
L. C. Paulson ALEXANDRIA — Part B2

ERC Advanced Grant 2016
Research proposal [Part B2]

Large-Scale Formal Proof for the Working Mathematician

ALEXANDRIA

Section	a: State-of-the-art	and	objectives

The	Crisis	in	Modern	Mathematics

Mathematicians are fallible. This point can be grasped by looking at the footnotes on a single
page (118) of Jech’s The Axiom of Choice [49]:

118 MODELS WITH FINITE SUPPORTS [CH.7, 56

Problem 11 is due to P. E. Howard.’ The results of Problems 12 and 13
were announced by Pincus.

The independence result in Theorem 7.1 1 was proved by Levy [I9621 for
ZFA and transferred to Z F by Pincus [1969,1973b1, whose is also the observa-
tion in Problem 15.’ Example 7.12 in Section 7.4 is due to Tarski. Conditions
(S) and (D) were formulated by Mostowski [1945], who proved the indepen-
dence result of Theorem 7.16 (for ZFA) and the sufficiency of Condition
(D) (Problem 20); the result of Problem 16 is also his. The proof of the
sufficiency of condition (S) given here is due to Szmielew [1947]. The
independence result in Problem 21 was announced by Gauntt [1970]. 3 * 4

For additional results concerning the Axiom of Choice for finite sets, see
the papers of Wiiniewski and Zuckerman. The results of Problems 23 and 24
are due to Morris [1969].5 The independence of the Prime Ideal Theorem
from the Hahn-Banach Theorem was proved by Pincus [1972b]. The
independence of the Prime Ideal Theorem from the Order Extension
Principle (Problem 27) is due to Felgner [1971b].

The result of Problem 11 contradicts the results announced by Levy [1963b]. Un-

The transfer to Z F was also claimed by Marek [I9661 but the outlined method appears

A contradicting result was announced and later withdrawn by Truss [1970].
The example in Problem 22 is a counterexample to another condition of Mostowski,

who conjectured its sufficiency and singled out this example as a test case.
The independence result contradicts the claim of Felgner [1969] that the Cofinality

Principle implies the Axiom of Choice. An error has been found by Morris (see Felgner’s
corrections to [1969]).

fortunately, the construction presented there cannot be completed.

to be unsatisfactory and has not been published.

Even the greatest are not immune: “When the Germans were planning to publish Hilbert’s
collected papers and to present him with a set on the occasion of one of his later birthdays, they
realized that they could not publish the papers in their original versions because they were full of
errors, some of them quite serious. Thereupon they hired a young unemployed mathematician,
Olga Taussky-Todd, to go over Hilbert’s papers and correct all mistakes. Olga laboured for three
years.” [63, p. 201].

Errors have always been present in mathematical works. Today, the crisis is out in the open:
“And who would ensure that I did not forget something and did not make a mistake, if even the
mistakes in much more simple arguments take years to uncover?” Thus Voevodsky [65], a Fields
medallist, called for computer-based proof verification, setting off a frenzy of activity. While his
approach (homotopy type theory) involves a new foundation for mathematics, ALEXANDRIA
will look at the problem from the opposite end: large-scale mathematical libraries.

Specifically, ALEXANDRIA is concerned with questions such as these:
• How do we organise libraries of formal mathematics so that they communicate ideas?
• What sort of proof idioms — legible proof fragments — can be extracted from libraries?
• What support do mathematicians most need when undertaking large formal proofs?
• What about mathematical knowledge encoded in the form of algorithms?
Let’s examine the background of all these issues.

1

ALEXANDRIA — Part B2 L. C. Paulson

The	Interconnectedness	of	Mathematical	Knowledge

Fermat’s Last Theorem is concerned with positive integers, but its proof involves exotic objects
(elliptic curves and modular forms) unimaginable to Fermat. This situation is typical: the Prime
Number Theorem is most easily proved using complex analysis; topological notions find their way
into set theory and computation theory; combinatorics finds its way into set theory, algebra and
the theory of program termination. Today’s mathematician needs to be able to apply knowledge
from any field of mathematics, even one in which they are not expert. This magnifies the risk of
making a mistake.

New foundations can only be part of the solution. Throughout the history of mathematics,
standards of rigour have continually increased. From Newton to Cauchy, from Dedekind to
Hilbert, works once regarded as genius are regularly re-evaluated as naive, the original proofs all
discarded. No mathematics student studies the great works of Euclid or Newton any more. And
so, work on foundations will never end. We need to build the great mathematical edifice, to live
in it and work in it, knowing that it will have to be moved to new foundations, not once but
repeatedly. ALEXANDRIA is about the edifice as a whole, and ultimately about moving it too.

ALEXANDRIA is about managing large bodies of formal mathematical knowledge. Instead
of trying to find some ideal universal language, it recognises that, while new formalisms emerge
all the time, the underlying mathematical ideas and dependencies remain the same. Meanwhile,
we need support to use all this formal knowledge: sophisticated search mechanisms, mining to
identify common reasoning patterns that can be suggested to the user working on a similar proof,
support for verified computations, and other measures useful to research mathematics. ALEXAN-
DRIA will elicit its priorities by working with mathematicians themselves.

Interactive	Theorem	Provers

Interactive theorem provers, such as Coq, HOL and Isabelle, are software tools that carry out
formal mathematical and logical reasoning. They allow users to develop elaborate specification
hierarchies. Types and functions can be defined using concepts drawn from functional program-
ming but also classical mathematics and set theory, or alternatively, constructive type theory.

The original motivation for this technology was to verify computer systems used in railway
signalling, air traffic control, medical or other safety-critical applications. Interactive theorem
provers can be used to formalise the specification and implementation of a critical system. Cor-
rectness properties can then be proved rigorously using the rules of formal logic.

Until 10 years ago, formal verification was prohibitively laborious. But immense progress
has been made. Sledgehammer, in particular, brings the full power of multiple external reasoning
tools and machine learning to the problem at hand. Users now enjoy substantial automation. Im-
pressive recent achievements include the seL4 operating system kernel [50] (verified using Isabelle)
and CompCert C compiler [13] (verified using Coq).

How	Mathematicians	Use	Computers

Mathematicians have long used computers as exploratory tools, but they have often regarded
computer calculations with distrust. A noteworthy example is the Robbins conjecture, which
dates from the 1930s and asks whether every Robbins algebra is Boolean. In 1996, McCune settled
the question affirmatively using EQP, a specialised computer program for equational reasoning.
His machine proof was later written out in the traditional style and published in the Journal of

2

L. C. Paulson ALEXANDRIA — Part B2

Algebra [20]. The irony is that the published proof was much more likely to contain errors than
the original machine proof.

Probably the best-known example of proof by computer is Appel and Haken’s [2] solution of
the Four Colour Theorem in 1976. The use of a computer program to check thousands of con-
figurations compromised the proof to many observers, as the correctness of the code could not be
guaranteed. Other mathematicians simplified the proof and reduced the number of configurations
to be checked, but could not eliminate the need for a computer to check them.

A similar situation arose with Hales’s 1998 proof [32] of the Kepler Conjecture, a 400-year-
old problem concerning the optimal packing of spheres. Part of Hilbert’s 18th Problem, it was of
great importance to mathematicians. And yet, no conventional proof was on offer:

As this project has progressed, the computer has replaced conventional mathemati-
cal arguments more and more, until now nearly every aspect of the proof relies on
computer verifications. Many assertions in these papers are results of computer cal-
culations. [32, p. 11]

Once again, the use of a computer to check a large number of cases left referees unsure about
the proof’s validity, and the proof itself was also intricate. Fortunately, by this time, interactive
theorem provers were becoming available.

Mathematicians can trust interactive theorem provers because they are designed with sound
reasoning as the supreme priority. Many adopt the LCF architecture [55, p. 293], delegating all
reasoning to a small kernel of trusted code, minimising the possibility of error even at the expense
of performance. They have been used to verify their own correctness [37] down to the level of
assembly language code [51]. ALEXANDRIA will stress an additional basis for trust: it will focus
on proofs that are human-readable as well as machine-readable, and on the communication of
mathematical ideas as well as formal symbol strings. A sceptical mathematician will be able to
follow an argument simply by reading the formal proof text.

Mathematics	in	Interactive	Theorem	Proving

Safety-critical systems frequently operate in real-world environments that can only be modelled us-
ing advanced mathematics, such as information theory or probability. One mathematical concept
typically depends on a chain of others: for example, Markov chains involve probability theory,
which is defined in terms of Lebsegue integration and measure theory, depending on further con-
cepts such as Borel spaces and topology [45, 57]. Moreover, a formal proof may require algebraic
calculations such as multiplication and factoring of polynomials, differentiation or integration of
a formula, or isolating the roots of a polynomial.

Researchers generally reject the soft option of simply asserting well-known mathematical the-
orems as axioms. Although such theorems are almost certainly correct in some form, mathematics
textbooks frequently make unstated assumptions. The precise statement of the theorem may be
unclear. Researchers prefer to formalise and verify the mathematics necessary for their verification
task. Others have tried from the outset to apply their tools to research mathematics.

An early milestone is Gonthier’s formalisation of the Four Colour Theorem [29], which ad-
dressed the doubts about Appel and Haken’s proof. Gonthier’s proof still checked many config-
urations by computer, but now they were being checked by a formally verified program running
within Coq. A similar situation arose with Hales’s proof of the Kepler Conjecture. Hales organ-
ised a global effort, the Flyspeck project [34], to formalise his proof. The argument was formalised
using HOL Light, while the calculations were confirmed using Isabelle [60]. Through these ef-
forts, the proof was not merely confirmed but simplified [35]. ALEXANDRIA will provide an

3

ALEXANDRIA — Part B2 L. C. Paulson

environment for undertaking large proofs and verified computations.

Advances	in	the	Formalisation	of	Mathematics

A string of recent achievements demonstrate that much of modern mathematics falls within the
scope of existing verification tools [25]. The most striking of these is the formalisation of the
Odd Order Theorem [30], a deep result about finite groups. Feit and Thompson’s original proof
(published in 1963) was 255 pages long, justifying a formal treatment. The Coq proof required
the formalisation of a wide variety of mathematical topics. Other examples include the Prime
Number Theorem [40] (formalised independently using Isabelle and HOL Light) and the Central
Limit Theorem [3] (in Isabelle). Also noteworthy is Paulson’s recent formalisation of Gödel’s
Second Incompleteness Theorem, which yielded new insights [62] into a highly technical proof
that is seldom presented rigorously.

Isabelle’s Archive of Formal Proofs1 contains an immense amount of material from every
branch of mathematics and theoretical computer science. The AFP comprises nearly 300 entries
contributed by Isabelle users, with about 80,000 named theorems and 1.4 million lines of proofs.
This includes much core mathematics: linear algebra, vector spaces and matrix theory, multivari-
ate analysis, probability, complex analysis to Cauchy’s integral theorem, and topological spaces.
A new proof development is sent to the Isabelle AFP every five days. This material — contributed
by the worldwide Isabelle community — is the raw material for ALEXANDRIA.

Some mathematicians rely on computer algebra systems such as Maple and Mathematica to
manipulate large formulas. There are similarities between such software and interactive theo-
rem provers, but a derivation done using a computer algebra system cannot be called a proof.
Computer algebra systems are focused on high performance when solving large problems. They
sometimes make unwarranted assumptions to simplify their calculations. However, a few of the
most important algorithms for computer algebra have been implemented as proof methods in in-
teractive theorem provers, where their soundness is guaranteed. These algorithms include Gröbner
basis methods [19], semi-definite programming (sum of squares decompositions) [39] and interval
arithmetic [21]. And using computational reflection, bespoke algorithms can be verified and used
to make specialised computations. Algorithms are mathematical knowledge and will be managed
by ALEXANDRIA.

The	Requirements	of	Mathematicians

Mathematicians are starting to look at such developments, but they soon encounter enormous
differences between formalised mathematics and traditional mathematical practice. For starters,
the many ambiguities in mathematical notation (contrast the various meanings of y−1x, f−1g,
f−1[X], sin−1 x, sin2 x, ∂2f/∂x) must be resolved, but a formal mathematical syntax is often
brutal. The resulting formulas can be all but unreadable, with proofs that look like (and often
are) computer source code. This goes against a key principle of mathematics: a proof is not merely
a guarantee of correctness, but a form of communication from one mathematician to another.

One strand of research focuses on logical foundations and formalisms. Relevant issues here
include the treatment of undefined values such as x/0, the distinction between set theory and type
theory, and the choice between classical and constructive logic. The recent work on homotopy
type theory belongs to this strand. ALEXANDRIA, however, will focus on quite separate issues:
on how to create and exploit large-scale libraries of mathematical knowledge, libraries that yield

1http://www.isa-afp.org

4

http://www.isa-afp.org

L. C. Paulson ALEXANDRIA — Part B2

their secrets to humans as well as to machines. The scientific questions raised by large-scale
mathematical libraries are independent of the specific formalism used to write assertions.

Prof. Tim Gowers, a Fields medallist at Cambridge, and Mohan Ganesalingam have started a
project to create an automatic theorem prover for mathematics [27, 28]. Among their key require-
ments is that problems and solutions must be communicated using natural language. ALEXAN-
DRIA takes the view that only a formal language can deliver the rigour we need; it will be as
legible as possible, and natural language will play a number of supporting roles.

Structured	Proofs	and	Proof	Idioms

The main idea of LCF [31] was to code everything in a metalanguage (hence the name ML). Proofs
were ML code, and users could add automation using ML, but not tamper with the inference
system. LCF also introduced proof tactics, for proving theorems by working backwards from
the conclusion. However, realistic mathematical arguments also require working forward from
known facts, which is difficult to express using tactics. Because of these entrenched traditions,
formal proofs in most proof assistants substantially consist of unreadable lists of commands.

Mizar is one proof assistant that emerged outside these traditions (in 1970s Poland). Designed
to support mathematics, it provides a rich assertion language based on set theory [4]. Mizar
proofs consist of declarations rather than commands: they are formal versions of mathematical
arguments with a nested block structure. Each block proves a conclusion from given assumptions,
all written out as explicit formulas. Compared with the usual list of proof tactics, a Mizar proof
is longer but infinitely clearer. Although Mizar is no longer widely used, structured proofs live on
in Isar [66], a simplified version of Mizar’s proof language for Isabelle.

Figure 1 displays an Isar proof (shortened to save space) that the square root of a prime
number p is irrational. Any mathematician should be able to follow this proof, given a brief
introduction to the syntax. The main steps of the proof can plainly be seen: assuming that

√
p is

rational, writing it in lowest terms as m/n (this section has been highlighted manually), deducing
that m2 = p × n2, and then that p divides both m and n, contradiction. Automation (in the form
of auto, simp, etc.) takes care of obvious reasoning, with only difficult calculations made explicit.

Legible proofs have several major advantages. They communicate proofs to human beings as
well as to machines. (Isabelle proofs can be typeset automatically, as in the figure, and interleaved
with markup and text.) And this reinforces trust in the software, since users can examine their
own proofs. A sceptical mathematician will not be reassured by the claim that the proof assistant
has verified its own correctness unless that very correctness proof is legible; the bare fact of its
existence will carry little weight.

The highlighted text is an example of a proof idiom. It is simply a small chunk of formal text.
Informally, it expresses a rational number as a pair of natural numbers having no common factor.
Formally, it takes some preconditions (here sqrt p ∈ Q) and yields two quantities, here m and n,
satisfying the properties shown. In this case, the proof idiom is an application of a single theorem,
Rats_abs_nat_div_natE. In general, a few theorems may be used together, with a varying number
of premises and parameters.

Proof idioms are ideal for expressing reasoning that is too difficult to be done automatically.
Isabelle can automatically apply the theorem named above, splitting a rational number into its
numerator and denominator. But in this proof, m and n are needed to express an elaborate argu-
ment. Other such arguments include epsilon-delta calculations in analysis and the manipulation
of summations. Many of these calculations will be unique to the theorem at hand, but the steps
used in the preparation are reused in many proofs.

5

ALEXANDRIA — Part B2 L. C. Paulson

theorem sqrt_prime_irrational:
assumes "prime p" shows "sqrt p /∈ Q"

proof
assume "sqrt p ∈ Q"
then obtain m n :: nat where

n: "n ̸= 0" and sqrt_rat: "|sqrt p| = m / n"
and "coprime m n" by (rule Rats_abs_nat_div_natE)

have eq: "m2 = p * n2" <omitted>
have "p dvd m ∧ p dvd n"
proof

from eq have "p dvd m2" ..
with ⟨prime p⟩ show "p dvd m" by (rule prime_dvd_power_nat)
then obtain k where "m = p * k" ..
with eq have "p * n2 = p2 * k2" by (auto simp add: power2_eq_square ac_simps)
with p have "n2 = p * k2" by (simp add: power2_eq_square)
then have "p dvd n2" ..
with ⟨prime p⟩ show "p dvd n" by (rule prime_dvd_power_nat)

qed
then have "p dvd gcd m n" by simp
with ⟨coprime m n⟩ have "p = 1" by simp
with p show False by simp

qed

Figure 1: An Isabelle Structured Proof

We can imagine a new type of automation. The user who assumes or deduces “sqrt p ∈ Q”
could be offered both a relevant lemma and an associated proof fragment: a proof idiom. The
example above is only three lines, but reusable proof blocks can be much longer.

A promising way to identify proof idioms, and the theorems on which they are based, is to
process the two million lines of proofs in the Isabelle libraries. Machine learning has already been
shown to be effective at identifying relevant lemmas, in the context of Sledgehammer [10]. Prior
work in the context of ACL2 [42] and Coq [43] investigates another sort of “proof pattern”, using
machine learning to identify similar-looking theorems and to locate common sequences of tactics
in short, command-oriented proofs. An ALEXANDRIA proof idiom is fundamentally different:
not a list of commands but a self-contained structured subproof, centred on the use of a lemma
or lemmas and with explicit premises and conclusions.

Here is another example, from metric spaces. If x is an element of an open set S, then there
exists some ϵ > 0 such that B ⊆ S, where B is the open ball of radius ϵ around x (that is,
{y | d(x, y) < ϵ}). In a formal proof, this step would involve invoking a certain theorem but
would include surrounding text specifying the set S and naming the variable ϵ. If instead the
closed ball {y | d(x, y) ≤ ϵ} is required, then a different theorem must be used, and the system
itself should identify the main possibilities. If the proof goes on to use the axiom of choice to
define a map f : S → PS yielding a ball for each x ∈ S, that would be another idiom, and now
x ∈ S holds in a local scope. Such idioms will be found in the libraries automatically.

Heuristics for detecting proof idioms in libraries and suggesting them to users will be a top
priority for ALEXANDRIA. Formal proofs will be built section by section, not line by line.

6

L. C. Paulson ALEXANDRIA — Part B2

Maintenance	and	Migration	of	Libraries

A further strength of structured proofs is their synergy with automation. Isabelle provides several
powerful automatic tools, above all Sledgehammer, which delivers the problem at hand together
with all appropriate lemmas to external theorem provers such as Vampire and Z3 [9]. The com-
bination of structured proofs and powerful automation makes it possible to write proofs using
bisection: if the conclusion can’t be proved immediately, think of an intermediate property im-
plied by the assumptions, and see if the conclusion can be proved from that; if not, think of a
further intermediate property and so forth. By the same bisection strategy, prove the intermedi-
ate properties from the given assumptions. Human creativity then consists of identifying these
properties; beginners can prove theorems without learning many prover commands.

The synergy of structured proofs and automation facilitates maintenance. The Isabelle AFP is
12 years old, but all 1.4 million lines of proofs are maintained and continue to work as Isabelle is
updated. Any failure in a structured proof is localised, and in most cases it is easily repaired using
Sledgehammer or other automation. Indeed, we can envisage a procedure that would attempt to
repair such faults automatically.

We can imagine how structured Isabelle proofs could one day be migrated to a more advanced
system. Automatically translate the formulas to the (presumably more expressive) formalism of
the new prover, translate the proof structures similarly, and finally use the (presumably much more
powerful) automation of the new prover to fill in the gaps. This vision might be contrasted with
the prevailing approach to interoperability, exemplified by Hurd’s OpenTheory [48], which relies
on having some lowest-common-denominator formalism. They transfer statements and claims of
correctness, but no comprehensible proofs. It’s useful, just like emulating old hardware is useful,
but porting the old code to a more advanced programming language is better — especially if it
can be done automatically. ALEXANDRIA’s library will have enduring utility and significance.

Scientific	Questions	and	Approach

Given all these observations, we are in a position to finalise the scientific objectives:
• How do we organise libraries of formal mathematical knowledge so that they communicate

ideas to mathematicians, who prefer natural language?
• What sort of proof idioms can be extracted from a large corpus of formal material?
• What support do mathematicians most need when undertaking large formal proofs?
• Algorithms are also knowledge: how can mathematicians be advised of which algorithms are

available and appropriate for a particular problem?
We can already imagine some answers to the questions above. Annotating formal proofs

with links to the mathematics literature, and creating glossaries relating formal expressions to the
corresponding concepts, would allow at least keyword-based search. In the future, this will be
extended to use advanced information retrieval and natural language techniques. Similar tech-
niques will be applied to computer algebra algorithms such as Gröbner basis methods. Machine
learning is a key technology: analysis of these proof libraries will reveal a wealth of information
about which theorems are invoked in particular situations, which is the basis for identifying proof
idioms.

Although there are many computer-based formalisms for mathematics (every computer alge-
bra system provides one), few are connected with a sound deductive system. ALEXANDRIA will
be based on Isabelle/HOL, which supports readable structured proofs and has nearly two million
lines of formalised mathematics in its libraries. Thanks to Sledgehammer, Isabelle arguably has

7

ALEXANDRIA — Part B2 L. C. Paulson

the strongest automation of any proof assistant. Isabelle’s user interface displays a live document
that is continuously updated during editing, so that the status of every part of the proof is im-
mediately clear to the eye. ALEXANDRIA will link this into ecosystem of libraries and decision
procedures to support the formalisation of mathematics in the large. ALEXANDRIA will make
suggestions in response to queries, and in some cases, unprompted.

The scientific questions above give us four research themes:
1. Libraries of formal mathematics. The goal is to create a comprehensive and well organ-

ised library of fundamental mathematics, annotated with references to the mathematical
literature and linked to mathematical concepts to support sophisticated high-level searches.

2. Intelligent search in libraries and identification of proof idioms. Existing work on identi-
fying relevant facts and common patterns will be transformed into a basis for identifying
self-contained, legible proof idioms. Various approaches to high-level search will be inves-
tigated, using machine learning.

3. Automated support for proof construction. Proof idioms, relevant facts and other observa-
tions extracted from the libraries must be presented to the user in a way that is helpful and
not distracting.

4. Computer algebra and verified computations. Identifying the right computer algebra method
for the given problem is even more difficult than identifying relevant lemmas, since code is
opaque, and there are too few past examples to drive machine learning.

But a key part of the methodology is to involve mathematicians as much as possible. The require-
ments they identify will set the priorities and refine the research programme.

Section	b: Methodology

Research	Methods

The elicitation of requirements from mathematicians will be accomplished by involving them at all
stages of the work, from an initial pilot study to a final evaluation study, formalising research-level
mathematics.

Much of the research methodology for ALEXANDRIA is well understood. There is extensive
experience of formalising mathematics using proof assistants, and in particular in higher-order
logic [3, 38, 40]. There is a good starting point for each of the four objectives. We already have
the AFP, a huge library of mathematics; we have a basic library search mechanism and there
is ongoing work on mining information from the AFP [11]; the Isabelle user interface already
provides much support for proof construction [67]; a number of computer algebra procedures are
already implemented [19]. There is also much prior work on using machine learning to analyse
large bodies of formalised mathematics.

Outline	Work	Plan

The ALEXANDRIA team will include two professional mathematicians, and their first task will
be to execute a year-long pilot study on the formalisation of some of their own mathematics
research. This will identify issues connected with the scientific questions: the completeness of the
existing libraries, their clarity, facilities for search and some wholly unanticipated problems. In
recent years, mathematics graduates have done internships under the PI to formalise mathematical
topics using Isabelle; their experiences have shaped this proposal, paving the way for a much

8

L. C. Paulson ALEXANDRIA — Part B2

deeper investigation. Executing the pilot study will serve as a stress test on Isabelle and its libraries
and will refine the priorities of the project. As work proceeds, the project will organise regular
workshops and tutorials in order to draw in other mathematicians and hear their voices.

The third researcher, an Isabelle architect, will come from the Isabelle community. This
person will first undertake an initial consolidation task (with the PI), focusing on the needs that
are already known. We are aware of the need for offline search (the ability to search libraries that
aren’t actually loaded into Isabelle). We already have a great many computer algebra decision
procedures, which need to be consolidated and integrated with standard tools (a few of Isabelle’s
most impressive procedures [17] are almost never invoked, simply because users don’t know that
they exist). We are already aware of the potential for mining information from big libraries such
as the AFP. As requirements emerge from the mathematicians, we can consider their feasibility
and select the most promising ones to be implemented. The initial consolidation task will set the
stage for the more ambitious work that will commence following the pilot study.

Equipped with the information from the pilot study, work on the main objectives can com-
mence. An assistant or student with expertise in machine learning will join the project at this
point. Intelligent search and mining for proof idioms can begin with the libraries as they are.
However, the first objective concerns formal libraries that convey mathematical ideas; achieving
this will be the task of the first mathematician, who will use a variety of techniques ranging from
refactoring to annotations, with the ultimate objective of supporting natural language searches.
(Natural language work will be done in collaboration with students and departmental colleagues.)
The objective automated support for proof construction is substantially concerned with extracting
proof idioms from previous proofs and therefore follows on from the task of mining libraries.

Support for computer algebra technology is substantially independent from the other tasks,
as many of the requirements are known already. Nevertheless, this task will also be informed by
the results of the initial pilot study. The second mathematician will be recruited with sufficient
expertise in computer algebra techniques and real algebraic geometry to undertake this work.

Finally, an extended case study will serve to demonstrate and evaluate the project. It could be
a continuation of the initial pilot study, or something quite different. Ideally it will be a collabo-
rative effort involving a number of outside mathematicians. We expect that ALEXANDRIA will
attract widespread interest. Ongoing cooperation with Nipkow’s group at the Technical Univer-
sity of Munich will benefit the project substantially, in terms of engineering support, formalising
necessary mathematics and evaluating the work.

Now let’s look in more depth at the methodologies underlying the four main objectives.

Objective	1: Libraries	of	Formal	Mathematics

We shall create a comprehensive and well organised library of fundamental mathematics. Such a
library should be more than a list of formalised theorems and their proofs. It should contain refer-
ences to the mathematical literature and conceptual annotations, in order to support sophisticated
search techniques as well as conveying mathematical ideas.

The starting point for this library will be the enormous amount of mathematics that has been
formalised. Much of this material is highly legible, although there is overlap and duplication.
For the purposes of the project, full coverage is unnecessary and ALEXANDRIA will focus on
applied mathematics, allowing the libraries to be useful for verification projects in domains such
as aerospace.

The library will be organised according to the Cambridge undergraduate mathematics cur-
riculum. This a systematic body of mathematical knowledge, strictly controlled by the Faculty

9

ALEXANDRIA — Part B2 L. C. Paulson

of Mathematics. The course materials [64] include a detailed syllabus for each course, identify-
ing prerequisite courses and recommended textbooks. Focusing on continuous mathematics, the
following strands emerge:
• Vectors and Matrices; Linear Algebra; Vector Calculus
• Complex Methods (including Fourier and Laplace transforms)
• Metric and Topological Spaces; Analysis II; Topics in Analysis
• Variational Principles; Differential Equations; Mathematical Methods; PDEs
• Numerical Analysis I and II
• Optimisation (Linear programming, network flows, simplex and Ford-Fulkerson algorithms)
• Probability; Markov Chains; Stochastic Financial Models
• Groups, Rings and Modules; Algebraic Geometry
Structuring the library along these well-established lines will make it more intelligible to mathe-
maticians. It is striking how much of this material has already been formalised in Isabelle, or in
some version of HOL (from which it could be imported with a modest effort) or in Coq or Mizar.
Isabelle provides most of the HOL Light multivariate analysis library [36] and much linear alge-
bra, including vector spaces and matrices [23, 52]. An adequate library is already available as a
starting point; it can be refined and extended as necessary as the project proceeds.

This task will be undertaken by the two mathematicians.

Objective	2: Intelligent	Search	in	Libraries	and	Proof	Idioms

The millions of lines of proofs at our disposal present opportunities as well as challenges. On the
one hand, this material has outgrown Isabelle’s existing search tools. But we can mine this vast
body of proofs to identify useful lemmas. The use of machine learning to identify relevant lemmas
[10] and proof patterns [43] is already well established. The next step is to extend this approach
to proof idioms, which have been discussed above. An important special case is to identify lemmas
that are particularly relevant given the available facts.

Explicit search will also be necessary, and search terms should include abstract mathematical
concepts as well as formal symbols. The search problem is complex. The Isabelle theory of
metric and topological spaces [46] illustrates some of the issues. The abstract notion of a filter
unifies several motions related to limits, continuity and differentiation, and provides a uniform
framework for such apparently disparate concepts as the limit of a continuous function and the
sum of a series. Refinements such as left and right limits are also handled. The drawback of this
highly abstract approach is that an intuitive concepts such as “sum of a series” is now encoded as
a filter involving a certain pattern.

Complicating matters further, many mathematical concepts combine several ideas: an open
map is a function that maps open sets to open sets, but no single symbol abbreviates this pre-
cise idea. ALEXANDRIA will develop strategies for annotating formal material with intuitive
nomenclature so that users can identify the theorems they need. Information retrieval techniques
will be used to support a variety of queries, such as to locate applications of a given theorem
or to identify material on the basis of key concepts or by author. Indexes will be generated for
off-line searching. Natural language can play a number of roles to support interaction with the
software, in both searches and proof summarisation. We shall lay the groundwork to facilitate
collaboration with researchers qualified in these technologies.

This task will be undertaken by the Isabelle architect, the assistant and the PI, and probably
by graduate students and departmental colleagues.

10

L. C. Paulson ALEXANDRIA — Part B2

Objective	3: Automated	Support	for	Proof	Construction

In the context of interactive theorem proving, automation has always referred to powerful deci-
sion procedures and simplifiers for proving specific statements. With Sledgehammer, Isabelle can
invoke a battery of external provers, frequently solving problems that might take hours of user
interaction. But other forms of automation assist productivity. For example, Isabelle informs the
user if the statement to be proved is already known, or trivial, or clearly false.

The next stage is to assist users in writing extended proofs. Proof idioms will be a priority, and
there is prior work [43] suggesting how advice derived from a library can be offered to users. But
we can also envisage integrating proof idioms with Sledgehammer: given a set of available facts
and a desired conclusion, Sledgehammer could identify and return a relevant proof idiom that fits
the purpose. The beauty of this approach is that the user would not have to learn anything.

Another possibility is for the user to name a previous proof that the current proof is to be based
on, and any analogous initial steps could be copied automatically. Ultimately, adding previously-
used material to a formal proof could be driven by natural language, through a command such
as “now there exists an open ball around x within the set S”. ALEXANDRIA will open the door
to follow-on projects using other technologies.

A further issue is that people do not always write clear proofs. As with programming, many
users will be satisfied with the first proof they are able to finish, however messy and unreadable it
may be. Automated refactoring of proofs will be necessary to achieve our goal of readable formal
libraries. There is already valuable initial work by Blanchette et al. [8], which generates structured
proofs from the low-level proofs delivered by external resolution theorem provers. More work is
necessary to process tactic-oriented proofs, to achieve true readability and to incorporate proof
idioms extracted from the existing libraries.

This task will be undertaken by the Isabelle architect, the assistant and the PI. Work involving
natural language may be done by a graduate student supervised by departmental colleagues. Many
projects connected with this task could be undertaken by Master’s students here at Cambridge.

Objective	4: Computer	Algebra	and	Verified	Computations

Proofs in analysis sometimes require calculations — differentiation, polynomial identities, factor-
ing — that are best done with the help of a computer algebra system. The objective of integrating
computer algebra techniques with interactive theorem proving has been investigated for decades.
Typically, theorem provers do not trust the outputs of computer algebra systems, leaving two
approaches to ensuring correctness. The first is to check the provided answer (for example, an
integral can be verified simply by taking the derivative) [41]; the second is to implement useful
computer algebra algorithms within the proof assistant itself [56]. In either case, the calculation
is confirmed by the prover’s logical core. But this work doesn’t address the issue of usability.

Isabelle has provided computer algebra technology for years, but these tools are scattered in
various places and hardly used. These include Gröbner basis algorithms for proving algebraic
identities [19], sum-of-squares methods for proving facts about polynomials [18], interval meth-
ods using floating-point arithmetic for proving inequalities involving transcendental functions
[44], and Sturm sequence methods for counting the real roots of polynomials [24]. Moreover,
there exist various ad hoc tricks for performing symbolic differentiation and algebraic simplifica-
tion. Integrating these tools and techniques will yield a small number of outwardly simple proof
methods for solving mathematical problems that arise within Isabelle proofs.

Some of these tools work by logic alone, while others involve computational reflection [6, 14]:

11

ALEXANDRIA — Part B2 L. C. Paulson

the fast execution of verified algorithms via translation into ML. Reflection introduces a small
degree of risk, because the translation process that transforms verified algorithms to executable
code is itself unverified, but this risk is on the same scale as that of errors in the ML compiler
itself. Computational reflection has been known for more than 30 years [15] as a way to deliver
tremendous improvements in performance with little risk. Recent work [51] demonstrates that
this translation process can itself be verified, with the prospect of reducing this risk almost to zero.

The recent formalisation of the Sturm-Tarski theorem [53] and real algebraic numbers [54]
at Cambridge will allow the development of advanced algorithms [22], including polynomial root
isolation and quantifier elimination for polynomial inequalities. Algorithms based on Bernstein
polynomials, which can be used to bound the values of multivariate polynomials, should be easy
to formalise thanks to prior work [7, 58]. In the guise of Bézier curves, they have applications
to computer graphics in addition to their proven applications elsewhere [59]. Further decision
procedures and algorithms will be implemented as necessary to support the project’s other goals,
based in turn on formalising necessary theory from Basu et al. [5] or elsewhere.

There are numerous instances of mathematical theory supported by bespoke computations.
The Four Colour Theorem and the Kepler Conjecture are two well-known examples; Hales [33]
describes many others. ALEXANDRIA will investigate what sort of general support can be pro-
vided for computations that form parts of proofs and therefore must be verified.

A comprehensive library of computer algebra procedures creates the same problems of search
that we already have with libraries of formal mathematics, and to make matters worse, little
information can be obtained automatically from the code itself. But machine learning cannot
play a role until we accumulate a body of formal proofs that invoke these procedures.

This task will be undertaken by the second mathematician and the Isabelle architect.

0 12 24 36

Pilot Study

Initial Consolidation

Libraries of Formal Mathematics

Intelligent Search/Proof Idioms

Automated User Support

Computer Algebra/Verified Computing

Evaluation Case Study

48 60 months

Figure 2: Task Chart for ALEXANDRIA

Diagrammatic	Work	Plan

The Gantt chart (Fig. 2) presents the distribution of the tasks among the 60 months of the project.
A darker colour indicates greater intensity of work. The Pilot Study and Initial Consolidation

12

L. C. Paulson ALEXANDRIA — Part B2

will prepare the ground for further work. A workshop at this point (summer 2018) will involve
other mathematicians in the project goals. The tasks of Intelligent Search and Automated User
Support go together, as the former feeds into the latter. More general work on the Libraries and
on Computer Algebra will be less intensive, unless the Pilot Study alters the priorities. Evaluation
takes place in the last year, but some other work will continue.

Summary

ALEXANDRIA will bring together two mathematicians and an ATP architect, along with an as-
sistant or student, with the aim of identifying and implementing the most important ideas and
technologies needed to support formalised mathematics in the large. The mathematicians will
refactor the existing body of formalised mathematics and formalise new research-level material,
while documenting difficulties and discussing possible solutions. The architect’s job will be to
examine the feasibility of these suggestions and implement them. The work plan includes a pilot
study, tasks connected with the research objectives, and a final evaluation study, extending over
five years. One of the main scientific objectives is simply to elicit requirements from mathemati-
cians themselves.

ALEXANDRIA is particularly concerned with the management of large libraries of formalised
mathematics. Formal mathematics must be legible and must communicate the underlying math-
ematical ideas to human readers. A key priority is to investigate the identification and reuse of
proof idioms — self-contained, declarative proof fragments — so that proof can be built piece by
legible piece rather than line by cryptic line.

Project outcomes will be incorporated into Isabelle or the AFP where they will be freely avail-
able. Workshops will be scheduled at suitable intervals in order to broaden the interactions be-
tween mathematicians and the theorem proving community. Papers describing project results will
be published in leading journals, conferences and workshops, including mathematics journals.

Rewards	and	Impacts

Doubts in mathematical results are now pervasive. Many people know that Wiles’s proof of
Fermat’s Last Theorem contained a serious error that could not be corrected for a year. Dramatic
announcements — a solution to the ABC Conjecture, a fast new algorithm for graph isomorphism
— are routinely greeted with scepticism. We work towards the day when new results are published
as machine-checked formal documents and there is no longer any question of mistakes in proofs.

ALEXANDRIA will create a system that can cope with enormous bodies of formalised math-
ematics and assist mathematicians in finding what they need to write large, verified proofs.

ALEXANDRIA will deliver a well-organised and searchable body of formalised mathematics,
covering most of the undergraduate curriculum and containing appropriate literature references.
These proofs will be legible to humans as well as to machines. It will consist of declarative struc-
tured proofs. It will be a valuable resource for both research mathematics and university teaching.

ALEXANDRIA will also have a transformative effect on the verification community. To
verify a real-world system frequently involves creating a large proof involving a significant amount
of mathematics. For example, the dynamics of cyber-physical systems typically involve analogue
phenomena expressed using differential equations, which often have no closed-form solutions.
Such verification problems are just another form of large-scale mathematics.

ALEXANDRIA will create a usable proof development environment for mathematicians,
building on the Isabelle theorem prover. Working alongside mathematicians to elicit require-

13

ALEXANDRIA — Part B2 L. C. Paulson

ments, and enlisting the aid of computer scientists from a range of specialities, ALEXANDRIA
will deploy a multiplicity of technologies to support working mathematicians.

Section	c: Resources

Scientific	Environment

The University of Cambridge is one of the foremost universities in the world. The Computer Lab-
oratory is the birthplace of both Isabelle and HOL, and pioneered many applications of formal
verification, including hardware, floating point numerical algorithms and cryptographic proto-
cols. The Computer Laboratory, along with the Department of Engineering, has expertise in
other technologies relevant to ALEXANDRIA, including machine learning and natural language
processing. Cambridge also has one of the world’s leading departments of Mathematics.

Paulson created Isabelle in 1986 and made major contributions to HOL. He created Sledge-
hammer, the first successful link between interactive theorem provers and automatic theorem
provers. He created MetiTarski [1], the first integration between a classical automatic theorem
prover and an advanced decision procedure for polynomials. Paulson is also one of the three ed-
itors of the Archive of Formal Proofs. Thus he is conversant with one of the main mathematical
libraries and several of the main proof assistants. He has a strong track record in formalising
advanced mathematics, notably the works of Gödel [61, 62]. He has supervised two Ph.D. disser-
tations [16, 47] on machine learning. Paulson has a track record of delivering ambitious projects.

Personnel

ALEXANDRIA will hire three postdoctoral researchers for five years to assist the PI in carrying
out the project tasks. These researchers will need strong qualifications (two in mathematics,
one in automated theorem proving), and an appropriately high level of salary is proposed. The
project vision, along with prospect of a five-year position at Cambridge, should attract high-
quality applicants. An assistant or student will join the project at the start of year 2 and work for
42 months, chiefly on Intelligent Search and Automated User Support.

Budget

The budget for ALEXANDRIA appears in Table 1.
The travel budget assumes a total of 10 trips per year among the five team members, mostly

to conferences in order to communicate with colleagues and disseminate project results. Most
travel will be within the EU, but major events do occur in the USA and elsewhere. We estimate
e104,140 for travel and subsistence and a further e22,860 for conference fees.

The computing budget is necessary due to the project’s heavy use of Isabelle, which is de-
manding of processor power and memory. The PI and each of the three postdoctoral researchers
will require a powerful workstation (costing e4445) and a notebook computer (e1524). The
notebooks are required to demonstrate our technology at conferences, and allow working away
from the office. The expected lifetime of a computer is three years, so at the start of the fourth
year, new computers will be necessary for each of the four project participants. Computers are
budgeted under consumables.

Although most software used in the project is free, the project will purchase two (permanent)
licences for the Maple computer algebra system at e1270 each. A further e1270 will cover other

14

L. C. Paulson ALEXANDRIA — Part B2

Total in Euro
PI 412,767
Senior Staff 0
Postdocs 1,137,786
Students 199,505
Other 0

1,750,058

127,000
47,752

Software 3,812
ML support, 5 years 6,350
Audit costs 9,144

194,058

1,944,116

486,029

0

0

2,430,145

2,430,145Total Requested Grant

Cost Category

Direct Costs

Personnel

i. Total Direct costs for Personnel

Travel
Consumables

Other goods and services

ii. Total Other Direct Costs (in Euro)

1 – Total Direct Costs (i + ii)

2 – Indirect Costs (overheads) 25% of Direct Costs

3a) – Subcontracting Costs (no overheads)

3b) – Other Direct Costs with no overheads

Total Estimated Eligible Costs (1 + 2 + 3)

Table 1: ALEXANDRIA’s Budget

potential software requirements.
A Poly/ML support contract costing e1270 per year will ensure that any problems with

Poly/ML will be dealt with quickly; this is crucial, as Isabelle requires Poly/ML to run.

PI’s	Commitment	to	the	Project

The PI will devote 50% of his working time to the project over the period of the grant. Paulson
does not have (and will not accept) any senior administrative responsibilities, such as chairing a
department or organisation. His department will reduce his undergraduate-level teaching load by
half. Any other research projects will be modest in scale and few in number (probably no more
than one other project). Paulson will spend 100% of his total working time within the UK.

Duration of the project in months 60

% of working time the PI dedicates to the project over the period
of the grant:

50%

% of working time the PI spends in an EU Member State or Asso-
ciated Country over the period of the grant:

100%

15

ALEXANDRIA — Part B2 L. C. Paulson

References

[1] B. Akbarpour and L. Paulson. MetiTarski: An automatic theorem prover for real-valued special
functions. Journal of Automated Reasoning, 44(3):175–205, Mar. 2010.

[2] K. Appel and W. Haken. Every planar map is four colorable. Bull. Amer. Math. Soc.,
82(5):711–712, 09 1976.

[3] J. Avigad, J. Hölzl, and L. Serafin. A formally verified proof of the central limit theorem, 2016.
preprint.

[4] G. Bancerek and P. Rudnicki. A compendium of continuous lattices in Mizar. Journal of
Automated Reasoning, 29(3-4):189–224, 2002.

[5] S. Basu, R. Pollack, and M.-F. Roy. Algorithms in Real Algebraic Geometry. Springer, 2nd edition,
2006.

[6] S. Berghofer and T. Nipkow. Executing higher order logic. In P. Callaghan, Z. Luo, J. McKinna,
and R. Pollack, editors, Types for Proofs and Programs (TYPES 2000), volume 2277 of LNCS,
pages 24–40. Springer, published 2002.

[7] Y. Bertot, F. Guilhot, and A. Mahboubi. A formal study of Bernstein coefficients and polynomials.
Mathematical Structures in Computer Science, 21(04):731–761, 2011.

[8] J. C. Blanchette, S. Böhme, M. Fleury, S. J. Smolka, and A. Steckermeier. Semi-intelligible isar
proofs from machine-generated proofs. J. Autom. Reasoning, 56(2):155–200, 2016.

[9] J. C. Blanchette, S. Böhme, and L. C. Paulson. Extending Sledgehammer with SMT solvers. Journal
of Automated Reasoning, 51(1):109–128, 2013.

[10] J. C. Blanchette, D. Greenaway, C. Kaliszyk, D. Kühlwein, and J. Urban. A learning-based fact
selector for isabelle/hol. Journal of Automated Reasoning, pages 1–26, 2016.

[11] J. C. Blanchette, M. P. L. Haslbeck, D. Matichuk, and T. Nipkow. Mining the Archive of Formal
Proofs. In M. Kerber, J. Carette, C. Kaliszyk, F. Rabe, and V. Sorge, editors, Intelligent Computer
Mathematics - International Conference, CICM 2015, Washington, DC, USA, July 13-17, 2015,
Proceedings, volume LNCS 9150, pages 3–17. Springer, 2015.

[12] S. Blazy, C. Paulin-Mohring, and D. Pichardie, editors. Interactive Theorem Proving — 4th
International Conference, LNCS 7998. Springer, 2013.

[13] S. Boldo, J.-H. Jourdan, X. Leroy, and G. Melquiond. A formally-verified C compiler supporting
floating-point arithmetic. In ARITH, 21st IEEE International Symposium on Computer Arithmetic,
pages 107–115. IEEE Computer Society Press, 2013.

[14] S. Boutin. Using reflection to build efficient and certified decision procedures. In M. Abadi and
T. Ito, editors, Theoretical Aspects of Computer Software, LNCS 1281, pages 515–529. Springer,
1997.

[15] R. S. Boyer and J. S. Moore. Metafunctions: Proving them correct and using them efficiently as new
proof procedures. In The Correctness Problem in Computer Science, pages 103–184. Academic
Press, 1981.

[16] J. P. Bridge. Machine Learning and Automated Theorem Proving. PhD thesis, University of
Cambridge, 2010. Online at URLhttp://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-792.pdf.

[17] A. Chaieb. Verifying mixed real-integer quantifier elimination. In Furbach and Shankar [26], pages
528–540.

[18] A. Chaieb. Automated Methods for Formal Proofs in Simple Arithmetics and Algebra. PhD thesis,
Technical University of Munich, 2008.

[19] A. Chaieb and M. Wenzel. Context aware calculation and deduction: Ring equalities via Gröbner
bases in Isabelle. In M. Kauers, M. Kerber, R. Miner, and W. Windsteiger, editors, Towards
Mechanized Mathematical Assistants, LNCS 4573, pages 27–39. Springer, 2007.

[20] B. I. Dahn. Robbins algebras are boolean: A revision of McCune’s computer-generated solution of
Robbins problem. Journal of Algebra, 208(2):526–532, 1998.

[21] M. Daumas, C. Muñoz, and D. Lester. Verified real number calculations: A library for interval
arithmetic. IEEE Transactions on Computers, 58(2):226–237, 2009.

16

URL http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-792.pdf

L. C. Paulson ALEXANDRIA — Part B2

[22] L. de Moura and G. O. Passmore. Computation in real closed infinitesimal and transcendental
extensions of the rationals. In M. P. Bonacina, editor, Automated Deduction —- CADE-24, LNCS
7898, pages 178–192. Springer, 2013.

[23] J. Divasón and J. Aransay. Rank-nullity theorem in linear algebra. Archive of Formal Proofs, Jan.
2013. http://afp.sf.net/entries/Rank_Nullity_Theorem.shtml, Formal proof development.

[24] M. Eberl. Sturm’s theorem. Archive of Formal Proofs, Jan. 2014.
http://afp.sf.net/entries/Sturm_Sequences.shtml, Formal proof development.

[25] C. Edwards. Automating proofs. Commun. ACM, 59(4):13–15, Mar. 2016.
[26] U. Furbach and N. Shankar, editors. Automated Reasoning — Third International Joint

Conference, IJCAR 2006, LNAI 4130. Springer, 2006.
[27] M. Ganesalingam. The Language of Mathematics - A Linguistic and Philosophical Investigation.

LNCS 7805. Springer, 2013. Based on his Cambridge PhD thesis.
[28] M. Ganesalingam and W. T. Gowers. A fully automatic theorem prover with human-style output.

Journal of Automated Reasoning, doi:10.1007/s10817-016-9377-1, 2016.
[29] G. Gonthier. The four colour theorem: Engineering of a formal proof. In D. Kapur, editor,

Computer Mathematics, LNCS 5081, pages 333–333. Springer Berlin Heidelberg, 2008.
[30] G. Gonthier, A. Asperti, J. Avigad, Y. Bertot, C. Cohen, F. Garillot, S. Le Roux, A. Mahboubi,

R. O’Connor, S. Ould Biha, I. Pasca, L. Rideau, A. Solovyev, E. Tassi, and L. Théry. A
machine-checked proof of the odd order theorem. In Blazy et al. [12], pages 163–179.

[31] M. J. C. Gordon, R. Milner, and C. P. Wadsworth. Edinburgh LCF: A Mechanised Logic of
Computation. LNCS 78. Springer, 1979.

[32] T. C. Hales. An overview of the Kepler conjecture. ArXiv Mathematics e-prints, Nov. 1998.
[33] T. C. Hales. Mathematics in the age of the Turing machine. In R. Downey, editor, Turing’s Legacy,

pages 253–298. Cambridge University Press, 2014. Cambridge Books Online.
[34] T. C. Hales et al. A formal proof of the Kepler conjecture. arXiv.org, abs/1501.02155, Jan. 2015.
[35] T. C. Hales, J. Harrison, S. McLaughlin, T. Nipkow, S. Obua, and R. Zumkeller. A revision of the

proof of the Kepler conjecture. Discrete & Computational Geometry, 44(1):1–34, 2010.
[36] J. Harrison. A HOL theory of Euclidean space. In J. Hurd and T. Melham, editors, Theorem

Proving in Higher Order Logics: TPHOLs 2005, LNCS 3603, pages 114–129. Springer, 2005.
[37] J. Harrison. Towards self-verification of HOL Light. In Furbach and Shankar [26], pages 177–191.
[38] J. Harrison. Formalizing basic complex analysis. In R. Matuszewski and A. Zalewska, editors,

From Insight to Proof: Festschrift in Honour of Andrzej Trybulec, volume 10(23) of Studies in
Logic, Grammar and Rhetoric, pages 151–165. University of Białystok, 2007.

[39] J. Harrison. Verifying nonlinear real formulas via sums of squares. In K. Schneider and J. Brandt,
editors, Theorem Proving in Higher Order Logics: TPHOLs 2007, LNCS 4732, pages 102–118.
Springer, 2007.

[40] J. Harrison. Formalizing an analytic proof of the prime number theorem. Journal of Automated
Reasoning, 43(3):243–261, 2009.

[41] J. Harrison and L. Théry. A skeptic’s approach to combining HOL and Maple. Journal of
Automated Reasoning, 21(3):279–294, 1998.

[42] J. Heras and E. Komendantskaya. Acl2(ml): Machine-learning for ACL2. In Twelfth International
Workshop on the ACL2 Theorem Prover and its Applications, pages 61–75, 2014.

[43] J. Heras and E. Komendantskaya. Recycling proof patterns in Coq: Case studies. Mathematics in
Computer Science, 8(1):99–116, 2014.

[44] J. Hölzl. Proving inequalities over reals with computation in Isabelle/HOL. In G. D. Reis and
L. Théry, editors, ACM SIGSAM 2009 International Workshop on Programming Languages for
Mechanized Mathematics Systems (PLMMS’09), pages 38–45, Munich, August 2009.

[45] J. Hölzl and A. Heller. Three chapters of measure theory in Isabelle/HOL. In M. Eekelen,
H. Geuvers, J. Schmaltz, and F. Wiedijk, editors, Interactive Theorem Proving — Second
International Conference, LNCS 6898, pages 135–151. Springer, 2011.

17

http://afp.sf.net/entries/Rank_Nullity_Theorem.shtml
http://afp.sf.net/entries/Sturm_Sequences.shtml

ALEXANDRIA — Part B2 L. C. Paulson

[46] J. Hölzl, F. Immler, and B. Huffman. Type classes and filters for mathematical analysis in
Isabelle/HOL. In Blazy et al. [12], pages 279–294.

[47] Z. Huang. Machine Learning and Computer Algebra. PhD thesis, University of Cambridge, 2016.
Online at http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-884.pdf.

[48] J. Hurd. The OpenTheory standard theory library. In M. G. Bobaru, K. Havelund, G. J. Holzmann,
and R. Joshi, editors, NASA Formal Methods — NFM 2011, LNCS 6617, pages 177–191. Springer,
2011.

[49] T. J. Jech. The Axiom of Choice. North-Holland, 1973.
[50] G. Klein, J. Andronick, K. Elphinstone, G. Heiser, D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt,

R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood. sel4: Formal verification of an
operating-system kernel. Commun. ACM, 53(6):107–115, June 2010.

[51] R. Kumar, R. Arthan, M. O. Myreen, and S. Owens. Self-formalisation of higher-order logic -
semantics, soundness, and a verified implementation. J. Autom. Reasoning, 56(3):221–259, 2016.

[52] H. Lee. Vector spaces. Archive of Formal Proofs, Aug. 2014.
http://afp.sf.net/entries/VectorSpace.shtml, Formal proof development.

[53] W. Li. The Sturm-Tarski theorem. Archive of Formal Proofs, Sept. 2014.
http://afp.sf.net/entries/Sturm_Tarski.shtml, Formal proof development.

[54] W. Li and L. C. Paulson. A modular, efficient formalisation of real algebraic numbers. In J. Avigad
and A. Chlipala, editors, Proceedings of the 5th ACM SIGPLAN Conference on Certified Programs
and Proofs, Saint Petersburg, FL, USA, January 20-22, 2016, pages 66–75. ACM, 2016.

[55] D. MacKenzie. Mechanizing Proof: Computing, Risk, and Trust. MIT Press, 2004.
[56] S. McLaughlin and J. Harrison. A proof-producing decision procedure for real arithmetic. In

R. Nieuwenhuis, editor, Automated Deduction — CADE-20 International Conference, LNAI 3632,
pages 295–314. Springer, 2005.

[57] T. Mhamdi, O. Hasan, and S. Tahar. Formalization of measure theory and Lebesgue integration for
probabilistic analysis in HOL. ACM Trans. Embedded Comput. Syst., 12(1):13, 2013.

[58] C. Muñoz and A. Narkawicz. Formalization of Bernstein polynomials and applications to global
optimization. Journal of Automated Reasoning, 51(2):151–196, 2013.

[59] A. Narkawicz and C. Muñoz. Formal verification of conflict detection algorithms for arbitrary
trajectories. Reliable Computing, 17:209–237, Dec. 2012.

[60] T. Nipkow, G. Bauer, and P. Schultz. Flyspeck I: tame graphs. In Furbach and Shankar [26], pages
21–35.

[61] L. C. Paulson. The relative consistency of the axiom of choice — mechanized using Isabelle/ZF.
LMS Journal of Computation and Mathematics, 6:198–248, 2003.
http://www.lms.ac.uk/jcm/6/lms2003-001/.

[62] L. C. Paulson. A machine-assisted proof of Gödel’s incompleteness theorems for the theory of
hereditarily finite sets. Review of Symbolic Logic, 7(3):484–498, Sept. 2014.

[63] G.-C. Rota. Indiscrete Thoughts. Springer, 2009.
[64] University of Cambridge. Undergraduate mathematics: Course information, 2014.

http://www.maths.cam.ac.uk/undergrad/course/.
[65] V. Voevodsky. The origins and motivations of univalent foundations. The Institute Letter, Summer

2014. Institute for Advanced Study . Online at
https://www.ias.edu/ideas/2014/voevodsky-origins.

[66] M. Wenzel. Isabelle/Isar — a generic framework for human-readable proof documents. In
R. Matuszewski and A. Zalewska, editors, From Insight to Proof — Festschrift in Honour of
Andrzej Trybulec. University of Białystok, 2007. Studies in Logic, Grammar, and Rhetoric 10(23).

[67] M. Wenzel. Asynchronous user interaction and tool integration in Isabelle/PIDE. In G. Klein and
R. Gamboa, editors, Interactive Theorem Proving — 5th International Conference, ITP 2014,
LNCS 8558, pages 515–530. Springer, 2014.

18

http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-884.pdf
http://afp.sf.net/entries/VectorSpace.shtml
http://afp.sf.net/entries/Sturm_Tarski.shtml
http://www.lms.ac.uk/jcm/6/lms2003-001/
http://www.maths.cam.ac.uk/undergrad/course/
https://www.ias.edu/ideas/2014/voevodsky-origins

