
Compositional Proofs of Concurrent Programs

Lawrence C. Paulson

Computer Laboratory, University of Cambridge

1 Previous Research and Track Record
This proposal concerns proving the correctness of programs expressed in the
UNITY formalism. Under an existing EPSRC project, Paulson has already devel-
oped an environment for verifying UNITY programs. The environment is based on
and distributed with Isabelle, a proof assistant developed at Cambridge. The nov-
elty in this proposal is to allow program components to be specified and verified
independently of one another. When a system is built from such components, the
correctness proof should refer to the properties previously proved rather than re-
garding the composite system as one giant program. Towards this end, researchers
have published many proof methods [4, 12, 15]. By mechanizing these methods
and performing case studies, the current project will subject their work to formal
scrutiny. Should the methods turn out to work well in practice, then the mecha-
nization will be useful in itself as a tool.

The work will be done within the Cambridge Automated Reasoning Group.
Hardware verification was pioneered here by Prof. M. J. C. Gordon and his stu-
dents. Techniques such as the use of higher-order logic to model hardware spread
from the Computer Laboratory into general acceptance. The group’s work con-
tinues to attract worldwide attention. For example, John Harrison won the Distin-
guished Dissertation Award for his thesis on verification involving floating-point
arithmetic; his recent move to Intel Corp. is evidence that formal proof is relevant
to industry.

The group has built two of the most important proof environments used today,
namely HOL and Isabelle. Isabelle (originated by Paulson) is a generic theorem
prover. It supports interactive proof in several formal systems, including first-order
logic, higher-order logic and Zermelo-Frankel set theory. Derived logics can be
supported as well as primitive formalisms. Researchers have used Isabelle to sup-
port complicated specification languages such as TLA [13] and Z [9].

Several recent projects at Cambridge involve Isabelle:

• Combining HOL and Isabelle(SERC ref. GR/H40570), 1992-95. This
project applied Isabelle to HOL-style problems, the main application being
proof support for Lamport’s TLA (Temporal Logic of Actions) [10]. The
project produced a detailed comparison between HOL and Isabelle. It sup-
ported extensive development of Isabelle, in particular of itsclassical rea-

1

soner, for automating proofs in predicate logic.

• Verifying ML Programs using Evaluation Logic(SERC ref. GR/G53279),
1991–95. This project clarified some of the highly subtle interactions that
occur when references to a store interact with higher-order functions. It de-
veloped new tools for proving properties of recursively defined domains.
Two constructive logics were implemented in Isabelle: Intuitionistic Linear
Logic and a variant of Evaluation Logic.

• Authentication Logics: New Theory and Implementations(EPSRC ref.
GR/K77051), 1996-99. This project is concerned with proving the correct-
ness of security protocols. Originally aiming to extend the authentication
logic approach, this project led to a new and highly successful approach to
verifying security protocols: theinductive method. The actions of agents in
the network are modelled as the set of all possible traces. Early work on new
authentication logics yielded a detailed analysis of a digital cash protocol.

The most relevant existing project isMechanising Temporal Reasoning(EP-
SRC ref. GR/K57381), 1995-99. This project is investigating the verification of
reactive systems. Much effort has gone into building powerful automatic proof
procedures. Originally, the plan was to work equally on UNITY, TLA and model-
checking. The work has concentrated on UNITY, mainly because of new develop-
ments concerning that formalism.

The Isabelle distribution now includes standard UNITY case-studies. The
largest is Anderson’s Lift Controller example [1]; others are drawn from the
UNITY text [3] and from Misra’s recent papers [14, 16, 17]. The full UNITY
theory has been mechanized, taking a definitional rather than axiomatic approach.
The mechanized theory includes the PSP law (progress-safety-progress), induction
principles for progress, and the Completion Theorem. A high level of automation
is possible, especially for safety properties and for verifying the meta-theory.

The groundwork has already been laid for the proposed research. Paulson is
investigating one theory of program compositions [4] and is mechanizing a case-
study by Chandy and Charpentier [2]. EPSRC funding will allow the work to be
extended and validated. With the help of a research assistant and a PhD student,
more theories can be examined, and substantial case studies can be undertaken. A
renewed project will strengthen existing collaborations with the UNITY developers
Chandy and Misra, and their groups at Caltech and Austin, respectively.

2

2 Description of Proposed Research
2 A. Background
UNITY [3] is a formalism for proving the correctness of concurrent systems. It
supports a simple model of concurrent programming. There is a single, global
state. A program consists of aninitial condition and a set ofactions. The latter
is a collection of guarded atomic commands that are repeatedly executed under
some fairness constraint. UNITY includes a small fragment of temporal logic.
While primitive compared with TLA [10], it supplies well-understood methods
for proving both safety and progress (liveness) properties. UNITY is of enduring
interest: introduced in 1988, it is still investigated by many researchers.

UNITY gives a general treatment of concurrent systems, especially those based
on shared variables. The original textbook [3] specified commands to be simul-
taneous assignments to variables. Researchers later realized that any commands
could be allowed, provided a command always terminated and that each program
included askip (do nothing) command [16, 17]. UNITY supersedes the ad-hoc
formalisms that authors sometimes introduce when verifying concurrent programs.
The input language of Murphi, a popular model-checker, is based on UNITY [6].

The Isabelle mechanization regards a program as a triple: the set of program
states, the set of allowed initial states, and the set of commands. A command (or
action) is a relation on the set of program states. The set of possible finite traces is
defined inductively. Predicates on states are identified with sets of states. Similarly,
program properties (or specifications) are identified with sets of programs, by anal-
ogy with the ‘proofs as programs’ approach. Identifying program properties with
sets allows a smooth formalization of theguarantees operator discussed below.

Safety properties are expressed using theconstrainsoperatorco (also called
next), which expresses the usual precondition-postcondition relationship. The
meaning ofF ∈ AcoB is that if A holds and some action of programF is executed,
then B will hold afterwards. (Recall that specifications are identified with sets of
programs; equivalently,co may be regarded as a 3-place relation.) If the postcon-
dition equals the precondition then the property holds forever once established and
is calledstable. A stable property that holds initially is calledinvariant.

Progress properties are expressed using theleads-torelation. The meaning
of F ∈ A ; B is that if A holds now thenB will hold eventually as program
F executes. Leads-to properties depend upon which fairness policy is adopted.
Misra [16] describes three: minimal progress, weak fairness and strong fairness.
Most work assumesweak fairness, which guarantees that a command will eventu-
ally be executed if it is enabled continuously.

UNITY has been mechanized using other tools. HOL-UNITY [1] is impres-
sive. It provides much automation and includes a graphical interface for outlining
progress proofs, but it does not address program composition. Coq-UNITY [8] has
its own treatment of composition: a program has an additional component defining
the set of actions it may be composed with. This treatment seems limited and does
not appear to be used by other researchers.

3

This proposal starts from the notion of theunionof two programs: essentially,
parallel composition. If F andG are two programs defined over the same state
space, thenF ‖ G is also a program. Its initial condition is the intersection of
those ofF and G, while its set of actions is the union ofF ’s and G’s actions.
Our goal is to derive properties ofF ‖ G from the abstract properties ofF andG
without having to consider the actions ofF ‖ G explicitly.

We can reason in this compositional way about safety. IfF ∈ A co B and
G ∈ A co B then clearlyF ‖ G ∈ A co B, since an action ofF ‖ G is either an
action ofF or an action ofG, and all those actions take the preconditionA to the
postconditionB. However, such reasoning does not work for progress. Even ifF ∈
A ; B andG ∈ A ; B, we cannot expect thatF ‖ G ∈ A ; B because the two
programs might interfere with each other. For example, ifx is a shared variable,
then F might incrementx and G might decrementx; each program guarantees
that eventually|x| > 10, but F ‖ G does not: it can alternately increment and
decrementx forever.

Several researchers have proposed methods for reasoning about compositional
systems. Chandy and Sanders [4] base their work onexistentialand universal
properties. A propertyX is existential provided that ifF satisfiesX then F ‖ G
satisfiesX. It is universal provided that ifF , G satisfy X then F ‖ G satisfies
X. These simple notions allow a compositional approach to progress based upon
transient assertions (which are existential) and safety assertions (which are uni-
versal), combined using the PSP law.

Chandy and Sanders [4] also introduceguarantees assertions. IfF ∈
X guarantees Y, then for allG, if F ‖ G satisfiesX, then F ‖ G also satis-
fies Y. (Here X and Y are program properties: safety, progress, or even other
guarantees properties. Such assertions provide a general means of proving safety
and progress properties of systems that takeF as a component.

The theory outlined above allows reasoning aboutF ‖ G where the two com-
ponents co-operate to make progress. Equally important is the case whereF makes
progress andG does not interfere. Meier and Sanders [12] give a general treatment
of non-interference, superseding the work of several previous authors. Central to
their approach is the notion ofprogress set, which generalizes the sufficient condi-
tions of previous non-interference theorems. The literature includes much more in
this vein. With the help of mechanical proof tools, this theory can be subjected to
formal scrutiny and applied to examples.

2 B. Programme and Methodology
UNITY proofs have traditionally been done by hand. Many unstated assumptions
make mechanization difficult. For example, ifx is a local variable ofF , then
obviously the only actions ofF ‖ G that can modifyx are actions ofF . All such
‘obvious’ properties have to be made explicit and given effective proof support.

The very notion ofstate is problematical. Insisting that a state should be a
function from variable names to values is restrictive. Allowing states to remain ab-
stract yields a more elegant formalization, allowing for instance Cartesian product

4

constructions over state spaces. The elegance is marred when we consider vari-
able sharing, particularly the sort that identifies the variablesF[i].out andG.in[i].
We now have the choice between complicating the theory to admit such sharing or
forcing states after all to be functions over variables. In the later case, the variable
names will become equivalence classes. Both approaches are complicated. A third
approach to extending and renaming state variables could be based upon the work
of Marques [11]. Determining which approach is best will require experimenta-
tion. This is a key task of the proposal, and is independent of the various theories
of composition.

The next step is to mechanize the theory of Chandy and Sanders [4], which
is the most attractive of the existing theories of composition. One feature that
distinguishes their work from other ‘rely-guarantee’ models is that assertions refer
to the full system, rather than distinguishing the component from its environment.
This facilitates the analysis of systems comprising many components. Paulson has
already mechanized parts of this theory, but much work remains, and all such work
is preliminary until the notion of state (discussed above) is finalized.

Finally, Charpentier’s theory of observation [5] needs to be mechanized. This
theory streamlines the treatment of message-passing systems, reducing them to
shared variables, namely message histories. At this stage, the project will have
produced a mechanized formal environment for verifying compositional systems.

The next step is to evaluate the environment by performing some case studies.
The first will be the Allocator of Chandy and Charpentier [2]. In this example, sev-
eral clients request and return resources (represented by tokens), while an allocator
attempts to satisfy the requests. Since the design is compositional, the allocator and
a typical client are specified separately. Properties of the allocator are proved un-
der the assumption that clients are well-behaved (for instance, they return resources
eventually). A typical client is verified under analogous assumptions. Many clients
and the allocator can be combined to form a system, which is verified by reasoning
about how the components interact. This proof is expressed in terms of the ab-
stract properties of the components and can be performed before the components
themselves have been verified.

The Allocator example admits several variations and generalizations. For ex-
ample, the clients and allocator can communicate via shared variables (instanta-
neously) or via a network. Such distinctions are important; exhausting these pos-
sibilities will take some time. The expertise and mechanical theories derived from
the first case study will allow more elaborate ones to be investigated. There are
other examples in the literature, but ideally, new examples will be designed in col-
laboration with the UNITY teams at Caltech or Austin.

Other theories for verifying compositional systems will also be investigated.
One possibility is the progress sets of Meier and Sanders [12]; another is Misra’s
closure properties[15]. More speculatively, another possibility is to apply the
mechanical formalisms to Misra’s theory of multiprogramming, Seuss [18].

Supporting all this work will be continuous development of Isabelle. Greater
automation is a priority: in particular, improved support for the integers.

5

PROJECTOBJECTIVES

1. To mechanize least one theory for composing systems in UNITY

2. To build a proof environment for verifying compositional systems and to test
it by performing case studies

3. To conduct a critical evaluation of the theories investigated

Mechanization of published theories will undoubtedly detect minor flaws in
their presentation; some have turned up already. However, ‘evaluation’ refers to
more important matters, such as these: does the theory scale up to significant case
studies? Does it support a natural problem decomposition? Does it provide feed-
back to help locate faults in the system being verified?

2 C. Relevance to Beneficiaries
Beneficiaries include the academic community and industry. Researchers such as
Chandy, Misra and Sanders will benefit from having mechanical support for their
theories. Developing such support involves scrutinizing the theories, uncovering
errors and limitations. Many research groups are investigating temporal logic and
reactive systems. UNITY is popular and has much in common with competing
formalisms, so results developed under this project will be widely applicable.

Reactive programs are commonplace in industrial products such as operating
systems and embedded systems. They are notoriously prone to error. Formal meth-
ods have the potential to help, but first we need to have fundamental research of
the sort proposed here. A few companies are undertaking such work themselves:
HOL-UNITY was developed with the support of Tele Danmark Research.

The project involves further development of Isabelle, which benefits its many
users as well as the academic researchers working on related tools.

2 D. Dissemination and Exploitation
The project involves constructing mechanized theories and case studies. The re-
sulting Isabelle proof scripts will be distributed via the Internet. The results of the
work will be described in journal and conference papers, in lectures, and on Paul-
son’s extensive Internet site. As Isabelle continues to develop, new releases will
continue to be issued.

2 E. Justification of Resources
STAFF

Paulson will work part-time on the project, both managing it and participating in
the work itself. He proposes to employ one research assistant full-time to conduct
the proofs and to include a PhD studentship. The workplan does not specify a
task for the student. The PhD degree is awarded for original research. A typical
thesis topic could be to mechanize some other UNITY-related theory (the literature
is considerable). The student could have considerable independence. Many other
topics, from designing a user interface to building a link-up between Isabelle and
an automatic theorem prover, would support the aims of this project.

6

TRAVEL AND SUBSISTENCE

Conference attendance is essential to keep abreast of developments and to dissem-
inate results. We are requesting funds to attend some of the main conferences such
as CADE and CAV. We may wish to attend relevant workshops at Schloß Dagstuhl
and elsewhere. We are also requesting funds for visits to other institutions. Our
request of£10,800 is based upon three trips per person per year (excluding the
student), costing an average of£600 each. The same sum covers three trips to the
USA at£1800 each and nine trips at£600.

EQUIPMENT

Isabelle is implemented in StandardML and is computationally demanding. We
request three Dual Pentium IIs with 256MB of RAM, costing£3456 each. (Previ-
ously, we would have requested one larger machine and two X terminals; such a
configuration represents poor value for money at present.)

A laptop computer will allow working and demonstrations when travelling or
at home; we propose a Toshiba Portéǵe costing£2572. For storing large Isabelle
images, we require a large disc costing£2620.

We include standard costs towards Laboratory computing infrastructure: net-
working, filing systems, email, etc., at£1750 per year. We request£250 con-
sumables per year made up of 2 toner cartridges, 2 boxes paper, 10 backup tapes,
workshop supplies, etc.

Under software we have budgeted for Harlequin MLWorks. We can use Stan-
dard ML of New Jersey, but it is safer to have a choice of ML systems, especially
now that Poly/ML has been withdrawn. They quote a price of $1050 for three li-
censes and $2000 per year for support, totalling $7050 for three years. This comes
to £4270 at current exchange rates. (All costs exclude VAT.)

References
[1] Flemming Andersen, Kim Dam Petersen, and Jimmi S. Pettersson. Program

verification using HOL-UNITY. In J. Joyce and C. Seger, editors,Higher Order
Logic Theorem Proving and Its Applications: HUG ’93, LNCS 780, pages 1–15.
Springer, 1994.

[2] K. Mani Chandy and Michel Charpentier. An experiment in program composition
and proof, 1998. preprint.

[3] K. Mani Chandy and Jayadev Misra.Parallel Program Design: A Foundation.
Addison-Wesley, 1988.

[4] K. Mani Chandy and Beverly A. Sanders. Reasoning about program composition,
1998. preprint.

[5] Michel Charpentier, Mamoun Filali, Philippe Mauran, Gérard Padiou, and Philippe
Quéinnec. Tailoring UNITY to distributed program design. In Rolim [19], pages
820–832.

[6] David L. Dill, Andreas J. Drexler, Alan J. Hu, and C. Han Yang. Protocol
verification as a hardware design aid. InComputer Design: VLSI in Computers and
Processors, pages 522–525. IEEE Computer Society Press, October 1992.

7

[7] Jim Grundy and Malcolm Newey, editors.Theorem Proving in Higher Order
Logics: Emerging Trends. Supplementary procedings, TPHOLs ’98. Technical report
98-08, Department of Computer Science, Australian National University, 1998.

[8] Barbara Heyd and Pierre Crégut. A modular coding ofUNITY in COQ. In von
Wright et al. [20], pages 251–266.

[9] Kolyang, T. Santen, and B. Wolff. A structure preserving encoding of Z in
Isabelle/HOL. In von Wright et al. [20], pages 283–298.

[10] Leslie Lamport. The temporal logic of actions.ACM Transactions on Programming
Languages and Systems, 16(3):872–923, May 1994.

[11] François Marques. Program composition in COQ-UNITY. In Grundy and Newey
[7], pages 95–104.

[12] David Meier and Beverly Sanders. Composing leads-to properties. Technical Report
TR 96-013, Department of Computer and Information Science, University of
Florida, 1996.

[13] Stephan Merz. Yet another encoding of TLA in Isabelle. Technical report, Institut
für Informatik, TU München, 1997.

[14] Jayadev Misra. A family of 2-process mutual exclusion algorithms.
ftp://ftp.cs.utexas.edu/pub/psp/unity/notes/13-90.ps.Z ,
February 1990. Notes on UNITY: 13-90.

[15] Jayadev Misra. Closure properties. At URLftp://ftp.cs.utexas.edu/
pub/psp/unity/new_unity/closure.ps.Z , sep 1994.

[16] Jayadev Misra. A logic for concurrent programming: Progress.Journal of
Computer and Software Engineering, 3(2):273–300, 1995.

[17] Jayadev Misra. A logic for concurrent programming: Safety.Journal of Computer
and Software Engineering, 3(2):239–272, 1995.

[18] Jayadev Misra. An object model for multiprogramming. In Rolim [19].

[19] Jośe Rolim, editor.Parallel and Distributed Processing, LNCS 1388, 1998.

[20] J. von Wright, J. Grundy, and J. Harrison, editors.Theorem Proving in Higher
Order Logics: TPHOLs ’96, LNCS 1125, 1996.

8

3 Diagrammatic project plan

Isabelle development and maintenence

year 1 year 2 year 3

states and
shared variables

allocator case
study

mechanizing
Chandy &

Sanders

allocator case
study

allocator case
study

further case
studies

mechanizing non-interference
(Meier & Sanders) and other

compositional theories

9

