and last elements. Are the functional arrays of Chapter 4 suit-
able for this purpose? How would it compare with the other representations of
functional queues?

Signatures and abstraction
An abstract type is a type equipped with a set of operations, which are

the only operations applicable to that type. Its representation can be changed
— perhaps to a more efficient one — without affecting the rest of the program.
Abstract types make programs easier to understand and modify. Queues should
be defined as an abstract type, hiding internal details.

We can limit outside access to the components of a structure by constraining
its signature. We can hide a type’s representation by means of an abstype
declaration. Combining these methods yields abstract structures.

7.4 The intended signature for queues
Although the structures Queue1, Queue2 and Queue3 differ, they each

implement queues. Moreover they share a common interface, defined by signa-
ture QUEUE:



268 7 Abstract Types and Functors

signature QUEUE =
sig
type ′a t (*type of queues*)
exception E (*for errors in hd, deq*)
val empty: ′a t (*the empty queue*)
val enq : ′a t *

′a -> ′a t (*add to end*)
val null : ′a t -> bool (*test for empty queue*)
val hd : ′a t -> ′a (*return front element*)
val deq : ′a t -> ′a t (*remove from front*)
end;

Each entry in a signature is called a specification. The comments after each
specification are optional, but make the signature more informative. A structure
is an instance of this signature provided it declares, at least,

• a polymorphic type α t (which need not admit equality)
• an exception E
• a value empty of type α t
• a value enq of type α t × α→ α t
• a value null of type α t → bool
• a value hd of type α t → α

• a value deq of type α t → α t

Consider each structure in turn. In Queue1, type α t abbreviates α list , and the
values have the correct types under this abbreviation. In Queue2, type α t is
a datatype and empty and enq are constructors. In Queue3, type α t is again
a datatype; the structure declares everything required by signature QUEUE, and
the additional items Queue and norm . An instance of a signature may contain
items not specified in the signature.

7.5 Signature constraints
Different views of a structure, with varying degrees of abstraction, can

be obtained using different signatures. A structure can be constrained to a sig-
nature either when it is first defined or later. A constraint can be transparent or
opaque.

Transparent signature constraints. The constraints we have used until now, in-
dicated by a colon (:), are transparent. To see what this implies, let us constrain
our existing queue structures using signature QUEUE:

structure S1: QUEUE = Queue1;
structure S2: QUEUE = Queue2;
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structure S3: QUEUE = Queue3;

These declarations make S1, S2 and S3 denote the same structures as Queue1,
Queue2 and Queue3, respectively. However, the new structures are constrained
to have the signature QUEUE. The types αQueue2.t and α S2.t are identical,
yet Queue2.empty is a constructor while S2.empty may only be used as a
value. The structures Queue3 and S3 are identical, yet Queue3.norm is a
function while S3.norm means nothing.

A transparent signature constraint may hide components, but they are still
present. This cannot be called abstraction. Structure S1 does not hide its repre-
sentation at all; type α S1.t is identical to α list .

S1.deq ["We","band","of","brothers"];
> ["band", "of", "brothers"] : string S1.t

Structures S2 and S3 may seem more abstract, because they declare the type
α t and hide its constructors. Without the constructors, pattern-matching is not
available to take apart values of the type and disclose the representation. How-
ever, the constructor Queue3.Queue may be used in a pattern to take apart a
value of type α S3.t :

val Queue3.Queue(heads,tails) =
S3.enq(S3.enq(S3.empty,"Saint"), "Crispin");

> val heads = ["Saint"] : string list
> val tails = ["Crispin"] : string list

The concrete structure, Queue3, provides a loophole into its abstract view, S3.
Data abstraction is compromised in another way. For each of our queue struc-

tures, type α t admits equality testing. The equality test compares internal rep-
resentations, not queues. Under Representation 3, the values ([1, 2], []) and
([1], [2]) denote the same queue, but the equality test says they are different.

Opaque signature constraints. Using the symbol :> instead of a colon makes
the constraint opaque. The constraint hides all information about the new struc-
ture except its signature. Let us create some truly abstract queue structures by
constraining the concrete ones:

structure AbsQueue1 :> QUEUE = Queue1;
structure AbsQueue2 :> QUEUE = Queue2;
structure AbsQueue3 :> QUEUE = Queue3;

The components of the constrained structure are divorced from their counter-
parts in the original structure. Structure AbsQueue1 represents queues by lists,
but we cannot see this:
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AbsQueue1.deq ["We","band","of","brothers"];
> Error: Type conflict:...

Type checking similarly forbids using the constructor Queue3.Queue to take
apart the queues of structure AbsQueue3. Equality testing is forbidden too:

AbsQueue3.empty = AbsQueue3.empty;
> Error: type ’a AbsQueue3.t must be an equality type

Specifying a type by eqtype t instead of type t indicates that the type is to
admit equality. Using eqtype in the signature allows you to export the type’s
equality test, even with an opaque signature constraint.

Limitations. An opaque signature constraint is perfect for declaring an abstract
type of queues. The abstract structure can be made from an existing concrete
structure, as in the AbsQueue declarations above, or we can simply constrain
the original structure declaration:

structure Queue :> QUEUE = struct . . . end;

But the two kinds of signature constraints give us an all-or-nothing choice,
which is awkward for complex abstract types. Signature DICTIONARY spec-
ifies two types: key is the type of search keys; α t is the type of dictionaries
(see Section 4.14). Type α t should be abstract, but key should be something
concrete, like string . Otherwise, we should have no way to refer to keys; we
should be unable to call lookup and update! The next section describes a more
flexible approach to declaring abstract types.

Exercise 7.6 Assuming Representation 3, show how two different represen-
tations of the same queue value could be created using only the abstract queue
operations.

Exercise 7.7 Extend signature QUEUE to specify the functions length , for re-
turning the number of elements in a queue, and equal , for testing whether two
queues consist of the same sequence of elements. Extend the structures Queue1,
Queue2 and Queue3 with declarations of these functions.

7.6 The abstype declaration
Standard ML has a declaration form specifically intended for declaring

abstract types. It hides the representation fully, including the equality test. The
abstype declaration originates from the first ML dialect and reflects the early
thinking of the structured programming school. Now it looks distinctly dated.
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But it is more selective than an opaque constraint: it applies to chosen types
instead of an entire signature.

A simple abstype declaration contains two elements, a datatype binding
DB and a declaration D :

abstype DB with D end

A datatype binding is a type name followed by constructor descriptions, exactly
as they would appear in a datatype declaration. The constructors are visible
within the declaration part, D , which must use them to implement all operations
associated with the abstract type. Identifiers declared in D are visible outside,
as is the type, but its constructors are hidden. Moreover, the type does not admit
equality testing.

To illustrate the abstype declaration, let us apply it to queues. The dec-
laration ought to be enclosed in a structure to prevent name clashes with the
built-in list functions null and hd . But as a structure would complicate the ex-
ample, those functions have instead been renamed. Exceptions are omitted to
save space.

Queues as lists. We begin with Representation 1. Although list is already a
datatype, the abstype declaration forces us to use a new constructor (Q1) in
all the queue operations. This constructor is traditionally called the abstraction
function, as it maps concrete representations to abstract values.

abstype ′a queue1 = Q1 of ′a list
with
val empty = Q1 [];

fun enq(Q1 q, x) = Q1 (q @ [x]);

fun qnull(Q1(x::q)) = false
| qnull _ = true;

fun qhd(Q1(x::q)) = x;

fun deq(Q1(x::q)) = Q1 q;
end;

In its response, ML echoes the names and types of the identifiers that have been
declared:

> type ’a queue1
> val empty = - : ’a queue1
> val enq = fn : ’a queue1 * ’a -> ’a queue1
> val qnull = fn : ’a queue1 -> bool
> val qhd = fn : ’a queue1 -> ’a
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> val deq = fn : ’a queue1 -> ’a queue1

The abstype declaration has hidden the connection between queue1 and list .

Queues as a new datatype. Now turn to Representation 2. Previously we called
the constructors empty and enq , with lower case names, for use outside as val-
ues. And that was naughty. But the abstype declaration hides the construc-
tors. We may as well give them capitalised names Empty and Enq , since we
must now export their values explicitly:

abstype ′a queue2 = Empty
| Enq of ′a queue2 *

′a
with
val empty = Empty
and enq = Enq

fun qnull (Enq _) = false
| qnull Empty = true;

fun qhd (Enq(Empty,x)) = x
| qhd (Enq(q,x)) = qhd q;

fun deq (Enq(Empty,x)) = Empty
| deq (Enq(q,x)) = Enq(deq q, x);

end;

We do not need to declare a new constructor Q2 because this representation
requires its own constructors. ML’s response is identical to its response to the
declaration of queue1 except for the name of the queue type. An external user
can operate on queues only by the exported operations.

These two examples illustrate the main features of abstype. We do not
need to see the analogous declaration of queue3.

Abstract types in ML: summary. ML’s treatment of abstract types is less straight-
forward than one might like, but it can be reduced to a few steps. If you would
like to declare a type t and allow access only by operations you have chosen to
export, here is how to proceed.

1 Consider whether to export the equality test for t . It is only appropriate
if the representation admits equality, and if this equality coincides with
equality of the abstract values. Also consider whether equality testing
would actually be useful. Equality testing is appropriate for small ob-
jects such as dates and rational numbers, but not for matrices or flexible
arrays.
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2 Declare a signature SIG specifying the abstract type and its operations.
The signature must specify t as an eqtype if it is to admit equality,
and as a type otherwise.

3 Decide which sort of signature constraint to use with SIG. An opaque
constraint is suitable only if all the types in the signatures are intended
to be abstract.

4 Write the shell of a structure (or functor) declaration, attaching the con-
straint chosen in the previous step.

5 Within the brackets struct and end, declare type t and the desired
operations. If you used a transparent signature constraint, this must be
either a datatype declaration (to export equality) or an abstype
declaration (to hide equality).

A datatype declaration can yield an abstract type because the signature con-
straint hides the constructors. An abstype or datatype declaration creates
a fresh type, which ML regards as distinct from all others.

Functor Dictionary exemplifies the first approach (see page 286). The ring
buffer structure RingBuf exemplifies the second (see page 339).

Exercise 7.8 Early papers on abstract types all considered the same example:
stacks. The operations included push (which puts an item on top of the stack),
top (which returns the top item) and pop (which discards the top item). At least
two other operations are needed. Complete the design and code two distinct
representations using abstype.

Exercise 7.9 Write an abstype declaration for the rational numbers, follow-
ing Exercise 2.25 on page 63. Use a local declaration to keep any auxiliary
functions private. Then modify your solution to obtain a structure matching
signature ARITH.

Exercise 7.10 Design and code an abstype declaration for type date , which
represents dates as a day and a month. (Assume it is not a leap year.) Provide a
function today for converting a valid day and month to a date. Provide functions
tomorrow and yesterday ; they should raise an exception if the desired date lies
outside the current year.

7.7 Inferred signatures for structures
A structure declaration can appear without a signature constraint, as in

the declarations of Queue1, Queue2 and Queue3. ML then infers a signature
fully describing the structure’s internal details.
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Signature QUEUE1 is equivalent to the signature that is inferred for structure
Queue1. It specifies α t as an eqtype— a type that admits equality — because
lists can be compared for equality. Observe that the types of values involve type
α list instead of α t , as in signature QUEUE.

signature QUEUE1 =
sig
eqtype ′a t
exception E
val empty : ′a list
val enq : ′a list *

′a -> ′a list
val null : ′a list -> bool
val hd : ′a list -> ′a
val deq : ′a list -> ′a list
end;

The signature inferred for Queue2 specifies α t as a datatype with construc-
tors empty and enq ; constructors are not specified again as values. The signa-
ture could be declared as follows:

signature QUEUE2 =
sig
datatype ′a t = empty | enq of ′a t *

′a
exception E
val null : ′a t -> bool
val hd : ′a t -> ′a
val deq : ′a t -> ′a t
end;

The signature inferred for structure Queue3 again specifies α t as a datatype
— not merely a type, as in signature QUEUE. All items in the structure are
specified, including Queue and norm .

signature QUEUE3 =
sig
datatype ′a t = Queue of ′a list *

′a list
exception E
val empty : ′a t
val enq : ′a t *

′a -> ′a t
val null : ′a t -> bool
val hd : ′a t -> ′a
val deq : ′a t -> ′a t
val norm : ′a t -> ′a t
end;

These signatures are more concrete and specific than QUEUE. No structure can
be an instance of more than one of them. Consider QUEUE1 and QUEUE3.
Function hd must have type α list → α to satisfy QUEUE1; it must have type
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α t → α to satisfy QUEUE3, which also specifies that α t is a datatype clearly
different from α list .

On the other hand, each signature has many different instances. A struc-
ture can satisfy the specification val x:int by declaring x to be any value
of type int . It can satisfy the specification type t by declaring t to be any
type. (However, it can satisfy a datatype specification only by an identical
datatype declaration.) A structure may include items not specified in the
signature. Thus, a signature defines a class of structures.

Interesting relationships hold among these classes. We have already seen
that QUEUE1, QUEUE2 and QUEUE3 are disjoint. The latter two are contained
in QUEUE; an instance of QUEUE2 or QUEUE3 is an instance of QUEUE. An
instance of QUEUE1 is an instance of QUEUE only if it makes type α t equivalent
to α list . These containments can be shown in a Venn diagram:

QUEUE2

QUEUE1
QUEUE3

QUEUE

Exercise 7.11 Declare a structure that has signature QUEUE1 and that imple-
ments queues by a different representation from that of Queue1.

Exercise 7.12 Declare a structure that has signature QUEUE but does not im-
plement queues. After all, the signature specifies only the types of the queue
operations, not their other properties.

Functors
An ML function is an expression that takes parameters. Applying it

substitutes argument values for the parameters. The value of the resulting ex-
pression is returned. A function can only be applied to arguments of the correct
type.

We have several implementations of queues. Could we write code that uses
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queues but is independent of any particular implementation? This seems to re-
quire taking a structure as a parameter.

Functions themselves can be parameters, for functions are values in ML. Rec-
ords are also values. They are a bit like structures, but they cannot represent
queue implementations because they cannot have types and exception construc-
tors as components.

An ML functor is a structure that takes other structures as parameters. Ap-
plying it substitutes argument structures for the parameters. The bindings that
arise from the resulting structure are returned. A functor can only be applied to
arguments that match the correct signature.

Functors let us write program units that can be combined in different ways. A
replacement unit can quickly be linked in, and the new system tested. Functors
can also express generic algorithms. Let us see how they do so.

7.8 Testing the queue structures
Here is a simple test harness for queues. Given a queue structure, it

returns a testing structure containing two functions. One converts a list to a
queue; the other is the inverse operation. The test harness is declared as a functor
with argument signature QUEUE:

functor TestQueue (Q: QUEUE) =
struct
fun fromList l = foldl (fn (x,q) => Q.enq(q,x)) Q.empty l;

fun toList q = if Q.null q then []
else Q.hd q :: toList (Q.deq q);

end;
> functor TestQueue : <sig>

The functor body refers not to existing queue structures but to the argument Q .
The two functions exercise the queue operations uniformly. Any queue structure
can be tested and its efficiency measured. Let us start with Queue3. Applying
the functor to this argument yields a new structure, which we name TestQ3.
The components of TestQ3 are functions to test Queue3, as can be seen from
their types:

structure TestQ3 = TestQueue (Queue3);
> structure TestQ3 :
> sig
> val fromList : ’a list -> ’a Queue3.t
> val toList : ’a Queue3.t -> ’a list
> end

The test data is just the list of integers from 1 to 10,000:
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val ns = upto(1,10000);
> val ns = [1, 2, 3, 4, ...] : int list
val q3 = TestQ3.fromList ns;
> val q3 = Queue ([1], [10000, 9999, 9998, 9997, ...])
> : int Queue3.t
val l3 = TestQ3.toList q3;
> val l3 = [1, 2, 3, 4, ...] : int list
l3 = ns;
> true : bool

Queue3 passes its first test: we get back the original list. It is also efficient,
taking 10 msec to build q3 and 50 msec to convert it back to a list.

ML’s response to the declaration of q3 reveals its representation as a pair of
lists: Queue3 does not define an abstract type. We ought to try structure Abs-
Queue3. Again we apply the functor and give the resulting structure a name:

structure TestAQ3 = TestQueue (AbsQueue3);
> structure TestAQ3 :
> sig
> val fromList : ’a list -> ’a AbsQueue3.t
> val toList : ’a AbsQueue3.t -> ’a list
> end
val q = TestAQ3.fromList ns;
> val q = - : int AbsQueue3.t

Now ML reveals nothing about the representation. In terms of efficiency, Queue3
and AbsQueue3 are indistinguishable. Similar measurements reveal that Abs-
Queue3 is orders of magnitude faster than Queue1 and Queue2 and much
faster than the balanced tree representation suggested in Exercise 7.4. Because
Queue1 represents queues by lists, it could implement fromList and toList ef-
ficiently, but only operations specified in signature QUEUE are allowed in the
functor body.

A more realistic test would involve an application of queues, such as breadth-
first search. Function breadthFirst (Section 5.17) used lists instead of queues,
for simplicity. A functor can express the search strategy independently from the
implementation of queues.

functor BreadthFirst (Q: QUEUE) =
struct
fun enqlist q xs = foldl (fn (x,q) => Q.enq(q,x)) q xs;
fun search next x =

let fun bfs q =
if Q.null q then Nil else
let val y = Q.hd q
in Cons(y, fn()=> bfs (enqlist (Q.deq q) (next y)))
end
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in bfs (Q.enq(Q.empty, x)) end;
end;

> functor BreadthFirst : <sig>

The function enqlist appends a list of elements to a queue. Let us apply the
functor to an efficient queue structure:

structure Breadth = BreadthFirst (Queue3);
> structure Breadth :
> sig
> val enqlist : ’a Queue3.t -> ’a list -> ’a Queue3.t
> val search : (’a -> ’a list) -> ’a -> ’a seq
> end

The function Breadth.search is equivalent to breadthFirst , but runs a lot faster.
Most languages have nothing comparable to functors. The C programmer

obtains a similar effect using header and include files. Primitive methods such
as these go a long way, but they do not forgive errors. Including the wrong file
means the wrong code is compiled: we get a cascade of error messages. What
happens if a functor is applied to the wrong sort of structure? Try applying
BreadthFirst to the standard library structure List :

structure Wrong = BreadthFirst (List);
> Error: unmatched type spec: t
> Error: unmatched exception spec: E
> Error: unmatched val spec: empty
> Error: unmatched val spec: enq
> Error: unmatched val spec: deq

We get specific error messages describing what is missing from the argument.
There is no complaint about the absence of hd and null because List has com-
ponents with those names.

Taking the queue structure as a parameter may be a needless complication.
AbsQueue3 is the best queue structure; we may as well rename it Queue and
use it directly, just as we use standard library structures such as List . But often
we have a choice. There are several possible representations for dictionaries
and priority queues. Even the standard library admits competing structures for
real arithmetic. And when we consider generic operations, the case for functors
becomes unassailable.

Exercise 7.13 Consider how you would obtain the effect of ML modules in
another language of your choice. How would you express signatures such as
QUEUE, alternative structures such as Queue1 and Queue2, and functors such
as TestQueue?
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Exercise 7.14 To what extent is TestQueue a good test suite for queues?

7.9 Generic matrix arithmetic
Related structures can differ in other ways than performance. In Sec-

tion 2.22 we considered the signature ARITH, which specifies the components
zero, sum , diff , prod , etc. Suitable instances of this signature include struc-
tures that implement arithmetic on integers, reals, complex numbers and rational
numbers. Chapter 3 mentioned further possibilities: binary numerals, matrices
and polynomials.

To illustrate functors, let us code a generic structure for matrix arithmetic. For
simplicity we shall treat only zero, sum and product:

signature ZSP =
sig
type t
val zero : t
val sum : t * t -> t
val prod : t * t -> t
end;

We shall declare a functor whose argument and result structures both match
signature ZSP.

Declaring the matrix functor. Given a type t and the three arithmetic operations,
functor MatrixZSP declares a type for matrices over t and the analogous matrix
operations (Figure 7.1 on the following page). Before you study the functor
body, reviewing Section 3.10 may be helpful.

In the functor heading, the second occurrence of : ZSP is a signature con-
straint on the result structure. Because the constraint is transparent, MatrixZSP
does not return an abstract type. If it were opaque (using :>) then we could only
operate on matrices using the exported operations of zero, sum and product: we
could only express zero! As things stand, we can write matrices as lists of lists.

The result structure declares t , the type of matrices, in terms of the type of
its elements, Z.t . The declaration is required by the result signature, which
specifies a type t . The functor body never refers to it.

The structure then declares zero. In algebra, any m × n matrix of zeros is
called a zero matrix. The specification zero : t in signature ZSP requires us to
declare a single zero element. So the functor declares zero to be the empty list,
and makes sum and prod satisfy the laws 0 + A = A + 0 = A and 0 × A =
A× 0 = 0.

The structure declares the function sum to compute the sum of two matri-
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Figure 7.1 A functor for generic matrix arithmetic

functor MatrixZSP (Z: ZSP) : ZSP =
struct
type t = Z.t list list;

val zero = [];

fun sum (rowsA,[]) = rowsA
| sum ([],rowsB) = rowsB
| sum (rowsA,rowsB) = ListPair.map (ListPair.map Z.sum)

(rowsA,rowsB);

fun dotprod pairs = foldl Z.sum Z.zero (ListPair.map Z.prod pairs);

fun transp ([]::_) = []
| transp rows = map hd rows :: transp (map tl rows);

fun prod (rowsA,[]) = []
| prod (rowsA,rowsB) =

let val colsB = transp rowsB
in map (fn row => map (fn col => dotprod(row,col))

colsB)
rowsA

end;
end;
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ces. Two rows are added by adding corresponding elements, using the library
functional ListPair.map. Two matrices are added similarly, by adding corre-
sponding rows. There is no conflict between sum (matrix addition) and Z.sum
(element addition).

Other functions in the structure support the declaration of prod . The dot prod-
uct computation is also streamlined by ListPair.map, while matrix transpose
is declared as in Section 5.7. As transp cannot handle the empty list, function
prod catches this special case.

Because the ListPair functions discard unmatched list elements, there is no
checking of matrix dimensions. Adding a 2× 5 matrix to a 3× 4 matrix yields
a 2× 4 matrix instead of an exception.

Numerical applications. Before applying the functor, we have to create some
structures. We have already seen matrices of real numbers; now it is the integers’
turn. Structure IntZSP contains just the specified operations specified by ZSP:

structure IntZSP =
struct
type t = int;
val zero = 0;
fun sum (x,y) = x+y: t;
fun prod (x,y) = x*y: t;
end;

> structure IntZSP :
> sig
> eqtype t
> val prod : int * int -> t
> val sum : int * int -> t
> val zero : int
> end

Applying the functor to IntZSP builds a structure for arithmetic on integer ma-
trices. Two examples are the sum

(
1 2
3 4

)
+
(

5 6
7 8

)
=
(

6 8
10 12

)
and the product(

1 2
3 4

)
×
(

0 1
1 0

)
=
(

2 1
4 3

)
.

structure IntMatrix = MatrixZSP (IntZSP);
> structure IntMatrix : ZSP
IntMatrix.sum ([[1,2],[3,4]], [[5,6],[7,8]]);
> [[6, 8], [10, 12]] : IntMatrix.t
IntMatrix.prod ([[1,2],[3,4]], [[0,1],[1,0]]);
> [[2, 1], [4, 3]] : IntMatrix.t

The structure Complex , declared in Section 2.21, has several components not
specified in ZSP. But signature matching ignores surplus components, so we
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may supply the structure as an argument to MatrixZSP . The result is a structure
for arithmetic on matrices of complex numbers.

structure ComplexMatrix = MatrixZSP (Complex);
> structure ComplexMatrix : ZSP

This ability to use one structure for several purposes is a powerful tool for keep-
ing programs simple. It requires, above all, careful design of signatures. Con-
sistent naming conventions help ensure that different modules fit together.

Graph applications. The components zero, sum and prod do not have to be the
obvious numerical interpretations. Many graph algorithms operate on matrices
under surprising interpretations of 0, + and ×.

A directed graph consisting of n nodes can be represented by an n × n adja-
cency matrix. The (i , j ) element of the matrix is a boolean value, indicating the
absence or presence of an edge from node i to node j . Typical matrix operations
interpret zero as false , while sum is disjunction and prod is conjunction.

structure BoolZSP =
struct
type t = bool;
val zero = false;
fun sum (x,y) = x orelse y;
fun prod (x,y) = x andalso y;
end;

> structure BoolZSP :
> sig
> eqtype t
> val prod : bool * bool -> bool
> val sum : bool * bool -> bool
> val zero : bool
> end

If A is a boolean adjacency matrix, then A × A represents the graph having an
edge from i to j precisely if there is a path of length two from i to j in the graph
given by A. Matrix arithmetic can compute the transitive closure of a graph.
However, bitwise operations (available in the standard library structure Word8)
can perform such computations much faster, so let us turn to a more unusual
example.

Define zero by infinity (∞), sum by minimum (min) and prod by sum (+).
The other operations are extended to handle∞ by min(∞, x ) = min(x ,∞) =
x and∞+ x = x +∞ = ∞. Thus the triple (∞,min,+) satisfies more or
less the same laws as (0,+,×). But what is this strange arithmetic good for?

Consider a directed graph whose edges are labelled with numbers, indicating
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the cost (possibly negative!) of travelling along that edge. The corresponding
adjacency matrix has numeric elements. Element (i , j ) is the cost of the edge
from i to j , or infinity if no such edge exists. Let A be an adjacency matrix,
and use the strange arithmetic to compute A × A. The (i , j ) element of the
product is the minimum cost of the paths of length two from i to j . We have the
necessary machinery to express a standard algorithm for computing the shortest
paths between all nodes of a graph.

Here is a structure implementing the strange arithmetic. It is based on type int .
It declares zero to be not infinity but some large integer.1 It declares sum to be
the standard library’s minimum function and prod to be an extended version of
addition.

structure PathZSP =
struct
type t = int;
val SOME zero = Int.maxInt;
val sum = Int.min
fun prod(m,n) = if m=zero orelse n=zero then zero

else m+n;
end;

Applying our functor to this structure yields a structure for strange arithmetic
over matrices. The ‘all-pairs shortest paths’ algorithm can be coded in a few
lines:

structure PathMatrix = MatrixZSP (PathZSP);
> structure PathMatrix : ZSP

fun fastpaths mat =
let val n = length mat

fun f (m,mat) = if n-1 <= m then mat
else f (2*m, PathMatrix.prod(mat,mat))

in f (1, mat) end;
> val fast_paths = fn : PathMatrix.t -> PathMatrix.t

Cormen et al. (1990) discuss this algorithm (Section 26.1). Let us try it on one
of their worked examples. Given the adjacency matrix for a graph of five nodes,
fastpaths returns the expected result:

val zz = PathZSP.zero;
> 1073741823 : int

1 Component maxInt of standard library structure Int is either SOME n , where
n is the maximum representable integer, or NONE. Any integer exceeding the
sum of the absolute values of the edge labels could be used.
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fastpaths [[0, 3, 8, zz, ˜4],
[zz, 0, zz, 1, 7],
[zz, 4, 0, zz, zz],
[2, zz, ˜5, 0, zz],
[zz, zz, zz, 6, 0]];

> [[0, 1, ˜3, 2, ˜4],
> [3, 0, ˜4, 1, ˜1],
> [7, 4, 0, 5, 3],
> [2, ˜1, ˜5, 0, ˜2],
> [8, 5, 1, 6, 0]] : PathMatrix.t

The argument of functor MatrixZSP is a structure consisting of only four com-
ponents. Even smaller structures can be of use, as the next section shows.

An algebraic view. Cormen et al. (1990) proceed to put the strange arith-
metic on a sound foundation. They define (Section 26.4) the notion of closed

semiring and describe its connection with path algorithms. A closed semiring involves
operators analogous to 0, 1, + and × that satisfy a collection of algebraic laws: + and
× should be commutative and associative, etc. A signature for closed semirings would
need to augment ZSP with an additional component, one . ML modules are ideal for
putting such abstractions to use.

Exercise 7.15 Declare a version of PathZSP that represents∞ by a special
value, not equal to any integer. Such a structure is appropriate for ML systems
such as Poly/ML, where type int has no largest value.

Exercise 7.16 Matrices do not have to be lists of lists. Study the standard
library structure Vector , then write a functor VMatrixZSP that represents ma-
trices by vectors of vectors.

7.10 Generic dictionaries and priority queues
In Chapter 4 we implemented binary search trees for strings and priority

queues for real numbers. Using functors we can lift the type restrictions, gener-
alizing both data structures to arbitrary ordered types. The type and its ordering
function will be packaged as a two-component structure.

Sorting can similarly be generalized — without using functors. Simply pass
the ordering function as an argument, expressing sorting as a higher-order func-
tion. But this is only possible because sorting is an all-in-one operation. Turning
the priority queue operations into higher-order functions would permit blunders
such as adding items by one ordering and removing them by another.

Ordered types as structures. A mathematician defines an ordered set as a pair
(A, <), where A is a set and < is a relation on A that is transitive and so forth.
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ML modules can express such mathematical concepts, although the notation is
more cumbersome. The signature ORDER specifies a type t and an ordering
function compare:

signature ORDER =
sig
type t
val compare: t*t -> order
end;

Recall that the ML library declares order as an enumeration type with construc-
tors LESS, EQUAL and GREATER. The library structures such as String , Int and
Real have a component compare that takes two operands of the corresponding
type. For example, let us package up the string ordering:

structure StringOrder: ORDER =
struct
type t = string;
val compare = String.compare
end;

> structure StringOrder : ORDER

We may define our own ordering functions, but note that binary search trees
need the ordering to be linear. An ordering < is linear if for all x and y either
x < y , x = y , or x > y . Here, it means that if the result of the comparison
is EQUAL then the two operands really are equal. For priority queues, we could
use a partial ordering: if two items are reported as EQUAL it means they have
equal priority, even if the items themselves are different. (But see Exercise 7.23
below.)

A functor for dictionaries. Section 4.14 outlined the dictionary operations by
declaring signature DICTIONARY, and implemented it using binary search trees.
The implementation was flawed in two respects: keys were artificially restricted
to type string and the tree representation was visible outside the structure.

Our new implementation (Figure 7.2) rectifies the first flaw by taking the or-
dering structure as a parameter, and the second flaw by means of an abstype
declaration. It forbids equality testing because different binary search trees can
represent the same dictionary.

The functor heading tells us that the only operation available for keys is com-
parison. The functor body resembles the previous, flawed structure. However, it
compares keys using its parameter Key.compare, instead of String.compare.
And it declares type key to be Key.t where the old structure declared it to be
string .
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Figure 7.2 A functor for dictionaries as binary search trees

functor Dictionary (Key: ORDER) : DICTIONARY =
struct

type key = Key.t;

abstype ′a t = Leaf
| Bran of key *

′a *
′a t *

′a t
with

exception E of key;

val empty = Leaf ;

fun lookup (Leaf , b) = raise E b
| lookup (Bran(a,x,t1,t2), b) =

(case Key.compare(a,b) of
GREATER => lookup(t1, b)

| EQUAL => x
| LESS => lookup(t2, b));

fun insert (Leaf , b, y) = Bran(b, y, Leaf , Leaf )
| insert (Bran(a,x,t1,t2), b, y) =

(case Key.compare(a,b) of
GREATER => Bran(a, x, insert(t1,b,y), t2)

| EQUAL => raise E b
| LESS => Bran(a, x, t1, insert(t2,b,y)));

fun update (Leaf , b, y) = Bran(b, y, Leaf , Leaf )
| update (Bran(a,x,t1,t2), b, y) =

(case Key.compare(a,b) of
GREATER => Bran(a, x, update(t1,b,y), t2)

| EQUAL => Bran(a, y, t1, t2)
| LESS => Bran(a, x, t1, update(t2,b,y)));

end

end;
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Applying functor Dictionary to the structure StringOrder creates a structure
of dictionaries with strings for keys.

structure StringDict = Dictionary (StringOrder);
> structure StringDict : DICTIONARY

Dictionaries can be created and searched. Here, an infix operator eliminates
awkward nested calls to update:

infix |> ;
fun (d |> (k,x)) = StringDict.update(d,k,x);

val dict = StringDict.empty
|> ("Crecy",1346)
|> ("Poitiers",1356)
|> ("Agincourt",1415)
|> ("Trafalgar",1805)
|> ("Waterloo",1815);

> val dict = - : int StringDict.t
StringDict.lookup(dict,"Poitiers");
> 1356 : int

Priority queues: an example of a substructure. Section 4.16 outlined the pri-
ority queue operations by declaring signature PRIORITY QUEUE, and imple-
mented it using binary trees. The implementation had the same two flaws as
that of dictionaries. Instead of covering the same ideas again, let us examine
something new: substructures.

One difference between dictionaries and priority queues is the rôle of the or-
dering. The dictionary functor takes an ordering because it uses search trees;
alternative implementations might take an equality test or a hashing function.
But a priority queue is intrinsically concerned with an ordering: having accu-
mulated items, it returns the smallest item first. So let us modify the result
signature to make the ordering explicit:

signature PRIORITYQUEUE =
sig
structure Item : ORDER
type t
val empty : t
val null : t -> bool
val insert : Item.t * t -> t
val min : t -> Item.t
val delmin : t -> t
val fromList : Item.t list -> t
val toList : t -> Item.t list
val sort : Item.t list -> Item.t list
end;
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Signature PRIORITY QUEUE specifies a substructure Item matching signature
ORDER. The type of items is Item.t , while the type of priority queues is
simply t . Thus min , which returns the smallest item in a queue, has type
t → Item.t .

Every priority queue structure carries the ordering with it. If PQueue is an
instance of the signature, we may compare x with y by writing

PQueue.Item.compare(x,y)

Under this approach, system components are specified as substructures. The
previous version of PRIORITY QUEUE, which many people prefer for its sim-
plicity, specified a type item instead of a structure Item .

The corresponding functor has the following outline. Most of the body is
omitted; it is similar to Figure 4.4 on page 163.

functor PriorityQueue (Item: ORDER) : PRIORITYQUEUE =
struct
structure Item = Item;

fun x <= y = (Item.compare(x,y) <> GREATER);

abstype t = ...
with
...

end

end;

The structure declaration of Item may seem to do nothing, because Item is
already visible in the functor body. But the result signature requires this decla-
ration. It is analogous to the many type declarations we have seen in structures
and functors. Nested structure declarations do not have to be trivial; all the
forms valid at top level are also valid inside another structure.

The functor redeclares the infix operator <= to denote ‘less than or equal’
on items. In Chapter 4, binary search trees used compare for their ordering,
while priority queues used <=. It would be silly to declare distinct versions of
signature ORDER for the two functors, or to specify all the different relational
operators. Simple, uniform interfaces let modules fit together easily.

The abstype declaration can declare fresh tree constructors, as in Dictio-
nary. Or it can use the existing constructors Lf and Br (declared at top level in
Section 4.13) by declaring a dummy constructor, as in type queue1 above.

Exercise 7.17 Write a new version of functor Dictionary , representing a dic-
tionary by a list of (key, item) pairs ordered by the keys.
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Exercise 7.18 Complete the abstype declaration above, trying both alterna-
tives. Which one do you prefer?

Exercise 7.19 Write a new version of functor PriorityQueue, representing a
priority queue by an increasing list instead of a binary tree.

Exercise 7.20 Write a functor Sorting whose argument is an instance of sig-
nature ORDER and whose result implements both quick sort and merge sort.
What is the point of providing more than one sorting algorithm?

Building large systems using modules
Through numerous small examples we have surveyed the basic features

of the modules language. We have seen a variety of uses of structures:

• The library structure List holds related declarations, but more can be
declared in terms of the list constructors.
• Structure AbsQueue3 exports an abstract type together with all its prim-

itive operations. Further queue operations can be expressed only in
terms of those.
• The ZSP structures serve as the arguments or results of a functor. They

have only a few components, namely those operations that are pertinent
to the functor.

A large system ought be organized into hundreds of small structures such as
those above. The organization should be hierarchical: major subsystems should
be implemented as structures whose components are structures of the layer be-
low. More chaotic programmers may find themselves presiding over a few huge
structures, each consisting of hundreds or thousands of components.

A well-organized system will have many small signatures. Component speci-
fications will obey strict naming conventions. In a group project, team members
will have to agree upon each signature. Subsequent changes to signatures must
be controlled rigorously.

The system will include some functors, possibly many. If the major subsys-
tems are implemented independently, they will all have to be functors.

The modules language contains constructs, many of them obscure, that make
all these working practices possible. So let us take a closer look at modules.

7.11 Functors with multiple arguments
An ML function takes only one argument. Multiple arguments are usu-

ally packaged as a tuple. Alternatively, they can be packaged as a record.
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Higher-order functions can express multiple arguments through the device of
currying.

A functor also takes only one argument. Multiple arguments are packaged as
a structure, which is analogous to passing a function’s arguments as a record.
The syntax is clumsy but workable. Some compilers extend Standard ML by
providing higher-order functors, which allow currying.

A functor for lexicographic orderings. Our first example is a two-argument
functor. If <α is an ordering on type α and <β is an ordering on type β then the
lexicographic ordering <α×β on type α × β is defined by

(a ′, b ′) <α×β (a, b) if and only if a ′ <α a or (a ′ = a and b ′ <β b).

The functor LexOrder has result signature ORDER. It takes two formal parame-
ters: the structures O1 and O2, also of signature ORDER. Its declaration illus-
trates ML’s general syntax for functor headings:

functor LexOrder (structure O1: ORDER
structure O2: ORDER) : ORDER =

struct
type t = O1.t * O2.t;
fun compare ((x1,y1), (x2,y2)) =

(case O1.compare (x1,x2) of
EQUAL => O2.compare (y1,y2)

| ord => ord)
end;

The formal parameter list is simply a signature specification — a signature, but
without the sig and end brackets. The specified components are visible in
the functor body. The functor may be applied to any structure matching the
specification: any structure containing two substructures O1 and O2 that match
signature ORDER. The structure can be given by any structure expression, in-
cluding another functor application.

Structure StringOrder has been declared above, and IntegerOrder can be
declared similarly. We can supply those two arguments to the functor like this:

structure StringIntOrd = LexOrder(structure O1=StringOrder
structure O2=IntegerOrder);

> structure StringIntOrd : ORDER

An argument consisting of a list of declarations is regarded as a structure ex-
pression. The multiple arguments form the body of the structure, and we may
omit the struct and end brackets.

A demonstration will remind us of the functor’s purpose. Combining the
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Figure 7.3 A dictionary functor using association lists

functor AssocList (eqtype key) : DICTIONARY =
struct
type key = key;
type ′a t = (key *

′a) list;

exception E of key;

val empty = [];

fun lookup ((a,x)::pairs, b) = if a=b then x
else lookup(pairs, b)

| lookup ([], b) = raise E b;

fun insert ((a,x)::pairs, b, y) = if a=b then raise E b
else (a,x)::insert(pairs, b, y)

| insert ([], b, y) = [(b,y)];

fun update (pairs, b, y) = (b,y)::pairs;

end;

orderings on strings and integers yields an ordering on (string, integer) pairs.
The ordering on strings takes precedence over that on integers.

StringIntOrd.compare (("Edward", 3), ("Henry", 2));
> LESS : order
StringIntOrd.compare (("Henry", 6), ("Henry", 6));
> EQUAL : order
StringIntOrd.compare (("Henry", 6), ("Henry", 5));
> GREATER : order

Association lists; the eqtype specification. ML’s functor syntax for multiple
arguments does not require those arguments to be structures. They can be any-
thing that a signature can specify, including types, values and exceptions.

The following example demonstrates the eqtype specification as well as
the general functor syntax. We have previously implemented dictionaries as
binary search trees. Lists of pairs are a simpler but slower representation. As in
Section 3.16, the lookup operation compares keys using equality.

An eqtype specification may appear in any signature. It specifies types that
admit equality. A structure only matches the signature if it declares actual types
that really do admit equality. Within a functor body, equality testing is permitted
on types specified by eqtype.
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The functor’s formal parameter list is a signature specification (Figure 7.3). It
specifies one argument, an equality type. The general functor syntax lets us view
AssocList as a functor whose formal parameter is a type. Because type key is
specified as an eqtype, it admits equality testing within AssocList . Here are
two functor applications:

structure StringIntAList = AssocList (type key = string*int);
> structure StringIntAList : DICTIONARY

structure FunctionAList = AssocList (type key = int->int);
> Error: type key must be an equality type

We may apply the functor to string× int because this type admits equality. The
type int → int is rejected.

Functors with no arguments. The empty structure consists of no components:

struct end

Its signature is the empty signature:

sig end

The empty structure is mainly used as the argument of a functor. There it is
analogous to the empty tuple (), which is mainly used when a function does not
depend on the value of its argument. Recall the use of a function to represent the
tail of a sequence (Section 5.12). Null arguments are also used with imperative
programming. Our functor example involves references, which are discussed in
Chapter 8.

Functor MakeCell takes a null argument. Its empty formal parameter list
constitutes an empty signature. Every time MakeCell is called, it allocates a
fresh reference cell and returns it as part of a structure. The cell initially contains
0:

functor MakeCell () = struct val cell = ref 0 end;
> functor MakeCell : <sig>

Here are two functor invocations. The empty actual parameter list constitutes
the body of an empty structure.

structure C 1 = MakeCell ()
and C 2 = MakeCell ();
> structure C1 : sig val cell : int ref end
> structure C2 : sig val cell : int ref end

Structures C 1 and C 2 have been created in the same way, but they contain
distinct reference cells. Let us store a 1 in C 1’s cell, then inspect both of them:
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C 1.cell := 1;
> () : unit
C 1.cell;
> ref 1 : int ref
C 2.cell;
> ref 0 : int ref

The cells hold different integers. Because MakeCell is a functor, and not just a
structure, it can allocate as many distinct cells as required.

Functor syntax confusion. The general functor syntax, with a signature speci-
fication in the functor heading, handles any number of arguments. But what if

we have exactly one argument, a structure? We could use the primitive functor syntax;
it is more concise and direct than the general syntax, which creates another structure.
On the other hand, using both syntaxes in a program may lead to confusion. All our
early examples used the primitive syntax:

functor TestQueue (Q: QUEUE) ...

A different programmer might have used the general syntax:

functor TestQueue2 (structure Q: QUEUE) ...

These declarations differ only by the keyword structure in the formal parameter
list, which might be overlooked. To avoid an error message, each functor should be
invoked with the corresponding argument syntax:

TestQueue (Queue3)
TestQueue2 (structure Q = Queue3)

For uniformity’s sake, some programmers prefer to use the general syntax exclusively.

Exercise 7.21 Write a version of AssocList that does not involve eqtype.
Instead, it should employ a signature similar to ORDER.

Exercise 7.22 Functor AssocList does not hide the representation of dictio-
naries; write a version that declares an abstract type.

Exercise 7.23 In a partial ordering, some pairs of elements may be unrelated.
Signifying this outcome by EQUAL is not satisfactory in general; it would give
the wrong results for the definition of lexicographic ordering. John Reppy sug-
gests representing outcomes of comparisons by values of type order option, us-
ing NONE to signify ‘unrelated.’ Declare the signature PORDER for partial or-
derings, and the functor LexPOrder for combining partial orderings, by analogy
with ORDER and LexOrder .
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Exercise 7.24 (Continuing the previous exercise.) If α is a type and <β is a
partial ordering on type β and f is a function of type α→ β then we can define
a partial ordering < over type α by x ′ < x if and only if f (x ′) <β f (x ). (Note
that f (x ′) = f (x ) need not imply x ′ = x .) Declare a three-argument functor
that implements this definition.

Exercise 7.25 Which structures are instances of the empty signature? In other
words, which structures are legal arguments to functor MakeCell?

7.12 Sharing constraints
When modules are combined to form a larger one, special care may

be needed to ensure that the components fit together. Consider the problem of
combining dictionaries and priority queues, ensuring that their types agree.

Above we applied the functor Dictionary to the argument StringOrder , cre-
ating the structure StringDict . We then declared dict to be a dictionary indexed
by strings. We can similarly apply PriorityQueue to StringOrder , creating a
structure for priority queues of strings.

structure StringPQueue = PriorityQueue (StringOrder);
> structure StringPQueue : PRIORITY_QUEUE

Let us now declare pq to be a priority queue of strings:

StringPQueue.insert("Agincourt", StringPQueue.empty);
> - : StringPQueue.t
StringPQueue.insert("Crecy", it);
> - : StringPQueue.t
val pq = StringPQueue.insert("Poitiers", it);
> val pq = - : StringPQueue.t

Since elements of pq are strings, and dict is indexed by strings, the least element
of pq may serve as a search key into dict .

StringDict.lookup(dict, StringPQueue.min pq);
> 1356 : int

We have used dictionaries and priority queues together, but only for type string .
Generalizing this expression to an arbitrary ordered type requires a functor. In
the functor body, the expression has the form

Dict.lookup(dict, PQueue.min pq)

where PQueue and Dict are structures matching signatures PRIORITY QUEUE
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and DICTIONARY, respectively. But do the types agree?

PQueue.min : PQueue.t → PQueue.Item.t

Dict .lookup : αDict .t ×Dict .key → α

The call of Dict.lookup is permissible only if PQueue.Item.t is the same
type as Dict.key . One way to ensure this is for the functor to build the struc-
tures PQueue and Dict itself. The following functor takes an ordered type as
an argument, and supplies it to functors PriorityQueue and Dictionary . Our
expression appears as the body of function lookmin:

functor Join1 (Order: ORDER) =
struct
structure PQueue = PriorityQueue (Order);
structure Dict = Dictionary (Order);

fun lookmin(dict, pq) = Dict.lookup(dict, PQueue.min pq);

end;

It is often useful for one functor to call another. But functor Join1 does not
combine existing structures: it makes new ones. This approach could create
many duplicate structures.

Our functor should take existing structures PQueue and Dict , checking that
their types are compatible. A sharing constraint can compel types to agree:

functor Join2 (structure PQueue : PRIORITYQUEUE

structure Dict : DICTIONARY
sharing type PQueue.Item.t = Dict.key) =

struct
fun lookmin(dict, pq) = Dict.lookup(dict, PQueue.min pq);
end;

We have reverted to the multiple-argument functor syntax; sharing constraints
are a form of signature specification. In the body of the functor, the constraint
guarantees that the two types are identical. The type checker therefore accepts
the declaration of lookmin . When the functor is applied to actual structures, the
ML compiler insists that the two types really are the same.

To demonstrate the functor, we shall need priority queues and dictionaries of
integers:

structure IntegerPQueue = PriorityQueue (IntegerOrder);
> structure IntegerPQueue : PRIORITY_QUEUE
structure IntegerDict = Dictionary (IntegerOrder);
> structure IntegerDict : DICTIONARY

Two string-based structures can be combined, and so can two integer-based
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structures. In each case, function lookmin takes a dictionary and a priority
queue based on the same type.

structure StringCom = Join2 (structure PQueue = StringPQueue
structure Dict = StringDict);

> structure StringCom
> : sig
> val lookmin: ’a StringDict.t * StringPQueue.t -> ’a
> end

structure IntegerCom = Join2 (structure PQueue = IntegerPQueue
structure Dict = IntegerDict);

> structure IntegerCom
> : sig
> val lookmin: ’a IntegerDict.t * IntegerPQueue.t -> ’a
> end

But if we try to mix the types, the compiler rejects the declaration:

structure Bad = Join2 (structure PQueue = IntegerPQueue
structure Dict = StringDict);

> Error: type sharing violation
> StringDict.key # IntegerPQueue.Item.t

Sharing constraints on structures. When functors combine system components,
common substructures may need sharing constraints. Here is a sketch of a typ-
ical situation. Structure In inputs problems; structure Out outputs solutions.
The two components communicate via a priority queue of goals, in structure
PQueue . Structure Main coordinates the program via In and Out .

Out

PQueue

In

Main

Suppose that In and Out match the following signatures:

signature IN =
sig
structure PQueue: PRIORITYQUEUE
type problem
val goals: problem -> PQueue.t
end;

signature OUT =
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sig
structure PQueue: PRIORITYQUEUE
type solution
val solve: PQueue.t -> solution
end;

A functor to combine In and Out might look like this:

functor MainFunctor (structure In: IN and Out: OUT
sharing In.PQueue = Out.PQueue) =

struct
fun tackle(p) = Out.solve(In.goals p)
end;

Because the structures In.PQueue and Out.PQueue are declared as sharing,
the types In.PQueue.t and Out.PQueue.t are identical in the functor body.
(Observe the use of and to specify two structures concisely.)

When building the system, put the same structure PQueue into In and Out .
The functor MainFunctor will then accept In and Out as arguments, since they
will satisfy the sharing constraint.

Understanding sharing constraints. Sharing is one of the most difficult aspects
of ML modules. Although sharing constraints may appear in any signature, they
are only necessary if the signature specifies a functor argument. The more func-
tors you use, the more sharing constraints you will need.

A type error is the usual warning that a sharing constraint might be necessary.
In our previous example, omitting the constraint might cause the error ‘type con-
flict: expected In.PQueue.t , found Out.PQueue.t .’ Unfortunately, some
compilers produce cryptic error messages.

The type error could be eliminated by imposing a sharing constraint on those
types:

sharing type In.PQueue.t = Out.PQueue.t

The structure sharing constraint actually used in MainFunctor is stronger: it
implies type sharing all the way down. It implies that the types In.PQueue.Item.t
and Out.PQueue.Item.t are also shared.

ML enforces sharing constraints by comparing the types’ identities. Each
new datatype or abstract type is regarded as distinct from all previously existing
types.

structure DT 1 = struct datatype t = C end;
structure DT 2 = struct datatype t = C end;
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structure DT 3 = struct type t = DT 1.t end;

The types DT 1.t and DT 2.t are distinct, even though they arise from identi-
cal datatype declarations. Type abbreviations preserve the identity, so types
DT 1.t and DT 3.t are the same.

Exercise 7.26 Explain ML’s response to the following declarations.

signature TYPE = sig type t end;
functor Funny (structure A: TYPE and B: TYPE

sharing A=B) = A;
structure S1 = Funny (structure A=DT 1 and B=DT 1);
structure S2 = Funny (structure A=DT 2 and B=DT 2);
structure S3 = Funny (structure A=S1 and B=S2);

Exercise 7.27 Suppose that the functors Input and Output are declared as
follows:

functor Input (structure PQueue: PRIORITYQUEUE): IN =
struct
structure PQueue = PQueue;
fun goals ...;
end;

functor Output (structure PQueue: PRIORITYQUEUE): OUT =
struct
structure PQueue = PQueue;
fun solve ...;
end;

By applying these functors, declare structures that may be given to MainFunctor .
Then declare structures that have the required signatures but violate the functor’s
sharing constraint.

Exercise 7.28 The functors Input and Output declared above incorporate the
formal parameter PQueue into the result structure. Modify them to generate a
fresh instance of PRIORITY QUEUE instead. How will this affect MainFunctor?

7.13 Fully-functorial programming
It is a truism that one should never declare a procedure that is called only

once. We have never declared a functor to be called only once. Each formal
parameter has had a choice of actual parameters; for example, the parameter
Order could be instantiated by StringOrder or IntegerOrder . Non-generic
program units have been coded as structures, not as functors.

But declaring procedures is now regarded as good style, even if they are called
only once. There are good reasons for declaring more functors than are strictly
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necessary. Some programmers code almost entirely with functors, writing struc-
tures only to supply as arguments to functors. Their functors and signatures are
self-contained: they refer only to other signatures and to components of the
standard library.

If all program units are coded as functors then they can be written and com-
piled separately. First, the signatures are declared; then, the functors are coded.
When a functor is compiled, error messages may reveal mistakes and omissions
in the signatures. Revised signatures can be checked by recompiling the func-
tors.

The functors may be coded in any order. Each functor refers to signatures,
but not to structures or other functors. Some people prefer to code from the top
down, others from the bottom up. Several programmers can code their functors
independently.

Once all the functors have been written and compiled, applying them gener-
ates a structure for each program unit. The final structure contains the executable
program. A functor can be modified, recompiled and a new system built, without
recompiling the other functors, provided no signatures have changed. Applying
the functors amounts to linking the program units. Different configurations of a
system can be built.

Functors for binary trees. From Section 4.13 onwards we declared structures
for binary trees, flexible arrays, etc. We even declared tree as a top level data-
type. The fully-functorial style requires every program unit to be specified by a
self-contained signature.

We must now declare a signature for binary trees. The signature must specify
the datatype tree, as it will not be declared at top level.

signature TREE =
sig
datatype ′a tree = Lf | Br of ′a *

′a tree *
′a tree

val size : ′a tree -> int
val depth : ′a tree -> int
val reflect : ′a tree -> ′a tree
...

end;

We must declare a signature for the Braun array operations. The signature spec-
ifies Tree as a substructure to provide access to type tree.2

2 It could instead specify type tree directly; see Section 7.15.
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signature BRAUN =
sig
structure Tree: TREE
val sub : ′a Tree.tree * int -> ′a
val update : ′a Tree.tree * int *

′a -> ′a Tree.tree
val delete : ′a Tree.tree * int -> ′a Tree.tree
...

end;

Signature FLEXARRAY (Section 4.15) is self-contained, as it depends only on the
standard type int . Signatures ORDER and PRIORITY QUEUE (Section 7.10) are
also self-contained. Since a signature may refer to others, the declarations must
be made in a correct order: TREE must be declared before BRAUN, and ORDER
before PRIORITY QUEUE.

Since our functors do not refer to each other, they can be declared in any order.
The functor PriorityQueue can be declared now, even if its implementation re-
lies on binary trees. The functor is self-contained: it takes a binary tree structure
as a formal parameter, Tree , and uses it for access to the tree operations:

functor PriorityQueue (structure Order : ORDER
structure Tree : TREE)

: PRIORITYQUEUE =
...

abstype t = PQ of Item.t Tree.tree
...

The structure Flex (see page 158) can be turned into a functor FlexArray taking
Braun as its formal parameter. The body of the functor resembles the original
structure declaration. But the tree operations are now components of the sub-
structure Braun.Tree .

functor FlexArray (Braun: BRAUN) : FLEXARRAY =
...

val empty = Array(Braun.Tree.Lf ,0);
...

The structure Braun can similarly be turned into a functor BraunFunctor tak-
ing Tree as its formal parameter.

functor BraunFunctor (Tree: TREE) : BRAUN = ...

Even structure Tree can be made into a functor: taking the null parameter.
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functor TreeFunctor () : TREE = struct ... end;

Now all the functors have been declared.

Linking the functors together. The final phase, after all the code has been writ-
ten, is to apply the functors. Each structure is built by applying a functor to
previously created structures. To begin, applying TreeFunctor to the empty
argument list generates the structure Tree .

structure Tree = TreeFunctor ();
> structure Tree : TREE

Functor applications create the structures Braun and Flex :

structure Braun = BraunFunctor (Tree);
structure Flex = FlexArray (Braun);

The structure StringOrder is declared as it was above:

structure StringOrder = ...;

Now structure StringPQ can be declared, as before, by functor application:

structure StringPQueue =
PriorityQueue (structure Item = StringOrder

structure Tree = Tree);

Figure 7.4 portrays the complete system, with structures as rounded boxes and
functors as rectangles. Most of the structures were created by functors; only
StringOrder was written directly.

The drawbacks of the fully-functorial style should be evident. All the functor
declarations clutter the code; even inventing names for them is hard. Sharing
constraints multiply. If we continue this example, we can expect many con-
straints to ensure that structures share the same Tree substructure. With some
ML systems, your compiled code may be twice as large as it should be, because
it exists both as functors and as structures.

A good compromise is to use functors for all major program units: those that
must be coded independently. Many of them will be generic anyway. Lower-
level units can be declared as structures. Biagioni et al. (1994) have organized
the layers of a large networking system using signatures and functors; compo-
nents can be joined in various ways to meet specialized requirements.

When is a signature self-contained? Names introduced by a specification
become visible in the rest of the signature. Signature TREE specifies the

type tree and then uses it, and type int , to specify the type of size . Predefined names
like int and the standard library structures are said to be pervasive: they are visible
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Figure 7.4 Structures and functors involving trees
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everywhere. A name that occurs in a signature and that has not been specified there is
said to be free in that signature. The only name occurring free in TREE is int .

David MacQueen wrote the original proposal for Standard ML modules (in Harper
et al. (1986)). He proposed that signatures could not refer to names declared elsewhere
in a program, except names of other signatures. A signature could refer to structures
specified within the same signature, but not to free-standing structures. Thus, every sig-
nature was completely self-contained, and every structure carried with it the structures
and types it depended upon. This restriction, the signature closure rule, was eventually
relaxed to give programmers greater freedom.

In the fully-functorial style, the structures are declared last of all. Signatures will
naturally obey the signature closure rule, as there will be no structures for them to refer
to. The only names free in BRAUN are the pervasive type int and the signature TREE.
If the line

structure Tree: TREE

were removed, the signature would depend on some structure Tree already declared,
since it mentions Tree.tree in the types of the functions. This is an acceptable program-
ming style, but it is not the fully-functorial style, and it violates the signature closure
rule.

Functors and signature constraints. In the fully-functorial style of program-
ming, each functor refers to structures only as formal parameters. Nothing is

known about an argument structure except its signature, just as when an actual structure
is given an opaque signature constraint.

Suppose a functor’s formal parameters include a structure Dict of signature DICTIO-
NARY . In the functor body, type αDict.t behaves like an abstract type: it has no con-
structors to allow pattern-matching, and equality testing is forbidden. Type Dict.key is
similarly abstract; unless a sharing constraint equates it with some other type, we shall
be unable to call Dict.lookup.

Exercise 7.29 Write a functor with no formal parameters and result signature
QUEUE, implementing Representation 3 of queues.

Exercise 7.30 Specify a signature SEQUENCE for an abstract type of lazy lists,
and implement the type by writing a functor with result signature SEQUENCE.
Write a functor that takes instances of QUEUE and SEQUENCE, and declares
search functions like depthFirst and breadthFirst (Section 5.17).

Exercise 7.31 List which names appear free in signatures QUEUE1, QUEUE2,
QUEUE3, DICTIONARY (Section 4.14) and FLEXARRAY (Section 4.15).
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7.14 The open declaration
Compound names get cumbersome when structures are nested. In the

body of functor FlexArray , the type of binary trees is called Braun.Tree.tree
and its constructors are called Braun.Tree.Lf and Braun.Tree.Br . The
type and its constructors behave in the normal manner, but any patterns written
using the constructor notation are likely to be unreadable.

Although the fully-functorial style makes the problem worse, long compound
names can arise in any large program. Fortunately there are many ways of ab-
breviating such names.

Opening a structure declares its items so that they are known by their simple
names. The syntax of an open declaration is

open Id

where Id is the (possibly compound) name of a structure. Only one level of a
structure is opened at a time. After declaring

open Braun;

we may write Tree and Tree.Lf instead of Braun.Tree and Braun.Tree.Lf .
If we go on to declare

open Tree;

then we may write Lf and Br instead of Tree.Lf and Tree.Br . In the scope of
this open declaration, Lf and Br denote constructors and may not be redeclared
as values.

Local open declarations. Since open is a declaration, a let or local con-
struct can restrict its scope. Recall that let makes a declaration that is private
to an expression, while local (Section 2.18) makes a declaration that is private
to another declaration.

Here is an example of a local open declaration that also demonstrates how
open can be misused. Functor FlexArray might use local as follows:

functor FlexArray (Braun: BRAUN) : FLEXARRAY =
struct
local open Braun Braun.Tree
in
datatype ′a array = Array of ′a tree * int;
val empty = Array(Lf ,0);
fun length (Array(_,n)) = n;
fun sub ...
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fun update ...
fun delete ...
fun loext ...
fun lorem ...
end

end;

The open declaration makes the components of Braun and Braun.Tree vis-
ible, while local restricts their scope to the functor body. We no longer need
to write compound names.

Or do we? Recall that the functor implements flexible arrays in terms of
Braun arrays. Subscripting on flexible arrays uses subscripting on Braun arrays.
Both operations are called sub; to avoid a name clash we must write a compound
name:

fun sub (Array(t,n), k) =
if 0<=k andalso k<n then Braun.sub(t,k+1)
else raise Subscript;

Omitting the prefix Braun. above would create a spurious recursive call to sub,
and a type error. So opening Braun does not accomplish anything. There is no
need to open Braun.Tree either, as the functor body uses this prefix only twice.

Structure expressions using let. A better candidate for open is BraunFunctor ,
which uses the tree constructors extensively (see Figure 7.5 on the following
page). Opening structure Tree spares us from writing compound names for the
constructors in expressions such as Br(w,Lf ,Lf ).

The functor uses a new let construct, one that operates on structures. Sup-
pose the Str is a structure expression requiring the declaration D . Then evalu-
ating the structure expression

let D in Str end

yields the result of evaluating Str , while delimiting the scope of D . If Str has
the form struct . . .end, as does the body of BraunFunctor , then we can
equivalently write (as in the previous example)

struct

local D in ...end

end

However, we can use let with other structure expressions, such as functor ap-
plications. It is especially useful when a structure is used more than once:
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Figure 7.5 Example of let open in a functor body

functor BraunFunctor (Tree: TREE) : BRAUN =
let open Tree in
struct
structure Tree = Tree;

fun sub (Lf , _) = raise Subscript
| sub (Br(v,t1,t2), k) =

if k = 1 then v
else if k mod 2 = 0

then sub (t1, k div 2)
else sub (t2, k div 2);

fun update (Lf , k, w) =
if k = 1 then Br (w, Lf , Lf )
else raise Subscript

| update (Br(v,t1,t2), k, w) =
if k = 1 then Br (w, t1, t2)
else if k mod 2 = 0

then Br (v, update(t1, k div 2, w), t2)
else Br (v, t1, update(t2, k div 2, w));

fun delete (Lf , n) = raise Subscript
| delete (Br(v,t1,t2), n) =

if n = 1 then Lf
else if n mod 2 = 0

then Br (v, delete(t1, n div 2), t2)
else Br (v, t1, delete(t2, n div 2));

fun loext (Lf , w) = Br(w, Lf , Lf )
| loext (Br(v,t1,t2), w) = Br(w, loext(t2,v), t1);

fun lorem Lf = raise Size
| lorem (Br(_,Lf ,_)) = Lf
| lorem (Br(_, t1 as Br(v,_,_), t2)) = Br(v, t2, lorem t1);

end
end;
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functor QuadOrder (O: ORDER) : ORDER =
let structure OO = LexOrder (structure O1 = O

structure O2 = O)
in LexOrder (structure O1 = OO

structure O2 = OO)
end;

Functor QuadOrder takes an ordered structure and returns the lexicographic
ordering for quadruples of the form ((w , x ), (y, z )). Internally it creates the
structure OO , which defines the ordering for pairs.

Infix operators in structures. Infix directives issued inside a structure have
no effect outside. When a structure is opened, its names are made visible as

ordinary identifiers, not as infix operators; restoring their infix status requires new infix
directives. A compound name can never become an infix operator; only simple names
are permitted in an infix directive.

Top level infix directives, issued outside any structure, have global scope. Opening a
structure can bind or re-bind these top level operators.

Re-binding identifiers using open. Opening several structures can declare
hundreds of names at a stroke. Unless these names are descriptive, we may not

be able to remember which structure they belong to. Using open to override existing
bindings can be particularly confusing.

ML systems may provide the library structures Real32, Real64, Real96, etc., which
implement the standard floating point operations in various precisions. The structures
match signature REAL, which specifies a type real and operators such as +, -, * and /.

Compound names make these structures hard to use. The 64-bit version of (a/x +
x )/y is incomprehensible:

Real64./ (Real64.+ (Real64./(a,x), x), y)

A local open declaration restores readability:

let open Real64 in (a/x + x) / y end

Unfortunately, opening Real64 redeclares all the numeric operators, obliterating their
overloading. We can no longer write integer expressions such as n+1. The integer
operations are still accessible via their home structure: we can still write Int.+(n,1).
But is this an improvement?

Opening Real64 at top level is plainly wrong. There is no way of restoring the
overloading. It is better to open Real64 with a small scope, as above, or to declare new
infix operators and bind them to the 64-bit functions.

Alternatives to open. As these examples show, open can cause obscurity. Our
structures have been designed to take advantage of compound names. The sim-
ple names of the items are too short. Compound names like Braun.sub and
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Flex.sub do not merely avoid clashes; they are informative and reinforce our
knowledge of the program’s organization.

We can shorten compound names by declaring abbreviations, without using
open. Our declaration of functor FlexArray can be improved:

functor FlexArray (Braun: BRAUN) : FLEXARRAY =
struct
local structure T = Braun.Tree
in
datatype ′a array = Array of ′a T.tree * int;
val empty = Array(T.Lf ,0);
end
...

end;

Instead of opening Braun.Tree , we declare structure T to abbreviate it. Having
to write T.tree is perfectly acceptable, and patterns expressed using T.Lf and
T.Br can be succinct.

Some programmers will regard compound identifiers as unacceptable, at least
for heavily used items. But there is no need to open a large module if only a few
of the items are really needed. An open declaration can be replaced by separate
abbreviations:

type ′a queue = ′a Queue.t;
val hd = Queue.hd;
exception QEmpty = Queue.E;

The last line makes QEmpty a synonym for Queue.E ; it is a constructor and
may even appear in exception handlers. In such exception bindings, the right-
hand side must be the name of an exception constructor.

Selective use of open. In Section 4.13 we declared datatype tree at top level
to avoid having compound constructor names. That was poor style; every type
and variable ought to belong to a home structure. Opening the full tree struc-
ture is equally undesirable. And there is no analogue of exception bindings for
exporting individual datatype constructors.

We must use open, but we can do so selectively. Core declarations — in this
case, the datatype tree and the function depth — can be declared in a substruc-
ture:
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structure Tree =
struct

structure Export =
struct
datatype ′a tree = Lf

| Br of ′a *
′a tree *

′a tree;

fun depth Lf = 0
| depth (Br(v,t1,t2)) = 1 + Int.max (depth t1, depth t2);

end;

open Export;

fun size Lf = 0
| size (Br(v,t1,t2)) = 1 + size t1 + size t2;

...

end;

The substructure Export contains the items that are to be exported to top level.
It is immediately opened, exporting the items to the main structure. Later we can
export the core items, leaving the others accessible only by compound names:

open Tree.Export;
depth Lf ;
> 0 : int
Tree.size Lf ;
> 0 : int

A variation on this idea is to declare the structure of core items at top level. It
might be called TreeCore, with its own signature TREECORE. Other structures
and signatures for trees could refer to the core ones.

Exercise 7.32 Explain why the declaration of StrangePQueue is valid.

functor StrangePQueue () =
let structure UsedTwice = struct open StringOrder Tree end
in PriorityQueue (structure Item = UsedTwice

structure Tree = UsedTwice)
end;

Exercise 7.33 What is the effect of the following declaration?

open Queue3; open Queue2;

Exercise 7.34 What is wrong with the following attempt at multiple-precision
arithmetic?
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functor MultiplePrecision (F: REAL) =
struct
fun half x = F./(x, 2.0)
end;

7.15 Signatures and substructures
Complex programs require complex signatures. When structures are

nested, their signatures can become cluttered with excessively long compound
names. Suppose we declare a signature for pairs of Braun arrays, specifying a
substructure matching signature BRAUN:

signature BRAUNPAIR0 =
sig
structure Braun: BRAUN
val zip: ′a Braun.Tree.tree *

′b Braun.Tree.tree ->
(′a*

′b) Braun.Tree.tree
...

end;

The compound names render the type of zip unreadable. As with structures,
there are a number of approaches to simplifying such signatures.

Avoiding substructures. Strictly speaking, a signature need never specify sub-
structures, even if it must be self-contained. Instead, it can specify all the types
appearing in its val specifications. Omitting structure Braun from our signa-
ture makes it more readable:

signature BRAUNPAIR1 =
sig
type ′a tree
val zip: ′a tree *

′b tree -> (′a*
′b) tree

...

end;

This signature specifies considerably less than BRAUNPAIR0. All the compo-
nents of Braun are missing, and tree is specified as a mere type. Specifying
tree as a datatype would have required copying its entire specification from
signature TREE, an unpleasant duplication.

A signature should be as small as possible, so BRAUNPAIR1 may be ideal.
It is, provided the components it specifies can be used independently of those
in Braun; in other words, it should be self-contained in use, rather than in the
formal sense of having no free identifiers.
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Sharing constraints in a signature. A signature should be as small as possible,
but it should not be even smaller. If every instance of BRAUNPAIR1 must be
accompanied by an instance of BRAUN, then identifying their tree components
will require a sharing constraint. Every functor heading of the form

functor PairFunctor0 (BP: BRAUNPAIR0)

could become more than twice as long:

functor PairFunctor1 (structure Braun: BRAUN
structure BP: BRAUNPAIR1
sharing type Braun.Tree.tree = BP.tree)

The solution is to specify both substructure Braun and type tree in the same
signature, with a sharing constraint to relate them:

signature BRAUNPAIR2 =
sig
structure Braun: BRAUN
type ′a tree
sharing type tree = Braun.Tree.tree
val zip: ′a tree *

′b tree -> (′a*
′b) tree

...

end;

A structure that matches this signature must declare type α tree to satisfy the
sharing constraint:

type ′a tree = ′a Braun.Tree.tree

We have the advantages of both the previous approaches. The signature is read-
able and complete, allowing simple functor headings like that of PairFunctor0.

Type abbreviations in signatures. Type sharing constraints are adequate for the
present purpose, namely to shorten compound names in signatures. But they
cannot specify arbitrary type abbreviations. Sharing constraints apply to identi-
fiers, not to types; the sharing specification is

tree = Braun.Tree.tree

and not
′a tree = ′a Braun.Tree.tree

Signatures may make type abbreviations. This is yet another way of shortening
those compound names:

signature BRAUNPAIR3 =
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sig
structure Braun: BRAUN
type ′a tree = ′a Braun.Tree.tree
val zip: ′a tree *

′b tree -> (′a*
′b) tree

end;

For a structure to match this signature, it must declare an equivalent type abbre-
viation.

The include specification. Including a signature means specifying its com-
ponents as belonging directly to the current signature, not to a substructure. The
specification

include SIG

has the effect of writing out the contents of SIG without the surrounding sig
. . .end brackets. Our example now becomes

signature BRAUNPAIR4 =
sig
include BRAUN
val zip: ′a Tree.tree *

′b Tree.tree -> (′a*
′b) Tree.tree

end;

There are compound names, but they are acceptably short because substructure
Braun has vanished. All its components have been incorporated into the new
signature. So instances of BRAUNPAIR4 match signature BRAUN as well.

Including yourself in trouble. Multiple inclusion can be a powerful structuring
technique. It can be combined with sharing constraints to get a limited effect

of renaming. If the included signature specifies, say, types to and from , then sharing
constraints can identify these types with other types in the signature (Biagioni et al.,
1994). The standard library uses sharing constraints in a similar fashion, sometimes to
rename the components of substructures.

Avoid including signatures that have names in common: this could give an identifier
repeated or conflicting specifications. Excessive use of include can lead to large, flat
signatures, obscuring the module hierarchy. If signature BRAUN had itself specified

include TREE

instead of

structure Tree: TREE

then we should have no compound names at all. In a superficial sense, this would
aid readability. But all the components of three different structures would be thrown
together without any organization.
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Reference guide to modules
This section collects the concepts of structures, signatures and functors,

summarizing the modules language as a whole. It describes practically the entire
language, including some of the more obscure features. First, let us review the
basic definitions.

A structure is a collection of declarations, typically of items that serve a com-
mon purpose. These may include types, values and other structures. Since struc-
tures may be grouped into larger structures, a software system can be designed
as a hierarchy. A structure can be treated as a unit, no matter how complex it is
internally.

A signature consists of type checking information about each item declared
in a structure. It lists the types; it lists the values, with their types; it lists the sub-
structures, with their signatures. Sharing constraints identify common compo-
nents of substructures. Just as different values can have the same type, different
structures can have the same signature.

A functor is a mapping from structures to structures. The body of the functor
defines a structure in terms of a formal parameter, which is specified by a signa-
ture. Applying the functor substitutes an actual structure into the body. Functors
allow program units to be coded separately and can express generic units.

A module is either a structure or a functor.

7.16 The syntax of signatures and structures
This book aims to teach programming techniques, not to describe Stan-

dard ML in full. Modules involve a great deal of syntax, however; here is a
systematic description of their main features.

In the syntax definitions, an optional phrase is enclosed in square brackets.
A repeatable phrase (occurring at least once) is indicated informally using three
dots (. . . ). For example, in

exception Id1

[
of T1

]
and . . . and Idn

[
of Tn

]
the ‘of T1’ phrases are optional. The keyword and separates simultaneous
declarations.

Syntax of signatures. A signature has the form

sig Spec end

where a Spec is a specification of types, values, exceptions, structures and shar-
ing constraints.

A value specification of the form
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val Id1:T1 and . . . and Idn:Tn

specifies values named Id1, . . . , Idn with types T1, . . . , Tn , respectively. Several
values and their types can be specified simultaneously.

Types may be specified (simultaneously) by

type
[
TypeVars1

]
Id1

[
= T1

]
and . . . and

[
TypeVarsn

]
Idn

[
=

Tn

]
If Ti is present, for i = 1, . . . , n , then Idi is specified as a type abbreviation.

Types that admit equality may be specified by

eqtype
[
TypeVars1

]
Id1 and . . . and

[
TypeVarsn

]
Idn

In both type and eqtype specifications, a type is given by optional type vari-
ables (TypeVars) followed by an identifier, exactly as may appear on the left
side of a type declaration. A datatype specification has the same syntax as a
datatype declaration.

Exceptions, with optional types, can be specified by

exception Id1

[
of T1

]
and . . . and Idn

[
of Tn

]
Structures, with their signatures, are specified by

structure Id1:Sig1 and . . . and Idn:Sign

Sharing constraints have the form

sharing
[
type

]
Id1 = Id2 = · · · = Idn

The identifiers Id1, . . . , Idn are specified to share. If the keyword type is
present then they must be type identifiers; otherwise they must be structure iden-
tifiers. Sharing constraints may appear in any signature; they most frequently
appear in a functor’s formal parameter list, which is given as a signature specifi-
cation. Sharing of two structures implies sharing of their corresponding named
types.

Include specifications have the form

include SigId1 · · · SigIdn

Each SigId should be a signature identifier, and specifies the components of that
signature.

The wheretype qualification. A new signature form has recently been pro-
posed, which allows us to constrain type identifiers Idi to existing types Ti in

a signature Sig :
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Sig where type
[
TypeVars1

]
Id1 = T1 and

[
TypeVarsn

]
Idn =

Tn

This construct can be used wherever signatures are combined in elaborate ways. In
conjunction with an opaque signature constraint, it provides another way of declaring
abstract types. Consider this functor heading:

functor Dictionary (Key: ORDER)
:> DICTIONARY where type key = Key.t

The functor’s result signature is an abstract view of DICTIONARY, but with key con-
strained to be the type of sort keys specified by the argument structure Key . This
corrects the ‘all-or-nothing’ limitation of opaque constraints mentioned at the end of
Section 7.5. The functor body no longer has to use abstype.

Syntax of structures. A structure can be created by a declaration (which may
declare substructures) enclosed by the brackets struct and end:

struct D end

A structure can also be given by a functor application:

FunctorId (Str)

The functor named FunctorId is applied to the structure Str . This is the primi-
tive syntax for functor application, used in our first examples, which allows only
one argument. Passing multiple arguments requires the general form of functor
application, where the argument is a declaration:

FunctorId (D)

This abbreviates the functor application

FunctorId (struct D end)

and is analogous to writing a tuple as the argument of a function for the effect
of multiple arguments.

Local declarations in a structure have the form

let D in Str end

Evaluation performs the declaration D and yields the value of the structure ex-
pression Str . The scope of D is restricted to Str .

A structure may have a transparent or opaque signature constraint:

Str : Sig
Str :> Sig
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7.17 The syntax of module declarations
Signature, structure and functor declarations are not allowed within ex-

pressions. Structures may be declared inside other structures, but functor decla-
rations must not be nested.

Signature constraints are given in the form :>Sig but :Sig is also allowed.
A signature declaration makes the identifiers Id1, . . . , Idn denote the signa-

tures Sig1, . . . , Sign , respectively:

signature Id1=Sig1 and . . . and Idn=Sign

A structure declaration makes the identifier Idi denote the structure Stri (op-
tionally specifying the signature Sigi ), for 1 ≤ i ≤ n:

structure Id1

[
:>Sig1

]
=Str1 and . . . and Idn

[
:>Sign

]
=Strn

The primitive syntax for a functor declaration is

functor Id (Id ′:Sig ′)
[
:>Sig

]
= Str

where Id is the name of the functor, Id ′ and Sig ′ are the name and signature of
the formal parameter, structure Str is the body and Sig is an optional signature
constraint.

The general syntax for a functor declaration, which gives the effect of multiple
arguments, has the form

functor Id (Spec)
[
:>Sig

]
= Str

The formal parameter list is given by the specification Spec. The functor still
takes one argument, a structure whose signature is determined by Spec. The
formal parameter is implicitly opened in the body of the functor, making its
components visible.

Summary of main points
• Structures do not hide internal representations.
• The abstype declaration can be combined with structures and signa-

tures to hide the internal details of an abstract data type.
• A functor is a structure that takes other structures as parameters.
• Functors can express generic algorithms and permit program units to be

combined freely.
• Sharing constraints may be necessary to ensure that certain subcompo-

nents of a system are identical.
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• Compound names can be abbreviated by careful use of open declara-
tions, among other methods.


