
4
Trees and Concrete Data

Concrete data consists of constructions that can be inspected, taken apart, or
joined to form larger constructions. Lists are an example of concrete data. We
can test whether or not a list is empty, and divide a non-empty list into its head
and tail. New elements can be joined to a list. This chapter introduces several
other forms of concrete data, including trees and logical propositions.

The ML datatype declaration defines a new type along with its construc-
tors. In an expression, constructors create values of a datatype; in patterns,
constructions describe how to take such values apart. A datatype can repre-
sent a class consisting of distinct subclasses — like Pascal’s variant records,
but without their complications and insecurities. A recursive datatype typically
represents a tree. Functions on datatypes are declared by pattern-matching.

The special datatype exn is the type of exceptions, which stand for error
conditions. Errors can be signalled and trapped. An exception handler tests for
particular errors by pattern-matching.

Chapter outline
This chapter describes datatypes, pattern-matching, exception handling

and trees. It contains the following sections:
The datatype declaration. Datatypes, constructors and pattern-matching

are illustrated through examples. To represent the King and his subjects, a sin-
gle type person comprises four classes of individual and associates appropriate
information with each.

Exceptions. These represent a class of error values. Exceptions can be de-
clared for each possible error. Raising an exception signals an error; handling
the exception allows an alternative computation to be performed.

Trees. A tree is a branching structure. Binary trees are a generalization of
lists and have many applications.

Tree-based data structures. Dictionaries, flexible arrays and priority queues
are implemented easily using binary trees. The update operation creates a new
data structure, with minimal copying.

123

124 4 Trees and Concrete Data

A tautology checker. This is an example of elementary theorem proving. A
datatype of propositions (boolean expressions) is declared. Functions convert
propositions to conjunctive normal form and test for tautologies.

The datatype declaration
A heterogeneous class consists of several distinct subclasses. A circle,

a triangle and a square are all shapes, but of different kinds. A triangle might be
represented by three points, a square by four points and a circle by its radius and
centre.

For a harder problem, consider cataloguing all the inhabitants of the Kingdom
by their class. These comprise the King, the Peers (or nobility), the Knights and
the Peasants. For each we record appropriate information:

• The King is simply himself. There is nothing more to say.
• A Peer has a degree, territory and number in succession (as in ‘the 7th

Earl of Carlisle.’)
• A Knight or Peasant has a name.

In weakly typed languages, these subclasses can be represented directly. We
need only take care to distinguish Knights from Peasants; the others will differ
naturally. In ML we could try

"King"
("Earl","Carlisle",7) ("Duke","Norfolk",9)
("Knight","Gawain") ("Knight","Galahad")
("Peasant","Jack Cade") ("Peasant","Wat Tyler")

Unfortunately, these do not all have the same type! No ML function could handle
both Kings and Peasants with this representation.

4.1 The King and his subjects
An ML type consisting of King, Peers, Knights and Peasants is created

by a datatype declaration:

datatype person = King
| Peer of string*string*int
| Knight of string
| Peasant of string;

> datatype person
> con King : person
> con Peer : string * string * int -> person
> con Knight : string -> person
> con Peasant : string -> person

4.1 The King and his subjects 125

Five things are declared, namely the type person and its four constructors King ,
Peer , Knight and Peasant .

The type person consists precisely of the values built by its constructors.
Note that King has type person , while the other constructors are functions that
return something of that type. Thus the following have type person:

King
Peer("Earl","Carlisle",7) Peer("Duke","Norfolk",9)
Knight "Gawain" Knight "Galahad"
Peasant "Jack Cade" Peasant "Wat Tyler"

Furthermore, these values are distinct. No person can be both a Knight and a
Peasant ; no Peer can have two different degrees.

Values of type person , like other ML values, may be arguments and results of
functions and may belong to data structures such as lists:

val persons = [King, Peasant "Jack Cade", Knight "Gawain"];
> val persons = [King, Peasant "Jack Cade",
> Knight "Gawain"] : person list

Since each person is a unique construction, it can be taken apart. A function
over a datatype can be declared through patterns involving the constructors. As
with lists, there may be several cases. A person’s title depends upon his class
and is constructed using string concatenation (ˆ):

fun title King = "His Majesty the King"
| title (Peer(deg,terr,_)) = "The " ˆ deg ˆ " of " ˆ terr
| title (Knight name) = "Sir " ˆ name
| title (Peasant name) = name;

> val title = fn : person -> string

Each case is governed by a pattern with its own set of pattern variables. The
Knight and Peasant cases each involve a variable called name , but these vari-
ables have separate scopes.

title(Peer("Earl", "Carlisle", 7));
> "The Earl of Carlisle" : string
title(Knight "Galahad");
> "Sir Galahad" : string

Patterns may be as complicated as necessary, combining tuples and the list con-
structors with datatype constructors. The function sirs returns the names of all
the Knights in a list of persons:

126 4 Trees and Concrete Data

fun sirs [] = []
| sirs ((Knight s) :: ps) = s :: (sirs ps)
| sirs (p :: ps) = sirs ps;

> val sirs = fn : person list -> string list
sirs persons;
> ["Gawain"] : string list

The cases in a function are considered in order. The third case (with pattern
p::ps) is not considered if p is a Knight , and therefore must not be taken out
of context. Some people prefer that the cases should be disjoint in order to assist
mathematical reasoning. But replacing the case for p::ps with separate cases
for King , Peer and Peasant would make the function longer, slower and less
readable. The third case of sirs makes perfect sense as a conditional equation,
holding for all p not of the form Knight(s).

The ordering of cases is even more important when one person is compared
with another. Rather than testing 16 cases, we test for each true case and take
all the others for false , a total of 7 cases. Note the heavy use of wildcards in
patterns.

fun superior (King, Peer _) = true
| superior (King, Knight _) = true
| superior (King, Peasant _) = true
| superior (Peer _, Knight _) = true
| superior (Peer _, Peasant _) = true
| superior (Knight _, Peasant _) = true
| superior _ = false;

> val superior = fn : person * person -> bool

Exercise 4.1 Write an ML function to map persons to integers, mapping Kings
to 4, Peers to 3, Knights to 2 and Peasants to 1. Write a function equivalent to
superior that works by comparing the results of this mapping.

Exercise 4.2 Modify type person to add the constructor Esquire, whose ar-
guments are a name and a village (both represented by strings). What is the type
of this constructor? Modify function title to generate, for instance,

"John Smith, Esq., of Bottisham"

Modify superior to rank Esquire above Peasant and below Knight .

Exercise 4.3 Declare a datatype of geometric figures such as triangles, rectan-
gles, lines and circles. Declare a function to compute the area of a figure.

4.2 Enumeration types 127

4.2 Enumeration types
Letting strings denote degrees of nobility may be inadvisable. It does

not prevent spurious degrees like "butcher" and "madman". There are only
five valid degrees; let them be the constructors of a new datatype:

datatype degree = Duke | Marquis | Earl | Viscount | Baron;

Now type person should be redeclared, giving Peer the type

degree × string × int → person.

Functions on type degree are defined by case analysis. What is the title of a lady
of quality?

fun lady Duke = "Duchess"
| lady Marquis = "Marchioness"
| lady Earl = "Countess"
| lady Viscount = "Viscountess"
| lady Baron = "Baroness";

> val lady = fn : degree -> string

Accuracy being paramount in the Court and Social column, we cannot overesti-
mate the importance of this example for electronic publishing.

A type like degree, consisting of a finite number of constants, is an enumer-
ation type. Another example is the built-in type bool , which is declared by

datatype bool = false | true;

The function not is declared by cases:

fun not true = false
| not false = true;

The standard library declares the enumeration type order as follows:

datatype order = LESS | EQUAL | GREATER;

This captures the three possible outcomes of a comparison. The library struc-
tures for strings, integers, reals, times, dates, etc., each include a function compare
that returns one of these three outcomes:

String.compare ("York", "Lancaster");
> GREATER : order

Relations that return a boolean value are more familiar. But we need two calls
of < to get as much information as we can get from one call to String.compare.
The first version of Fortran provided three-way comparisons! The more things
change, the more they stay the same . . .

128 4 Trees and Concrete Data

Beware of redeclaring a datatype. Each datatype declaration creates a new
type distinct from all others. Suppose we have declared the type degree and

the function lady . Now, repeat the declaration of degree. This declares a new type
with new constructors. Asking for the value of lady(Duke) will elicit the type error
‘expected type degree, found type degree.’ Two different types are now called degree.
This exasperating situation can happen while a program is being modified interactively.
The surest remedy is to terminate the ML session, start a new one, and load the program
afresh.

Exercise 4.4 Declare an enumeration type consisting of the names of six dif-
ferent countries. Write a function to return the capital city of each country as a
string.

Exercise 4.5 Write functions of type bool×bool → bool for boolean conjunc-
tion and disjunction. Use pattern-matching rather than andalso, orelse or
if. How many cases have to be tested explicitly?

4.3 Polymorphic datatypes
Recall that list is a type operator taking one argument.1 Thus list is not

a type, while (int)list and ((string × real)list)list are. A datatype declara-
tion can introduce type operators.

The ‘optional’ type. The standard library declares the type operator option:

datatype ′a option = NONE | SOME of ′a;
> datatype ’a option
> con NONE : ’a option
> con SOME : ’a -> ’a option

The type operator option takes one argument. Type τ option contains a copy of
type τ , augmented with the extra value NONE. It can be used to supply optional
data to a function, but its most obvious use is to indicate errors. For example,
the library function Real.fromString interprets its string argument as a real
number, but it does not accept every way of expressing 60,000:

Real.fromString "6.0E5";
> SOME 60000.0 : real option
Real.fromString "full three score thousand";

1 The correct term is type constructor (Milner et al., 1990). I avoid it here to
prevent confusion with a constructor of a datatype.

4.3 Polymorphic datatypes 129

> NONE : real option

You can use a case expression to consider the alternatives separately; see Sec-
tion 4.4 below.

The disjoint sum type. A fundamental operator forms the disjoint sum or union
of two types:

datatype (′a,′b)sum = In1 of ′a | In2 of ′b;

The type operator sum takes two arguments. Its constructors are

In1 : α→ (α, β)sum

In2 : β → (α, β)sum

The type (σ, τ)sum is the disjoint sum of the types σ and τ . Its values have the
form In1(x) for x of type σ , or In2(y) for y of type τ . The type contains a
copy of σ and a copy of τ . Observe that In1 and In2 can be viewed as labels
that distinguish σ from τ .

The disjoint sum allows values of several types to be present where normally
only a single type is allowed. A list’s elements must all have the same type.
If this type is (string, person)sum then an element could contain a string or a
person, while type (string, int)sum comprises strings and integers.

[In2(King), In1("Scotland")] : ((string, person)sum)list

[In1("tyrant"), In2(1040)] : ((string, int)sum)list

Pattern-matching for the disjoint sum tests whether In1 or In2 is present. The
function concat1 concatenates all the strings included by In1 in a list:

fun concat1 [] = ""
| concat1 ((In1 s)::l) = s ˆ concat1 l
| concat1 ((In2 _)::l) = concat1 l;

> val concat1 = fn : (string, ’a) sum list -> string
concat1 [In1 "O!", In2 (1040,1057), In1 "Scotland"];
> "O!Scotland" : string

The expression In1"Scotland" has appeared with two different types, namely
(string, int × int)sum and (string, person)sum . This is possible because its
type is polymorphic:

In1 "Scotland";
> In1 "Scotland" : (string, ’a) sum

130 4 Trees and Concrete Data

Representing other datatypes. The disjoint sum can express all other datatypes
that are not recursive. The type person can be represented by

((unit, string × string × int)sum, (string, string)sum)sum

with constructors

King = In1(In1())

Peer(d , t,n) = In1(In2(d , t,n))

Knight(s) = In2(In1(s))

Peasant(s) = In2(In2(s))

These are valid as both expressions and patterns. Needless to say, type person
is pleasanter. Observe how unit , the type whose sole element is (), represents
the one King.

Storage requirements. Datatypes require a surprising amount of space, at least
with current compilers. A typical value takes four bytes for the tag (which

identifies the constructor) and four bytes for each component of the associated tuple.
The garbage collector requires a header consisting of a further four bytes. The total
comes to twelve bytes for a Knight or Peasant and twenty bytes for a Peer . This
would include the integer in a Peer , but the strings would be stored as separate objects.

The internal values of an enumeration type require no more space than integers, espe-
cially on those ML systems where integers have unlimited precision. List cells typically
occupy eight to twelve bytes. With a generational garbage collector, the amount of
space taken by an object can vary with its age!

Optimizations are possible. If the datatype has only one constructor, no tag needs
to be stored. If all but one of the constructors are constants then sometimes the non-
constant constructor does not require a tag; this holds for list but not for option , since
the operand of SOME can be anything at all. Compared with Lisp, not having types at
run-time saves storage. Appel (1992) discusses such issues. With advances in run-time
systems, we can expect storage requirements to decrease.

Exercise 4.6 What are the types of King , Peer , Knight and Peasant as de-
clared above?

Exercise 4.7 Exhibit a correspondence between values of type (σ, τ)sum and
certain values of type (σ list)×(τ list)— those of the form ([x], []) or ([], [y]).

4.4 Pattern-matching with val, as, case
A pattern is an expression consisting solely of variables, constructors

and wildcards. The constructors comprise

• numeric, character and string constants

4.4 Pattern-matching with val, as, case 131

• pairing, tupling and record formation
• list and datatype constructors

In a pattern, all names except constructors are variables. Any meaning they
may have outside the pattern is insignificant. The variables in a pattern must be
distinct. These conditions ensure that values can be matched efficiently against
the pattern and analysed uniquely to bind the variables.

Constructors absolutely must be distinguished from variables. In this book,
constructors begin with a capital letter while most variables begin with a small
letter.2 However, the standard constructors nil , true and false are also in lower
case. A constructor name may be symbolic or infix, such as :: for lists. The
standard library prefers constructor names consisting of all capitals, such as
NONE.

Mistakes in pattern-matching. Typographical errors in patterns can be hard to
locate. The following version of the function title contains several errors. Try

to spot them before reading on:

fun title Kong = "His Majesty the King"
| title (Peer(deg,terr,_)) = "The " ˆ deg ˆ " of " ˆ terr
| title (Knightname) = "Sir "ˆ name
| title Peasant name = name;

The first error is the misspelling of the constructor King as Kong . This is a variable
and matches all values, preventing further cases from being considered. ML compilers
warn if a function has a redundant case; this warning must be heeded!

The second error is Knightname: the omission of a space again reduces a pattern
to a variable. Since the error leaves the variable name undefined, the compiler should
complain.

The third error is the omission of parentheses around Peasant name . The resulting
error messages could be incomprehensible.

Misspelled constructor functions are quickly detected, for

fun f (g x) = ...

is allowed only if g is a constructor. Other misspellings may not provoke any warning.
Omitted spaces before a wildcard, as in Peer , are particularly obscure.

Exercise 4.8 Which simple mistake in superior would alter the function’s
behaviour without making any case redundant?

2 The language Haskell enforces this convention.

132 4 Trees and Concrete Data

Patterns in value declarations. The declaration

val P = E

defines the variables in the pattern P to have the corresponding values of ex-
pression E . We have used this in Chapter 2 to select components from tuples:

val (xc,yc) = scalevec(4.0, a);
> val xc = 6.0 : real
> val yc = 27.2 : real

We may also write

val [x,y,z] = upto(1,3);
> val x = 1 : int
> val y = 2 : int
> val z = 3 : int

The declaration fails (raising an exception) if the value of the expression does
not match the pattern. When the pattern is a tuple, type checking eliminates this
danger.

The following declarations are valid: the values of their expressions match
their patterns. They declare no variables.

val King = King;
val [1,2,3] = upto(1,3);

Constructor names cannot be declared for another purpose using val. In the
scope of type person , the names King , Peer , Knight and Peasant are re-
served as constructors. Declarations like these, regarded as attempts at pattern-
matching, will be rejected with a type error message:

val King = "Henry V";
val Peer = 925;

Layered patterns. A variable in a pattern may have the form

Id as P

If the entire pattern (which includes the pattern P as a part) matches, then the
value that matches P is also bound to the identifier Id . This value is viewed both
through the pattern and as a whole. The function nextrun (from Section 3.21)
can be coded

4.4 Pattern-matching with val, as, case 133

fun nextrun(run, []) = · · ·
| nextrun(run as r::_, x::xs) =

if x < r then (rev run, x::xs)
else nextrun(x::run, xs);

Here run and r::_ are the same list. We now may refer to its head as r instead
of hd run . Whether it is more readable than the previous version is a matter for
debate.

The case expression. This is another vehicle for pattern-matching and has the
form

case E of P1 => E1 | · · · | Pn => En

The value of E is matched successively against the patterns P1, . . . , Pn ; if Pi

is the first pattern to match then the result is the value of Ei . Thus case is
equivalent to an expression that declares a function by cases and applies it to E .
A typical case expression tests for a few explicit values, concluding with a
catch-all case:

case p-q of
0 => "zero"

| 1 => "one"
| 2 => "two"
| n => if n < 10 then "lots" else "lots and lots"

The function merge (also from Section 3.21) can be recoded using case to test
the first argument before the second:

fun merge(xlist,ylist) : real list =
case xlist of

[] => ylist
| x::xs => (case ylist of

[] => xlist
| y::ys => if x<=y then x::merge(xs, ylist)

else y::merge(xlist, ys));

In the recursive call, xlist and x::xs denote the same list — an effect also
obtainable through the pattern xlist as x::xs .as keyword@as keyword

The scope of case. No symbol terminates the case expression, so enclose it
in parentheses unless you are certain there is no ambiguity. Below, the second

line is part of the inner case expression, although the programmer may have intended
it to belong to the outer:

case x of 1 => case y of 0 => true | 1 => false
| 2 => true;

134 4 Trees and Concrete Data

The following declaration is not syntactically ambiguous, but many ML compilers parse
it incorrectly. The case expression should be enclosed in parentheses:

fun f [x] = case g x of 0 => true | 1 => false
| f xs = true;

Exercise 4.9 Express the function title using a case expression to distinguish
the four constructors of type person .

Exercise 4.10 Describe a simple method for removing all case expressions
from a program. Explain why your method does not affect the meaning of the
program.

Exceptions
A hard problem may be tackled by various methods, each of which

succeeds in a fraction of the cases. There may be no better way of choosing
a method than to try one and see if it succeeds. If the computation reaches
a dead end, then the method fails — or perhaps determines that the problem
is impossible. A proof method may make no progress or may reduce its goal
to 0 = 1. A numerical algorithm may suffer overflow or division by zero.

These outcomes can be represented by a datatype whose values are Success(s),
where s is a solution, Failure and Impossible. Dealing with multiple outcomes
is complicated, as we saw with the topological sorting functions of Section 3.17.
The function cyclesort , which returns information about success or failure,
is more complex than pathsort , which expresses failure by (horribly!) call-
ing hd [].

ML deals with failure through exceptions. An exception is raised where the
failure is discovered and handled elsewhere — possibly far away.

4.5 Introduction to exceptions
Exceptions are a datatype of error values that are treated specially in

order to minimize explicit testing. When an exception is raised, it is transmitted
by all ML functions until it is detected by an exception handler. Essentially a
case expression, the exception handler specifies what to return for each kind
of exception.

Suppose that functions methodA and methodB realize different methods for
solving a problem, and that show displays a solution as a string. Using a data-
type with constructors Success , Failure and Impossible, we can display the
outcome of an attempted solution by nested case expressions. If methodA fails

4.6 Declaring exceptions 135

then methodB is tried, while if either reports that the problem is impossible then
it is abandoned. In all cases, the result has the same type: string .

case methodA(problem) of
Success s => show s

| Failure => (case methodB(problem) of
Success s => show s

| Failure => "Both methods failed"
| Impossible => "No solution exists")

| Impossible => "No solution exists"

Now try exception handling. Instead of a datatype of possible outcomes, declare
exceptions Failure and Impossible:

exception Failure;
exception Impossible;

Functions methodA and methodB — and any functions they call within the
scope of these exception declarations — can signal errors by code such as

if ... then raise Impossible
else if ... then raise Failure
else (*compute successful result*)

The attempts to apply methodA and methodB involve two exception handlers:

show (methodA(problem)
handle Failure => methodB(problem))

handle Failure => "Both methods failed"
| Impossible => "No solution exists"

The first handler traps Failure from methodA, and tries methodB . The sec-
ond handler traps Failure from methodB and Impossible from either method.
Function show is given the result of methodA, if successful, or else methodB .

Even in this simple example, exceptions give a shorter, clearer and faster
program. Error propagation does not clutter our code.

4.6 Declaring exceptions
An exception name in Standard ML is a constructor of the built-in type

exn . This is a datatype with a unique property: its set of constructors can be
extended. The exception declaration

exception Failure;

makes Failure a new constructor of type exn .
While Failure and Impossible are constants, constructors can also be func-

tions:

136 4 Trees and Concrete Data

exception Failedbecause of string;
exception Badvalue of int;

Constructor Failedbecause has the type string → exn while Badvalue has
type int → exn . They create exceptions Failedbecause(msg), where msg is a
message to be displayed, and Badvalue(k), where k may determine the method
to be tried next.

Exceptions can be declared locally using let, even inside a recursive func-
tion. This can result in different exceptions having the same name and other
complications. Whenever possible, declare exceptions at top level. The type of
a top level exception must be monomorphic.3

Values of type exn can be stored in lists, returned by functions, etc., like
values of other types. In addition, they have a special rôle in the operations
raise and handle.

Dynamic types and exn . Because type exn can be extended with new con-
structors, it potentially includes the values of any type. We obtain a weak form

of dynamic typing. This is an accidental feature of ML; CAML treats dynamics in a more
sophisticated manner (Leroy and Mauny, 1993).

For example, suppose we wish to provide a uniform interface for expressing arbitrary
data as strings. All the conversion functions can have type exn → string . To extend
the system with a new type, say Complex.t , we declare a new exception for that type,
and write a new conversion function of type exn → string :

exception ComplexToString of Complex.t;
fun convertcomplex (ComplexToString z) = ...

This function only works when it is applied to constructor ComplexToString . A col-
lection of similar functions might be stored in a dictionary, identified by uniform keys
such as strings. We obtain a basic form of object-oriented programming.

4.7 Raising exceptions
Raising an exception creates an exception packet containing a value of

type exn . If Ex is an expression of type exn and Ex evaluates to e , then

raise Ex

evaluates to an exception packet containing e . Packets are not ML values; the
only operations that recognize them are raise and handle. Type exn medi-
ates between packets and ML values.

During evaluation, exception packets propagate under the call-by-value rule.
If expression E returns an exception packet then that is the result of the applica-

3 This restriction relates to imperative polymorphism; see Section 8.3.

4.7 Raising exceptions 137

tion f (E), for any function f . Thus f (raise Ex) is equivalent to raise Ex .
Incidentally, raise itself propagates exceptions, and so

raise (Badvalue (raise Failure))

raises exception Failure .
Expressions in ML are evaluated from left to right. If E1 returns a packet then

that is the result of the pair (E1,E2); expression E2 is not evaluated at all. If E1

returns a normal value and E2 returns a packet, then that packet is the result of
the pair. The evaluation order matters when E1 and E2 raise different exceptions.

The evaluation order is also visible in conditional expressions:

if E then E1 else E2

If E evaluates to true then only E1 is evaluated. Its result, whether normal
or not, becomes that of the conditional. Similarly, if E evaluates to false then
only E2 is evaluated. There is a third possibility. If the test E raises an exception
then that is the result of the conditional.

Finally, consider the let expression

let val P = E1 in E2 end

If E1 evaluates to an exception packet then so does the entire let expression.
Exception packets are not propagated by testing. The ML system efficiently

jumps to the correct exception handler if there is one, otherwise terminating
execution.

Standard exceptions. Failure of pattern-matching may raise the built-in excep-
tions Match or Bind . A function raises exception Match when applied to an
argument matching none of its patterns. If a case expression has no pattern that
matches, it also raises exception Match . The ML compiler warns in advance of
this possibility when it encounters non-exhaustive patterns (not covering all val-
ues of the type).

Because many functions can raise Match , this exception conveys little infor-
mation. When coding a function, have it reject incorrect arguments by raising a
suitable exception explicitly; a final case can catch any values that fail to match
the other patterns. Some programmers declare a new exception for every func-
tion, but having too many exceptions leads to clutter. The standard library fol-
lows a middle course, declaring exceptions for whole classes of errors. Here are
some examples.

• Overflow is raised for arithmetic operations whose result is out of range.

138 4 Trees and Concrete Data

• Div is raised for division by zero.
• Domain is raised for errors involving the functions of structure Math ,

such as the square root or logarithm of a negative number.
• Chr is raised by chr(k) if k is an invalid character code.
• Subscript is raised if an index is out of range. Array, string and list

operations can raise Subscript .
• Size is raised upon an attempt to create an array, string or list of negative

or grossly excessive size.
• Fail is raised for miscellaneous errors; it carries an error message as a

string.

The library structure List declares the exception Empty . Functions hd and tl
raise this exception if they are applied to the empty list:

exception Empty;

fun hd (x::_) = x
| hd [] = raise Empty;

fun tl (_::xs) = xs
| tl [] = raise Empty;

Less trivial is the library function to return the nth element in a list, counting
from 0:

exception Subscript;

fun nth(x::_, 0) = x
| nth(x::xs, n) = if n>0 then nth(xs,n-1)

else raise Subscript
| nth _ = raise Subscript;

Evaluating nth(l ,n) raises exception Subscript if n < 0 or if the list l has no
nth element. In the latter case, the exception propagates up the recursive calls
to nth .

nth(explode "At the pit of Acheron", 5);
> #"e" : char
nth([1,2], 2);
> Exception: Subscript

The declaration val P = E raises exception Bind if the value of E does not
match pattern P . This is usually poor style (but see Figure 8.4 on page 348).
If there is any possibility that the value will not match the pattern, consider the
alternatives explicitly using a case expression:

case E of P => · · · | P2 => · · ·

4.8 Handling exceptions 139

4.8 Handling exceptions

An exception handler tests whether the result of an expression is an
exception packet. If so, the packet’s contents — a value of type exn — may be
examined by cases. An expression that has an exception handler resembles the
case construct:

E handle P1 => E1 | · · · | Pn => En

If E returns a normal value, then the handler simply passes this value on. On
the other hand, if E returns a packet then its contents are matched against the
patterns. If Pi is the first pattern to match then the result is the value of Ei , for
i = 1, . . . , n .

There is one major difference from case. If no pattern matches, then the
handler propagates the exception packet rather than raising exception Match . A
typical handler does not consider every possible exception.

In Section 3.7 we considered the problem of making change. The greedy
algorithm presented there (function change) could not express 16 using 5 and 2
because it always took the largest coin. Another function, allChange , treated
such cases by returning the list of all possible results.

Using exceptions, we can easily code a backtracking algorithm. We declare
the exception Change and raise it in two situations: if we run out of coins with
a non-zero amount or if we cause amount to become negative. We always try
the largest coin, undoing the choice if it goes wrong. The exception handler
always undoes the most recent choice; recursion makes sure of that.

exception Change;
fun backChange (coinvals, 0) = []
| backChange ([], amount) = raise Change
| backChange (c::coinvals, amount) =

if amount<0 then raise Change
else c :: backChange(c::coinvals, amount-c)

handle Change => backChange(coinvals, amount);
> val change = fn : int list * int -> int list

Unlike allChange , this function returns at most one solution. Let us compare
the two functions by redoing the examples from Section 3.7:

backChange([], [10,2], 27);
> Exception: Change
backChange([5,2], 16);
> [5, 5, 2, 2, 2] : int list
backChange(gbcoins, 16);

140 4 Trees and Concrete Data

> [10, 5, 1] : int list

There are none, two and 25 solutions; we get at most one of them. Similar ex-
amples of exception handling occur later in the book, as we tackle problems like
parsing and unification. Lazy lists (Section 5.19) are an alternative to exception
handling. Multiple solutions can be computed on demand.

Pitfalls in exception handling. An exception handler must be written with care,
as with other forms of pattern matching. Never misspell an exception name; it

will be taken as a variable and match all exceptions.
Be careful to give exception handlers the correct scope. In the expression

if E then E1 else E2 handle · · ·

the handler will only detect exceptions raised by E2. Enclosing the conditional expres-
sion in parentheses brings it entirely within the scope of the handler. Similarly, in

case E of P1 => E1 | · · · | Pn => En handle · · ·

the handler will only detect exceptions raised by En .
Exception handlers in case expressions can be syntactically ambiguous. Omitting

the parentheses here would make the second line of the case expression become part
of the handler:

case f u of [x] => (g x handle _ => x)
| xs => g u

4.9 Objections to exceptions
Exceptions can be a clumsy alternative to pattern-matching, as in this

function for computing the length of a list:

fun len l = 1 + len(tl l) handle _ => 0;
> val len = fn : ’a list -> int

Writing N for the exception packet, the evaluation of len[1] goes like this:

len[1] ⇒ 1+ len(tl [1]) handle => 0

⇒ 1+ len[] handle => 0

⇒ 1+ (1+ len(tl []) handle => 0) handle => 0

⇒ 1+ (1+ lenN handle => 0) handle => 0

⇒ 1+ (1+ N handle => 0) handle => 0

⇒ 1+ (N handle => 0) handle => 0

⇒ 1+ 0 handle => 0

⇒ 1

4.9 Objections to exceptions 141

This evaluation is more complicated than one for the obvious length function
defined by pattern-matching. Test for different cases in advance, if possible,
rather than trying them willy-nilly by exception handling.

Most proponents of lazy evaluation object to exception handling. Exceptions
complicate the theory and can be abused, as we have just seen. The conflict
is deeper. Exceptions are propagated under the call-by-value rule, while lazy
evaluation follows call-by-need.

ML includes assignments and other commands, and exceptions can be haz-
ardous in imperative programming. It is difficult to write correct programs when
execution can be interrupted in arbitrary places. Restricted to the functional
parts of a program, exceptions can be understood as dividing the value space
into ordinary values and exception packets. They are not strictly necessary in a
programming language and could be abused, but they can also promote clarity
and efficiency.

Exercise 4.11 Type exn does not admit the ML equality operator. Is this re-
striction justified?

Exercise 4.12 Describe a computational problem from your experience where
exception handling would be appropriate. Write the skeleton of an ML program
to solve this problem. Include the exception declarations and describe where
exceptions would be raised and handled.

Trees
A tree is a branching structure consisting of nodes with branches lead-

ing to subtrees. Nodes may carry values, called labels. Despite the arboreal
terminology, trees are usually drawn upside down:

A

E

F

D

GC

B

H

142 4 Trees and Concrete Data

The node labelled A is the root of the tree, while nodes C , D , F and H (which
have no subtrees) are its leaves.

The type of a node determines the type of its label and how many subtrees it
may have. The type of a tree determines the types of its nodes. Two types of
tree are especially important. The first has labelled nodes, each with one branch,
terminated by an unlabelled leaf. Such trees are simply lists. The second type
of tree differs from lists in that each labelled node has two branches instead of
one. These are called binary trees.

When functional programmers work with lists, they can draw on a body of
techniques and a library of functions. When they work with trees, they usually
make all their own arrangements. This is a pity, for binary trees are ideal for
many applications. The following sections apply them to efficient table lookup,
arrays and priority queues. We develop a library of polymorphic functions for
binary trees.

4.10 A type for binary trees
A binary tree has branch nodes, each with a label and two subtrees. Its

leaves are unlabelled. To define binary trees in ML requires a recursive data-
type declaration:

datatype ′a tree = Lf
| Br of ′a *

′a tree *
′a tree;

Recursive datatypes are understood exactly like non-recursive ones. Type τ tree
consists of all the values that can be made by Lf and Br . There is at least
one τ tree, namely Lf ; and given two trees and a label of type τ , we can make
another tree. Thus Lf is the base case of the recursion.

Here is a tree labelled with strings:

val birnam =
Br("The", Br("wood", Lf ,

Br("of", Br("Birnam", Lf , Lf),
Lf)),

Lf);
> val birnam = Br ("The", ..., Lf) : string tree

Here are some trees labelled with integers. Note how trees can be combined to
form bigger ones.

val tree2 = Br(2, Br(1,Lf ,Lf), Br(3,Lf ,Lf));
> val tree2 = Br (2, Br (1, Lf, Lf),
> Br (3, Lf, Lf)) : int tree
val tree5 = Br(5, Br(6,Lf ,Lf), Br(7,Lf ,Lf));
> val tree5 = Br (5, Br (6, Lf, Lf),

4.10 A type for binary trees 143

> Br (7, Lf, Lf)) : int tree
val tree4 = Br(4, tree2, tree5);
> val tree4 =
> Br (4, Br (2, Br (1, Lf, Lf),
> Br (3, Lf, Lf)),
> Br (5, Br (6, Lf, Lf),
> Br (7, Lf, Lf))) : int tree

Trees birnam and tree4 can be pictured as follows:

The

of

Birnam

4

2 5

1 3 6 7

wood

Leaves are shown as squares above, but will henceforth be omitted.
Tree operations are expressed by recursive functions with pattern-matching.

The polymorphic function size returns the number of labels in a tree:

fun size Lf = 0
| size (Br(v,t1,t2)) = 1 + size t1 + size t2;

> val size = fn : ’a tree -> int
size birnam;
> 4 : int
size tree4;
> 7 : int

Another measure of the size of a tree is its depth: the length of the longest path
from the root to a leaf.

fun depth Lf = 0
| depth (Br(v,t1,t2)) = 1 + Int.max(depth t1, depth t2);

> val depth = fn : ’a tree -> int
depth birnam;
> 4 : int
depth tree4;
> 3 : int

Observe that birnam is rather deep for its size while tree4 is as shallow as

144 4 Trees and Concrete Data

possible. If t is a binary tree then

size(t) ≤ 2depth(t)
− 1

If t satisfies size(t) = 2depth(t)
− 1 then it is a complete binary tree. For

instance, tree4 is a complete binary tree of depth 3.
Informally speaking, a binary tree is balanced if at each node, both subtrees

are of similar size. This concept can be made precise in various ways. The
cost of reaching a node in a tree is proportional to its depth — for a balanced
tree, to the logarithm of the number of elements. A complete binary tree of
depth 10 contains 1,023 branch nodes, all reachable in at most nine steps. A
tree of depth 20 can contain over 106 elements. Balanced trees permit efficient
access to large quantities of data.

Calling comptree(1,n) creates a complete binary tree of depth n , labelling
the nodes from 1 to 2n :

fun comptree (k,n) =
if n=0 then Lf

else Br(k, comptree(2*k, n-1),
comptree(2*k+1, n-1));

> val comptree = fn : int * int -> int tree
comptree (1,3);
> Br (1, Br (2, Br (4, Lf, Lf),
> Br (5, Lf, Lf)),
> Br (3, Br (6, Lf, Lf),
> Br (7, Lf, Lf))) : int tree

A function over trees, reflect forms the mirror image of a tree by exchanging
left and right subtrees all the way down:

fun reflect Lf = Lf
| reflect (Br(v,t1,t2)) = Br(v, reflect t2, reflect t1);

> val reflect = fn : ’a tree -> ’a tree
reflect tree4;
> Br (4, Br (5, Br (7, Lf, Lf),
> Br (6, Lf, Lf)),
> Br (2, Br (3, Lf, Lf),
> Br (1, Lf, Lf))) : int tree

Exercise 4.13 Write a function compsame(x ,n) to construct a complete bi-
nary tree of depth n , labelling all nodes with x . How efficient is your function?

Exercise 4.14 A binary tree is balanced (by size) if each node Br(x , t1, t2)

satisfies |size(t1)−size(t2)| ≤ 1. The obvious recursive function to test whether

4.11 Enumerating the contents of a tree 145

a tree is balanced applies size at every subtree, performing much redundant
computation. Write an efficient function to test whether a tree is balanced.

Exercise 4.15 Write a function that determines whether two arbitrary trees t
and u satisfy t = reflect(u). The function should not build any new trees, so it
should not call reflect or Br , although it may use Br in patterns.

Exercise 4.16 Lists need not have been built into ML. Give a datatype
declaration of a type equivalent to α list .

Exercise 4.17 Declare a datatype (α, β)ltree of labelled binary trees, where
branch nodes carry a label of type α and leaves carry a label of type β.

Exercise 4.18 Declare a datatype of trees where each branch node may have
any finite number of branches. (Hint: use list .)

4.11 Enumerating the contents of a tree
Consider the problem of making a list of a tree’s labels. The labels must

be arranged in some order. Three well-known orders, preorder, inorder and
postorder, can be described by a recursive function over trees. Given a branch
node, each puts the labels of the left subtree before those of the right; the orders
differ only in the position of the label.

A preorder list places the label first:

fun preorder Lf = []
| preorder (Br(v,t1,t2)) = [v] @ preorder t1 @ preorder t2;

> val preorder = fn : ’a tree -> ’a list
preorder birnam;
> ["The", "wood", "of", "Birnam"] : string list
preorder tree4;
> [4, 2, 1, 3, 5, 6, 7] : int list

An inorder list places the label between the labels from the left and right sub-
trees, giving a strict left-to-right traversal:

fun inorder Lf = []
| inorder (Br(v,t1,t2)) = inorder t1 @ [v] @ inorder t2;

> val inorder = fn : ’a tree -> ’a list
inorder birnam;
> ["wood", "Birnam", "of", "The"] : string list
inorder tree4;
> [1, 2, 3, 4, 6, 5, 7] : int list

A postorder list places the label last:

146 4 Trees and Concrete Data

fun postorder Lf = []
| postorder (Br(v,t1,t2)) = postorder t1 @ postorder t2 @ [v];

> val postorder = fn : ’a tree -> ’a list
postorder birnam;
> ["Birnam", "of", "wood", "The"] : string list
postorder tree4;
> [1, 3, 2, 6, 7, 5, 4] : int list

Although these functions are clear, they take quadratic time on badly unbalanced
trees. The culprit is the appending (@) of long lists. It can be eliminated using
an extra argument vs to accumulate the labels.The following versions perform
exactly one cons (::) operation per branch node:

fun preord (Lf , vs) = vs
| preord (Br(v,t1,t2), vs) = v :: preord(t1, preord(t2,vs));

fun inord (Lf , vs) = vs
| inord (Br(v,t1,t2), vs) = inord(t1, v::inord(t2,vs));

fun postord (Lf , vs) = vs
| postord (Br(v,t1,t2), vs) = postord(t1, postord(t2,v::vs));

These definitions are worth study; many functions are declared similarly. For
instance, logical terms are essentially trees. The list of all the constants in a
term can be built as above.

Exercise 4.19 Describe how inorder(birnam) and inord(birnam, []) are eval-
uated, reporting how many cons operations are performed.

Exercise 4.20 Complete the following equations and explain why they are cor-
rect.

preorder(reflect(t)) =?

inorder(reflect(t)) =?

postorder(reflect(t)) =?

4.12 Building a tree from a list
Now consider converting a list of labels to a tree. The concepts of pre-

order, inorder and postorder apply as well to this inverse operation. Even within
a fixed order, one list can be converted to many different trees. The equation

preorder(t) = [1, 2, 3]

has five solutions in t :

4.12 Building a tree from a list 147

3

1

2

3

1

2 3

1

2

3

1

2

3

1

2

Only one of these trees is balanced. To construct balanced trees, divide the list
of labels roughly in half. The subtrees may differ in size (number of nodes) by
at most 1.

To make a balanced tree from a preorder list of labels, the first label is attached
to the root of the tree:

fun balpre [] = Lf
| balpre(x::xs) =

let val k = length xs div 2
in Br(x, balpre(List.take(xs,k)), balpre(List.drop(xs,k)))
end;

> val balpre = fn : ’a list -> ’a tree

This function is an inverse of preorder .

balpre(explode "Macbeth");
> Br (#"M", Br (#"a", Br (#"c", Lf, Lf),
> Br (#"b", Lf, Lf)),
> Br (#"e", Br (#"t", Lf, Lf),
> Br (#"h", Lf, Lf))) : char tree
implode(preorder it);
> "Macbeth" : string

To make a balanced tree from an inorder list, the label is taken from the middle.
This resembles the top-down merge sort of Section 3.21:

fun balin [] = Lf
| balin xs =

let val k = length xs div 2
val y::ys = List.drop(xs,k)

in Br(y, balin (List.take(xs,k)), balin ys)
end;

> val balin = fn : ’a list -> ’a tree

This function is an inverse of inorder .

balin(explode "Macbeth");
> Br (#"b", Br (#"a", Br (#"M", Lf, Lf),
> Br (#"c", Lf, Lf)),
> Br (#"t", Br (#"e", Lf, Lf),
> Br (#"h", Lf, Lf))) : char tree
implode(inorder it);

148 4 Trees and Concrete Data

> "Macbeth" : string

Exercise 4.21 Write a function to convert a postorder list of labels to a bal-
anced tree.

Exercise 4.22 The function balpre constructs one tree from a preorder list of
labels. Write a function that, given a list of labels, constructs the list of all trees
that have those labels in preorder.

4.13 A structure for binary trees
As usual in this book, we have been following an imaginary ML session

in which we typed in the tree functions one at a time. Now we ought to collect
the most important of those functions into a structure, called Tree . We really
must do so, because one of our functions (size) clashes with a built-in function.
One reason for using structures is to prevent such name clashes.

We shall, however, leave the datatype declaration of tree outside the struc-
ture. If it were inside, we should be forced to refer to the constructors by
Tree.Lf and Tree.Br , which would make our patterns unreadable.4 Thus,
in the sequel, imagine that we have made the following declarations:

datatype ′a tree = Lf
| Br of ′a *

′a tree *
′a tree;

structure Tree =
struct
fun size Lf = 0
| size (Br(v,t1,t2)) = 1 + size t1 + size t2;

fun depth ...
fun reflect ...
fun preord ...
fun inord ...
fun postord ...
fun balpre ...
fun balin ...
fun balpost ...
end;

4 There is a means — the open declaration — of making a structure’s com-
ponents available directly by names such as Lf and Br . Opening the whole
of Tree would defeat the purpose of declaring the structure in the first place.
Section 7.14 will discuss various ways of dealing with compound names.

4.14 Dictionaries 149

Exercise 4.23 Let us put the datatype declaration inside the structure, then
make the constructors available outside using these declarations:

val Lf = Tree.Lf ;
val Br = Tree.Br;

What is wrong with this idea?

Tree-based data structures
Computer programming consists of implementing a desired set of high

level operations in terms of a given set of primitive operations. Those high level
operations become the primitive operations for coding the next level. Layered
network protocols are a striking example of this principle, which can be seen in
any modular system design.

Consider the simpler setting of data structure design. The task is to implement
the desired data structure in terms of the programming language’s primitive data
structures. Here a data structure is described not by its internal representation,
but by the operations it supports. To implement a new data structure, we must
know the precise set of operations desired.

ML gives us two great advantages. Its primitive features easily describe trees;
we do not have to worry about references or storage allocation. And we can
describe the desired set of operations by a signature.

Typical operations on collections of data include inserting an item, looking up
an item, removing an item or merging two collections. We shall consider three
data structures that can be represented by trees:

• Dictionaries, where items are identified by name.
• Arrays, where items are identified by an integer.
• Priority queues, where items are identified by priority: only the highest

priority item can be removed.

Unlike the data structures described in most texts, ours will be purely functional.
Inserting or removing an item will not alter the collection, but create a new
collection. It may come as a surprise to hear that this can be done efficiently.

4.14 Dictionaries
A dictionary is a collection of items, each identified by a unique key

(typically a string). It supports the following operations:

• Lookup a key and return the item associated with it.
• Insert a new key (not already present) and an associated item.

150 4 Trees and Concrete Data

• Update the item associated with an existing key (insert it if the key is
not already present).

We can make this description more precise by writing an ML signature:

signature DICTIONARY =
sig
type key
type ′a t
exception E of key
val empty : ′a t
val lookup : ′a t * key -> ′a
val insert : ′a t * key *

′a -> ′a t
val update : ′a t * key *

′a -> ′a t
end;

The signature has more than the three operations described above. What are the
other things for?

• key is the type of search keys.5

• α t is the type of dictionaries whose stored items have type α.
• E is the exception raised when errors occur. Lookup fails if the key is

not found, while insert fails if the key is already there. The exception
carries the rejected key.
• empty is the empty dictionary.

A structure matching this signature must declare the dictionary operations with
appropriate types. For instance, the function lookup takes a dictionary and a
key, and returns an item. Nothing in signature DICTIONARY indicates that trees
are involved. We may adopt any representation.

A binary search tree can implement a dictionary. A reasonably balanced tree
(Figure 4.1) is considerably more efficient than an association list of (key, item)
pairs. The time required to search for a key among n items is order n for lists
and order log n for binary search trees. The time required to update the tree is
also of order log n . An association list can be updated in constant time, but this
does not compensate for the long search time.

In the worst case, binary search trees are actually slower than association lists.
A series of updates can create a highly unbalanced tree. Search and update can
take up to n steps for a tree of n items.

The keys in an association list may have any type that admits equality, but
the keys in a binary search tree must come with a linear ordering. Strings, with

5 Here it is string ; Section 7.10 will generalize binary search trees to take the
type of search keys as a parameter.

4.14 Dictionaries 151

Figure 4.1 A balanced binary search tree

Hungary, 36

France, 33

Egypt, 28

Mexico, 52

Japan, 81

alphabetic ordering, are an obvious choice. Each branch node of the tree carries
a (string, item) pair; its left subtree holds only lesser strings; the right subtree
holds only greater strings. The inorder list of labels puts the strings in alphabetic
order.

Unlike tree operations that might be coded in Pascal, the update and insert
operations do not modify the current tree. Instead, they create a new tree. This
is less wasteful than it sounds: the new tree shares most of its storage with the
existing tree.

Figure 4.2 presents the structure Dict , which is an instance of signature DIC-
TIONARY . It starts by declaring types key and α t , and exception E . The type
declarations are only abbreviations, but they must be present in order to satisfy
the signature.

Lookup in a binary search tree is simple. At a branch node, look left if the
item being sought is lesser than the current label, and right if it is greater. If
the item is not found, the function raises exception E . Observe the use of the
datatype order .

Insertion of a (string, item) pair involves locating the correct position for the
string , then inserting the item . As with lookup, comparing the string with the
current label determines whether to look left or right. Here the result is a new
branch node; one subtree is updated and the other borrowed from the original
tree. If the string is found in the tree, an exception results.

In effect, insert copies the path from the root of the tree to the new node.
Function update is identical apart from its result if the string is found in the
tree.

The exception in lookup is easily eliminated because that function is itera-
tive. It could return a result of type α option , namely SOME x if the key is

152 4 Trees and Concrete Data

Figure 4.2 A structure for dictionaries as binary search trees

structure Dict : DICTIONARY =
struct

type key = string;
type ′a t = (key *

′a) tree;

exception E of key;

val empty = Lf ;

fun lookup (Lf , b) = raise E b
| lookup (Br ((a,x),t1,t2), b) =

(case String.compare(a,b) of
GREATER => lookup(t1, b)

| EQUAL => x
| LESS => lookup(t2, b));

fun insert (Lf , b, y) = Br((b,y), Lf , Lf)
| insert (Br((a,x),t1,t2), b, y) =

(case String.compare(a,b) of
GREATER => Br ((a,x), insert(t1,b,y), t2)

| EQUAL => raise E b
| LESS => Br ((a,x), t1, insert(t2,b,y)));

fun update (Lf , b, y) = Br((b,y), Lf , Lf)
| update (Br((a,x),t1,t2), b, y) =

(case String.compare(a,b) of
GREATER => Br ((a,x), update(t1,b,y), t2)

| EQUAL => Br ((a,y), t1, t2)
| LESS => Br ((a,x), t1, update(t2,b,y)));

end;

4.14 Dictionaries 153

found and NONE otherwise. The exception in insert is another matter: since
the recursive calls construct a new tree, returning SOME t or NONE would be
cumbersome. Function insert could call lookup and update , eliminating the
exception but doubling the number of comparisons.

Binary search trees are built from the empty tree (Lf) by repeated updates or
inserts. We construct a tree ctree1 containing France and Egypt:

Dict.insert(Lf , "France", 33);
> Br (("France", 33), Lf, Lf) : int Dict.t
val ctree1 = Dict.insert(it, "Egypt", 20);
> val ctree1 = Br (("France", 33),
> Br (("Egypt", 20), Lf, Lf),
> Lf) : int Dict.t

We insert Hungary and Mexico:

Dict.insert(ctree1, "Hungary", 36);
> Br (("France", 33), Br (("Egypt", 20), Lf, Lf),
> Br (("Hungary", 36), Lf, Lf)) : int Dict.t
Dict.insert(it, "Mexico", 52);
> Br (("France", 33), Br (("Egypt", 20), Lf, Lf),
> Br (("Hungary", 36), Lf,
> Br (("Mexico", 52), Lf, Lf))) : int Dict.t

By inserting Japan, we create the tree ctree2 consisting of 5 items.

val ctree2 = Dict.update(it, "Japan", 81);
> val ctree2 =
> Br (("France", 33), Br (("Egypt", 20), Lf, Lf),
> Br (("Hungary", 36), Lf,
> Br (("Mexico", 52),
> Br (("Japan", 81), Lf, Lf),
> Lf))) : int Dict.t

Note that ctree1 still exists, even though ctree2 has been constructed from it.

Dict.lookup(ctree1, "France");
> 33 : int
Dict.lookup(ctree2, "Mexico");
> 52 : int
Dict.lookup(ctree1, "Mexico");
> Exception: E

Inserting items at random can create unbalanced trees. If most of the insertions
occur first, followed by many lookups, then it pays to balance the tree before the
lookups. Since a binary search tree corresponds to a sorted inorder list, it can be
balanced by converting it to inorder, then constructing a new tree:

Tree.inord (ctree2, []);

154 4 Trees and Concrete Data

> [("Egypt", 20), ("France", 33), ("Hungary", 36),
> ("Japan", 81), ("Mexico", 52)] : (Dict.key * int) list
val baltree = Tree.balin it;
> val baltree =
> Br (("Hungary", 36),
> Br (("France", 33), Br (("Egypt", 20), Lf, Lf), Lf),
> Br (("Mexico", 52), Br (("Japan", 81), Lf, Lf), Lf))
> : (Dict.key * int) tree

This is the tree illustrated in Figure 4.1.

Balanced tree algorithms. The balancing approach outlined above is limited.
Using inord and balin relies on the internal representation of dictionaries as

trees; the result type is now tree instead of Dict.t . Worse, the user must decide when
to perform balancing.

There exist several forms of search trees that maintain balance automatically, typi-
cally by rearranging elements during updates or lookups. Adams (1993) presents ML
code for self-balancing binary search trees. Reade (1992) presents a functional treat-
ment of 2-3 trees, where each branch node may have two or three children.

Exercise 4.24 Give four examples of a binary search tree whose depth equals 5
and that contains only the 5 labels of ctree2. For each tree, show a sequence of
insertions that creates it.

Exercise 4.25 Write a new version of structure Dict where a dictionary is
represented by a list of (key, item) pairs ordered by the keys.

4.15 Functional and flexible arrays
What is an array? To most programmers, an array is a block of storage

cells, indexed by integers, that can be updated. Conventional programming skill
mainly involves using arrays effectively. Since most arrays are scanned sequen-
tially, the functional programmer can use lists instead. But many applications —
hash tables and histograms are perhaps the simplest — require random access.

In essence, an array is a mapping defined on a finite range of the integers. The
element associated with the integer k is written A[k]. Conventionally, an array
is modified by the assignment command

A[k] := x ,

changing the machine state such that A[k] = x . The previous contents of A[k]
are lost. Updating in place is highly efficient, both in time and space, but it is
hard to reconcile with functional programming.

4.15 Functional and flexible arrays 155

A functional array provides a mapping from integers to elements, with an
update operation that creates a new array

B = update(A, k , x)

such that B [k] = x and B [i] = A[i] for all i 6= k . The array A continues
to exist and additional arrays can be created from it. Functional arrays can be
implemented by binary trees. The position of subscript k in the tree is deter-
mined by starting at the root and repeatedly dividing k by 2 until it is reduced
to 1. Each time the remainder equals 0, move to the left subtree; if the remainder
equals 1, move to the right. For instance, subscript 12 is reached by left, left,
right:

2

4 6

8 12 10 14

3

5 7

9 13 11 15

1

A flexible array augments the usual lookup and update with operations to insert
or delete elements from either end of the array. A program starts with an empty
array and inserts elements as required. Gaps are forbidden: element n + 1 must
be defined after element n , for n > 0. Let us examine the underlying tree
operations, which have been credited to W. Braun.

The lookup function, sub, divides the subscript by 2 until 1 is reached. If the
remainder is 0 then the function follows the left subtree, otherwise the right. If
it reaches a leaf, it signals error by raising a standard exception.

fun sub (Lf , _) = raise Subscript
| sub (Br(v,t1,t2), k) =

if k = 1 then v
else if k mod 2 = 0

then sub (t1, k div 2)
else sub (t2, k div 2);

> val sub = fn : ’a tree * int -> ’a

The update function, update , also divides the subscript repeatedly by 2. When
it reaches 1 it replaces the branch node by another branch with the new label. A
leaf may be replaced by a branch, extending the array, provided no intervening
nodes have to be generated. This suffices for arrays without gaps.

fun update (Lf , k, w) =

156 4 Trees and Concrete Data

if k = 1 then Br (w, Lf , Lf)
else raise Subscript

| update (Br(v,t1,t2), k, w) =
if k = 1 then Br (w, t1, t2)
else if k mod 2 = 0

then Br (v, update(t1, k div 2, w), t2)
else Br (v, t1, update(t2, k div 2, w));

> val update = fn : ’a tree * int * ’a -> ’a tree

Calling delete(ta,n) replaces the subtree rooted at position n (if it exists) by a
leaf. It resembles sub, but builds a new tree.

fun delete (Lf , n) = raise Subscript
| delete (Br(v,t1,t2), n) =

if n = 1 then Lf
else if n mod 2 = 0

then Br (v, delete(t1, n div 2), t2)
else Br (v, t1, delete(t2, n div 2));

> val delete = fn : ’a tree * int -> ’a tree

Letting a flexible array grow and shrink from above is simple. Just store the
upper bound with the binary tree and use update and delete . But how can we
let the array grow and shrink from below? As the lower bound is fixed, this
seems to imply shifting all the elements.

Consider extending a tree from below with the element w . The result has w
at position 1, replacing the previous element v . Its right subtree (positions 3, 5,
. . .) is simply the old left subtree (positions 2, 4, . . .). By a recursive call, its left
subtree has v at position 2 and takes the rest (positions 4, 6, . . .) from the old
right subtree (positions 3, 5, . . .).

fun loext (Lf , w) = Br(w, Lf , Lf)
| loext (Br(v,t1,t2), w) = Br(w, loext(t2,v), t1);

> val loext = fn : ’a tree * ’a -> ’a tree

So we can extend a flexible array from below, in logarithmic time. To shorten
the array, simply reverse the steps. Attempted deletion from the empty array
raises the standard exception Size . Trees of the form Br(_,Lf ,Br _) need
not be considered: at every node we have L − 1 ≤ R ≤ L, where L is the size
of the left subtree and R is the size of the right subtree.

fun lorem Lf = raise Size
| lorem (Br(_,Lf ,Lf)) = Lf
| lorem (Br(_, t1 as Br(v,_,_), t2)) = Br(v, t2, lorem t1);

> val lorem = fn : ’a tree -> ’a tree

It is time for a demonstration. By repeatedly applying loext to a leaf, we build
an array of the letters A to E in reverse order.

4.15 Functional and flexible arrays 157

loext(Lf ,"A");
> Br ("A", Lf, Lf) : string tree
loext(it,"B");
> Br ("B", Br ("A", Lf, Lf), Lf) : string tree
loext(it,"C");
> Br ("C", Br ("B", Lf, Lf), Br ("A", Lf, Lf))
> : string tree
loext(it,"D");
> Br ("D", Br ("C", Br ("A", Lf, Lf), Lf),
> Br ("B", Lf, Lf)) : string tree
val tlet = loext(it,"E");
> val tlet = Br ("E", Br ("D", Br ("B", Lf, Lf), Lf),
> Br ("C", Br ("A", Lf, Lf), Lf))
> : string tree

The tree tlet looks like this:

E

D C

B A

Updating elements of tlet does not affect that array, but creates a new array:

val tdag = update(update (tlet, 5, "Amen"),
2, "dagger");

> val tdag =
> Br ("E", Br ("dagger", Br ("B", Lf, Lf), Lf),
> Br ("C", Br ("Amen", Lf, Lf), Lf))
> : string tree
sub(tdag,5);
> "Amen" : string
sub(tlet,5);
> "A" : string

The binary tree remains balanced after each operation. Lookup and update with
subscript k take order log k steps, the best possible time complexity for any data
structure of unbounded size. Access to a million-element array will be twice as
slow as access to a thousand-element array.

The standard library structure Array provides imperative arrays. They will
be used in Chapter 8 to implement functional (but not flexible) arrays. That
implementation gives fast, constant access time — if the array is used in an
imperative style. Imperative arrays are so prevalent that functional applications
require some imagination.

Here is a signature for flexible arrays. It is based on the structure Array ,

158 4 Trees and Concrete Data

Figure 4.3 Structures for Braun trees and flexible arrays

structure Braun =
struct
fun sub ...
fun update ...
fun delete ...
fun loext ...
fun lorem ...
end;

structure Flex : FLEXARRAY =
struct
datatype ′a array = Array of ′a tree * int;

val empty = Array(Lf ,0);

fun length (Array(_,n)) = n;

fun sub (Array(t,n), k) =
if 0<=k andalso k<n then Braun.sub(t,k+1)
else raise Subscript;

fun update (Array(t,n), k, w) =
if 0<=k andalso k<n then Array(Braun.update(t,k+1,w), n)
else raise Subscript;

fun loext (Array(t,n), w) = Array(Braun.loext(t,w), n+1);

fun lorem (Array(t,n)) =
if n>0 then Array(Braun.lorem t, n-1)
else raise Size;

fun hiext (Array(t,n), w) = Array(Braun.update(t,n+1,w), n+1);

fun hirem (Array(t,n)) =
if n>0 then Array(Braun.delete(t,n) , n-1)
else raise Size;

end;

4.15 Functional and flexible arrays 159

but includes extension and removal from below (loext , lorem) and from above
(hiext , hirem).

signature FLEXARRAY =
sig
type ′a array
val empty : ′a array
val length : ′a array -> int
val sub : ′a array * int -> ′a
val update : ′a array * int *

′a -> ′a array
val loext : ′a array *

′a -> ′a array
val lorem : ′a array -> ′a array
val hiext : ′a array *

′a -> ′a array
val hirem : ′a array -> ′a array
end;

Figure 4.3 presents the implementation. The basic tree manipulation functions
are packaged as the structure Braun , to prevent name clashes with the analo-
gous functions in structure Flex . Incidentally, Braun subscripts range from 1
to n while Flex subscripts range from 0 to n − 1. The former arises from the
representation, the latter from ML convention.

Structure Flex represents a flexible array by a binary tree paired with an inte-
ger, its size. It might have declared type array as a type abbreviation:

type ′a array = ′a tree * int;

Instead, it declares array as a datatype with one constructor. Such a datatype
costs nothing at run-time: the constructor occupies no space. The new type dis-
tinguishes flexible arrays from accidental pairs of a tree with an integer, as in the
call to Braun.sub. The constructor is hidden outside the structure, preventing
users from taking apart the flexible array.

Further reading. Dijkstra (1976), a classic work on imperative programming,
introduces flexible arrays and many other concepts. Hoogerwoord (1992) de-

scribes flexible arrays in detail, including the operation to extend an array from below.
Okasaki (1995) introduces random access lists, which provide logarithmic time array
access as well as constant time list operations (cons, head, tail). A random access list is
represented by a list of complete binary trees. The code is presented in ML and is easy
to understand.

Exercise 4.26 Write a function to create an array consisting of the element x
in subscript positions 1 to n . Do not use Braun.update: build the tree directly.

160 4 Trees and Concrete Data

Exercise 4.27 Write a function to convert the array consisting of the elements
x1, x2, . . . , xn (in subscript positions 1 to n) to a list. Operate directly on the
tree, without repeated subscripting.

Exercise 4.28 Implement sparse arrays, which may have large gaps between
elements, by allowing empty labels in the tree.

4.16 Priority queues
A priority queue is an ordered collection of items. Items may be in-

serted in any order, but only the highest priority item may be seen or deleted.
Higher priorities traditionally mean lower numerical values, so the basic opera-
tions are called insert , min and delmin .

In simulations, a priority queue selects the next event according to its sched-
uled time. In Artificial Intelligence, priority queues implement best-first search:
attempted solutions to a problem are stored with priorities (assigned by a rating
function) and the best attempt is chosen for further search.

If a priority queue is kept as a sorted list, insert takes up to n steps for a
queue of n items. This is unacceptably slow. With a binary tree, insert and
delmin take order log n steps. Such a tree, called a heap, underlies the well-
known sorting algorithm heap sort. The labels are arranged such that no label
is less than a label above it in the tree. This heap condition puts the labels in no
strict order, but does put the least label at the root.

Conventionally, the tree is embedded in an array with the labels indexed as
follows:

2

4 5

8 9 10 11

3

6 7

12 13 14 15

1

An n-item heap consists of nodes 1 to n . This indexing scheme always creates
a tree of minimum depth. But our functional priority queues are based on the
indexing scheme for flexible arrays; it seems more amenable to functional pro-
gramming, and also assures minimum depth. The resulting program is a hybrid
of old and new ideas.

If the heap contains n − 1 items, then an insertion fills position n . However,
the new item may be too small to go into that position without violating the heap

4.16 Priority queues 161

condition. It may end up higher in the tree, forcing larger items downwards.
Function insert works on the same principle as loext , but maintains the heap
condition while inserting the item. Unless the new item w exceeds the current
label v , it becomes the new label and v is inserted further down; because v does
not exceed any item in the subtrees, neither does w .

fun insert(w: real, Lf) = Br(w, Lf , Lf)
| insert(w, Br(v, t1, t2)) =

if w <= v then Br(w, insert(v, t2), t1)
else Br(v, insert(w, t2), t1);

> val insert = fn : real * real tree -> real tree

There seems to be no simple way of reversing the insert operation. Deletion
must remove the item at the root, as that is the smallest. But deletion from an
n-item heap must vacate position n . Item n may be too large to go into the root
without violating the heap condition. We need two functions: one to remove
item n and one to re-insert its label in a suitable place.

Function leftrem works on the same principle as lorem , but does not move
labels up or down in the heap. It always removes the leftmost item, exchanging
subtrees to give the new heap the correct form. It returns the removed item,
paired with the new heap:

fun leftrem (Br(v,Lf ,Lf)) = (v, Lf)
| leftrem (Br(v,t1,t2)) =

let val (w, t) = leftrem t1
in (w, Br(v,t2,t)) end;

> val leftrem = fn : ’a tree -> ’a * ’a tree

Function siftdown makes a heap from the displaced item and the two subtrees
of the old heap. The item moves down the tree. At each branch node, it follows
the smaller of the subtrees’ labels. It stops when no subtree has a smaller label.
Thanks to the indexing scheme, the cases considered below are the only ones
possible. If the left subtree is empty then so is the right; if the right subtree is
empty then the left subtree can have only one label.

fun siftdown (w:real, Lf , Lf) = Br(w,Lf ,Lf)
| siftdown (w, t as Br(v,Lf ,Lf), Lf) =

if w <= v then Br(w, t, Lf)
else Br(v, Br(w,Lf ,Lf), Lf)

| siftdown (w, t1 as Br(v1,p1,q1), t2 as Br(v2,p2,q2)) =
if w <= v1 andalso w <= v2 then Br(w,t1,t2)
else if v1 <= v2 then Br(v1, siftdown(w,p1,q1), t2)

(*v2 < v1*) else Br(v2, t1, siftdown(w,p2,q2));
> val siftdown = fn
> : real * real tree * real tree -> real tree

162 4 Trees and Concrete Data

Now we can perform deletions. Function delmin calls leftrem to delete and re-
turn an item, then siftdown to put the item back in some suitable place. Deletion
from the empty heap is an error, and the one-element heap is treated separately.

fun delmin Lf = raise Size
| delmin (Br(v,Lf ,_)) = Lf
| delmin (Br(v,t1,t2)) =

let val (w,t) = leftrem t1
in siftdown (w,t2,t) end;

> val delmin = fn : real tree -> real tree

Our signature for priority queues specifies the primitives discussed above. It also
specifies operations to convert between heaps and lists, and the corresponding
sorting function. It specifies item as the type of items in the queue; for now this
is real , but a functor can take any ordered type as a parameter (see Section 7.10).

signature PRIORITYQUEUE =
sig
type item
type t
val empty : t
val null : t -> bool
val insert : item * t -> t
val min : t -> item
val delmin : t -> t
val fromList : item list -> t
val toList : t -> item list
val sort : item list -> item list
end;

Figure 4.4 displays the structure for heaps. It uses the obvious definitions of
empty and the predicate null . The function min merely returns the root.

Priority queues easily implement heap sort. We sort a list by converting it to
a heap and back again. Function heapify converts a list into a heap in a man-
ner reminiscent of top-down merge sort (Section 3.21). This approach, using
siftdown , builds the heap in linear time; repeated insertions would require or-
der n log n time. Heap sort’s time complexity is optimal: it takes order n log n
time to sort n items in the worst case. In practice, heap sort tends to be slower
than other n log n algorithms. Recall our timing experiments of Chapter 3.
Quick sort and merge sort can process 10,000 random numbers in 200 msec
or less, but Heap.sort takes 500 msec.

Although there are better ways of sorting, heaps make ideal priority queues.
To see how heaps work, let us build one and remove some items from it.

Heap.fromList [4.0, 2.0, 6.0, 1.0, 5.0, 8.0, 5.0];

4.16 Priority queues 163

Figure 4.4 A structure for priority queues using heaps

structure Heap : PRIORITYQUEUE =
struct
type item = real;
type t = item tree;

val empty = Lf ;

fun null Lf = true
| null (Br _) = false;

fun min (Br(v,_,_)) = v;

fun insert ...

fun leftrem ...

fun siftdown ...

fun delmin ...

fun heapify (0, vs) = (Lf , vs)
| heapify (n, v::vs) =

let val (t1, vs1) = heapify (n div 2, vs)
val (t2, vs2) = heapify ((n-1) div 2, vs1)

in (siftdown (v,t1,t2), vs2) end;

fun fromList vs = #1 (heapify (length vs, vs));

fun toList (t as Br(v,_,_)) = v :: toList(delmin t)
| toList Lf = [];

fun sort vs = toList (fromList vs);

end;

164 4 Trees and Concrete Data

> Br (1.0, Br (2.0, Br (6.0, Lf, Lf),
> Br (4.0, Lf, Lf)),
> Br (5.0, Br (8.0, Lf, Lf),
> Br (5.0, Lf, Lf))) : Heap.t
Heap.delmin it;
> Br (2.0, Br (5.0, Br (8.0, Lf, Lf),
> Br (5.0, Lf, Lf)),
> Br (4.0, Br (6.0, Lf, Lf), Lf)) : Heap.t
Heap.delmin it;
> Br (4.0, Br (6.0, Br (8.0, Lf, Lf), Lf),
> Br (5.0, Br (5.0, Lf, Lf), Lf)) : Heap.t

Observe that the smallest item is removed first. Let us apply delmin twice more:

Heap.delmin it;
> Br (5.0, Br (5.0, Br (8.0, Lf, Lf), Lf),
> Br (6.0, Lf, Lf)) : Heap.t
Heap.delmin it;
> Br (5.0, Br (6.0, Lf, Lf), Br (8.0, Lf, Lf)) : Heap.t

ML’s response has been indented to emphasize the structure of the binary trees.

Other forms of priority queues. The heaps presented here are sometimes called
binary or implicit heaps. Algorithms textbooks such as Sedgewick (1988)

describe them in detail. Other traditional representations of priority queues can be coded
in a functional style. Leftist heaps (Knuth, 1973, page 151) and binomial heaps (Cormen
et al., 1990, page 400) are more complicated than binary heaps. However, they allow
heaps to be merged in logarithmic time. The merge operation for binomial heaps works
by a sort of binary addition. Chris Okasaki, who supplied most of the code for this
section, has implemented many other forms of priority queues. Binary heaps appear to
be the simplest and the fastest, provided we do not require merge.

Exercise 4.29 Draw diagrams of the heaps created by starting with the empty
heap and inserting 4, 2, 6, 1, 5, 8 and 5 (as in the call to heapoflist above).

Exercise 4.30 Describe the functional array indexing scheme in terms of the
binary notation for subscripts. Do the same for the conventional indexing scheme
of heap sort.

Exercise 4.31 Write ML functions for lookup and update on functional arrays,
represented by the conventional indexing scheme of heap sort. How do they
compare with Braun.sub and Braun.update?

4.17 Propositional Logic 165

A tautology checker
This section introduces elementary theorem proving. We define propo-

sitions and functions to convert them into various normal forms, obtaining a
tautology checker for Propositional Logic. Rather than using binary trees, we
declare a datatype of propositions.

4.17 Propositional Logic
Propositional Logic deals with propositions constructed from atoms a ,

b, c, . . . , by the connectives ∧, ∨, ¬. A proposition may be

¬p a negation, ‘not p’

p ∧ q a conjunction, ‘p and q’

p ∨ q a disjunction, ‘p or q’

Propositions resemble boolean expressions and are represented by the datatype
prop:

datatype prop = Atom of string
| Neg of prop
| Conj of prop * prop
| Disj of prop * prop;

The implication p → q is equivalent to (¬p)∨q . Here is a function to construct
implications:

fun implies(p,q) = Disj(Neg p, q);
> val implies = fn : prop * prop -> prop

Our example is based on some important attributes — being rich, landed and
saintly:

val rich = Atom "rich"
and landed = Atom "landed"
and saintly = Atom "saintly";

Here are two assumptions about the rich, the landed and the saintly.

• Assumption 1 is landed → rich: the landed are rich.
• Assumption 2 is ¬(saintly ∧ rich): one cannot be both saintly and rich.

A plausible conclusion is landed → ¬saintly : the landed are not saintly.
Let us give these assumptions and desired conclusion to ML:

val assumption1 = implies(landed, rich)
and assumption2 = Neg(Conj(saintly,rich));
> val assumption1 = Disj (Neg (Atom "landed"),

166 4 Trees and Concrete Data

> Atom "rich") : prop
> val assumption2 = Neg (Conj (Atom "saintly",
> Atom "rich")) : prop
val concl = implies(landed, Neg saintly);
> val concl = Disj (Neg (Atom "landed"),
> Neg (Atom "saintly")) : prop

If the conclusion follows from the assumptions, then the following proposition is
a propositional theorem — a tautology. Let us declare it as a goal to be proved:

val goal = implies(Conj(assumption1,assumption2), concl);
> val goal =
> Disj (Neg (Conj (Disj (Neg (Atom "landed"),
> Atom "rich"),
> Neg (Conj (Atom "saintly",
> Atom "rich")))),
> Disj (Neg (Atom "landed"), Neg (Atom "saintly")))
> : prop

In mathematical notation this is

((landed → rich) ∧ ¬(saintly ∧ rich))→ (landed → ¬saintly)

For a more readable display, let us declare a function for converting a proposition
to a string.

fun show (Atom a) = a
| show (Neg p) = "(˜" ˆ show p ˆ ")"
| show (Conj(p,q)) = "(" ˆ show p ˆ " & " ˆ show q ˆ ")"
| show (Disj(p,q)) = "(" ˆ show p ˆ " | " ˆ show q ˆ ")";

> val show = fn : prop -> string

Here is our goal:

show goal;
> "((˜(((˜landed) | rich) & (˜(saintly & rich))))
> | ((˜landed) | (˜saintly)))" : string

Spaces and line breaks have been inserted in the output above to make it more
legible, as elsewhere in this book.

Exercise 4.32 Write a version of show that suppresses needless parentheses.
If ¬ has highest precedence and ∨ the lowest then all the parentheses in ((¬a)∧
b) ∨ c are redundant. Since ∧ and ∨ are associative, suppress parentheses in
(a ∧ b) ∧ (c ∧ d) .

4.18 Negation normal form 167

Exercise 4.33 Write a function to evaluate a proposition using the standard
truth tables. One argument should be a list of the true atoms, all others to be
assumed false.

4.18 Negation normal form
Any proposition can be converted into negation normal form (NNF),

where ¬ is only applied to atoms, by pushing negations into conjunctions and
disjunctions. Repeatedly replace

¬¬p by p

¬(p ∧ q) by (¬p) ∨ (¬q)

¬(p ∨ q) by (¬p) ∧ (¬q)

Such replacements are sometimes called rewrite rules. First, consider whether
they make sense. Are they unambiguous? Yes, because the left sides of the
rules cover distinct cases. Will the replacements eventually stop? Yes; although
they can create additional negations, the negated parts shrink. How do we know
when to stop? Here a single sweep through the proposition suffices.

Function nnf applies these rules literally. Where no rule applies, it simply
makes recursive calls.

fun nnf (Atom a) = Atom a
| nnf (Neg (Atom a)) = Neg (Atom a)
| nnf (Neg (Neg p)) = nnf p
| nnf (Neg (Conj(p,q))) = nnf (Disj(Neg p, Neg q))
| nnf (Neg (Disj(p,q))) = nnf (Conj(Neg p, Neg q))
| nnf (Conj(p,q)) = Conj(nnf p, nnf q)
| nnf (Disj(p,q)) = Disj(nnf p, nnf q);

> val nnf = fn : prop -> prop

Assumption 2, ¬(saintly ∧ rich), is converted to ¬saintly ∨ ¬rich . Function
show displays the result.

nnf assumption2;
> Disj (Neg (Atom "saintly"), Neg (Atom "rich")) : prop
show it;
> "((˜saintly) | (˜rich))" : string

The function nnf can be improved. Given ¬(p ∧ q) it evaluates

nnf (Disj (Neg p,Neg q))

The recursive call then computes

Disj (nnf (Neg p),nnf (Neg q))

168 4 Trees and Concrete Data

Making the function evaluate this expression directly saves a recursive call —
similarly for ¬(p ∨ q).

It can be faster still. A separate function to compute nnf (Neg p) avoids the
needless construction of negations. In mutual recursion, function nnfpos p com-
putes the normal form of p while nnfneg p computes the normal form of Neg p.

fun nnfpos (Atom a) = Atom a
| nnfpos (Neg p) = nnfneg p
| nnfpos (Conj(p,q)) = Conj(nnfpos p, nnfpos q)
| nnfpos (Disj(p,q)) = Disj(nnfpos p, nnfpos q)

and nnfneg (Atom a) = Neg (Atom a)
| nnfneg (Neg p) = nnfpos p
| nnfneg (Conj(p,q)) = Disj(nnfneg p, nnfneg q)
| nnfneg (Disj(p,q)) = Conj(nnfneg p, nnfneg q);

4.19 Conjunctive normal form
Conjunctive normal form is the basis of our tautology checker, and also

of the resolution method of theorem proving. Hardware designers know it as the
maxterm representation of a boolean expression.

A literal is an atom or its negation. A proposition is in conjunctive normal
form (CNF) if it has the form p1 ∧ · · · ∧ pm , where each pi is a disjunction of
literals.

To check whether p is a tautology, reduce it to an equivalent proposition in
CNF. Now if p1∧· · ·∧pm is a tautology then so is pi for i = 1, . . . , m . Suppose
pi is q1 ∨ · · · ∨ qn , where q1, . . . , qn are literals. If the literals include an atom
and its negation then pi is a tautology. Otherwise the atoms can be given truth
values to falsify each literal in pi , and therefore p is not a tautology.

To obtain CNF, start with a proposition in negation normal form. Using the
distributive law, push in disjunctions until they apply only to literals. Replace

p ∨ (q ∧ r) by (p ∨ q) ∧ (p ∨ r)

(q ∧ r) ∨ p by (q ∨ p) ∧ (r ∨ p)

These replacements are less straightforward than those that yield negation nor-
mal form. They are ambiguous — both of them apply to (a∧b)∨ (c∧d)— but
the resulting normal forms are logically equivalent. Termination is assured; al-
though each replacement makes the proposition bigger, it replaces a disjunction
by smaller disjunctions, and this cannot go on forever.

A disjunction may contain buried conjunctions; take for instance a∨(b∨(c∧
d)). Our replacement strategy, given p ∨ q , first puts p and q into CNF. This

4.19 Conjunctive normal form 169

brings any conjunctions to the top. Then applying the replacements distributes
the disjunctions into the conjunctions.

Calling distrib(p, q) computes the disjunction p ∨ q in CNF, given p and q
in CNF. If neither is a conjunction then the result is p ∨ q , the only case where
distrib makes a disjunction. Otherwise it distributes into a conjunction.

fun distrib (p, Conj(q,r)) = Conj(distrib(p,q), distrib(p,r))
| distrib (Conj(q,r), p) = Conj(distrib(q,p), distrib(r,p))
| distrib (p, q) = Disj(p,q) (*no conjunctions*);

> val distrib = fn : prop * prop -> prop

The first two cases overlap: if both p and q are conjunctions then distrib(p, q)
takes the first case, because ML matches patterns in order. This is a natural way
to express the function. As we can see, distrib makes every possible disjunction
from the parts available:

distrib (Conj(rich,saintly), Conj(landed, Neg rich));
> Conj (Conj (Disj (Atom "rich", Atom "landed"),
> Disj (Atom "saintly", Atom "landed")),
> Conj (Disj (Atom "rich", Neg (Atom "rich")),
> Disj (Atom "saintly", Neg (Atom "rich"))))
> : prop
show it;
> "(((rich | landed) & (saintly | landed)) &
> ((rich | (˜rich)) & (saintly | (˜rich))))" : string

The conjunctive normal form of p ∧ q is simply the conjunction of those of p
and q . Function cnf is simple because distrib does most of the work. The third
case catches both Atom and Neg .

fun cnf (Conj(p,q)) = Conj (cnf p, cnf q)
| cnf (Disj(p,q)) = distrib (cnf p, cnf q)
| cnf p = p (*a literal*) ;

> val cnf = fn : prop -> prop

Finally, we convert the desired goal into CNF using cnf and nnf :

val cgoal = cnf (nnf goal);
> val cgoal = Conj (..., ...) : prop
show cgoal;
> "((((landed | saintly) | ((˜landed) | (˜saintly))) &
> (((˜rich) | saintly) | ((˜landed) | (˜saintly)))) &
> (((landed | rich) | ((˜landed) | (˜saintly))) &
> (((˜rich) | rich) | ((˜landed) | (˜saintly)))))"
> : string

This is indeed a tautology. Each of the four disjunctions contains some Atom
and its negation: landed , saintly , landed and rich , respectively. To detect this,

170 4 Trees and Concrete Data

function positives returns a list of the positive atoms in a disjunction, while
negatives returns a list of the negative atoms. Unanticipated cases indicate that
the proposition is not in CNF; an exception results.

exception NonCNF;
fun positives (Atom a) = [a]
| positives (Neg(Atom _)) = []
| positives (Disj(p,q)) = positives p @ positives q
| positives _ = raise NonCNF;

> val positives = fn : prop -> string list
fun negatives (Atom _) = []
| negatives (Neg(Atom a)) = [a]
| negatives (Disj(p,q)) = negatives p @ negatives q
| negatives _ = raise NonCNF;

> val negatives = fn : prop -> string list

Function taut performs the tautology check on any CNF proposition, using inter
(see Section 3.15) to form the intersection of the positive and negative atoms.
The final outcome is perhaps an anticlimax.

fun taut (Conj(p,q)) = taut p andalso taut q
| taut p = not (null (inter (positives p, negatives p)));

> val taut = fn : prop -> bool
taut cgoal;
> true : bool

Advanced tautology checkers. The tautology checker described above is not
practical. Ordered binary decision diagrams (OBDDs) can solve serious prob-

lems in hardware design. They employ directed graphs, where each node represents
an ‘if-then-else’ decision. Moore (1994) explains the ideas and the key optimizations,
involving hashing and caching.

The Davis-Putnam procedure makes use of CNF. It can solve hard constraint satis-
faction problems and has settled open questions in combinatorial mathematics. Zhang
and Stickel (1994) describe an algorithm that could be coded in ML. Uribe and Stickel
(1994) describe experimental comparisons between the procedure and OBDDs.

Exercise 4.34 A proposition in conjunctive normal form can be represented
as a list of lists of literals. The outer list is a conjunction; each inner list is a
disjunction. Write functions to convert a proposition into CNF using this repre-
sentation.

Exercise 4.35 Modify the definition of distrib so that no two cases overlap.

Exercise 4.36 A proposition is in disjunctive normal form (DNF) if it has the
form p1 ∨ · · · ∨ pm , where each pi is a conjunction of literals. A proposition is

4.19 Conjunctive normal form 171

inconsistent if its negation is a tautology. Describe a method of testing whether
a proposition is inconsistent that involves DNF. Code this method in ML.

Summary of main points
• A datatype declaration creates a new type by combining several ex-

isting types.
• A pattern consists of constructors and variables.
• Exceptions are a general mechanism for responding to run-time errors.
• A recursive datatype declaration can define trees.
• Binary trees may represent many data structures, including dictionaries,

functional arrays and priority queues.
• Pattern-matching can express transformations on logical formulæ.

