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Abstract. The first phase of the SET protocol, namely Cardholder Reg-
istration, has been modelled inductively. This phase is presented in out-
line and its formal model is described. A number of basic lemmas have
been proved about the protocol using Isabelle/HOL, along with a theo-
rem stating that a certification authority will certify a given key at most
once. Many ambiguities, contradictions and omissions were noted while
formalizing the protocol.

1 Introduction

The last ten years have seen the rapid development of formal methods for ana-
lyzing security protocols. At the same time, protocols have become much more
complex. Early security protocols typically involved two or three agents and
established a shared secret. Six pages were enough to describe the Needham-
Schroeder protocol in 1978 [16]. But six hundred pages are not enough to de-
scribe the SET protocol [11–13]. Such a complex protocol is likely to contain
errors, but verifying it formally is a huge challenge.

Meadows [14] notes a further problem: electronic commerce protocols are
systems of protocols and their goals are difficult to express in terms of traditional
protocol concepts such as authentication and secrecy. The SET protocol is split
in many phases each of which can be seen as a protocol on its own and has quite
different high-level goals.

Therefore, it is no surprise that we do not find many published works on its
verification. After Kailar’s [7] analysis of simple electronic commerce protocols,
there have been attempts to model more realistic protocols such as Kerberos [3],
TLS/SSL [19] and Cybercash coin-exchange [4, 5]. However, to the best of our
knowledge, the SET protocol has still been out of reach. Meadows and Syverson
[15] have designed a language for describing SET specifications but have left the



actual analysis to future work. Kessler and Neumann [8] have designed a belief
logic to analyse a single message of the payment phase of SET.

The present paper describes our work in the analysis of a complete phase of
SET: Cardholder Registration.

2 The SET Protocol

The SET protocol [9, 11–13] has been proposed and standardized by a consortium
of credit card companies (VISA, Mastercard, American Express) and software
corporations (Microsoft, Netscape, etc.). SET aims to protect sensitive card-
holder information, to ensure payment integrity and to authenticate merchants
and cardholders. It does not support non-repudiation.

The overall architecture of SET is based on a rooted hierarchy of Certification
Authorities (CAs). The top level is a trusted Root Certification Authority, below
which we find centralized CAs corresponding to credit card brands. One level
down, there are geo-political subsidiaries and finally, two levels down, there are
CAs (corresponding to banks) that actually interact with customers. The task
of these CAs is to provide customers with digital certificates for signature and
encryption. Customers must generate and safeguard their private keys.

Participants of the payment system are Cardholders (C) and Merchants (M).
Their financial institutions are called Issuers and Acquirers, respectively; they
act largely outside the protocol. Payment Gateways (PG) play the traditional
role of clearing-houses: their task is to settle the payment requests made by
merchants and cardholders when buying goods.

2.1 Overview of SET

The SET protocol consists of five phases. The first two phases are used by the
agents participating in the protocol to register their keys and get the appropriate
certificates. The remaining phases constitute the electronic transaction itself.

Cardholder Registration. This is the initial step for cardholders. The agent C
sends to a certification authority CA the information on the credit card he wants
to use. The CA replies with a registration form, which C completes and returns,
together with the signing key that C wants to register. Then, CA checks that the
credit card is valid (this step is outside the protocol) and releases the signature
certificate for C who stores it for future use. All this information (such as credit
card details) must be protected and this makes the protocol steps complicated.
A couple of points are worth noting:

– C may register as many public keys as he wants to.
– C’s identity is not stored in the certificate. It only contains the hash of the

primary account number (PAN), loosely speaking the credit card number,
and of a secret nonce (PANSecret). A merchant should not be able to verify
a cardholder’s identity from his certificate [11, pp. 7, 12 and 25].



– The certificates must assure the merchant (without his having to see the
PAN) that there is a link between a cardholder, a card and a PAN that has
been validated by the card issuer [11, pp. 8 and 25].

Merchant Registration. This phase performs the analogous function for mer-
chants. In contrast with Cardholder Registration, the merchant M can not only
register a public key for signature but also a public key for encryption. The
process is shorter because there is no confidential information to be protected.

Purchase Request. We reach this phase if C has decided to buy something. C
sends to M the order information and the payment instructions. M processes the
order and starts the Payment Authorization phase by forwarding the payment
instructions to the PG. This last step is needed because SET aims to keep the
cardholder’s PAN confidential; M cannot simply take this number, as done in
telephone credit card transactions [17], and settle directly with the Issuer.

Payment Authorization. After receiving the payment instructions from the Mer-
chant, the PG, in cooperation with Issuers and banks, checks that everything is
fine. If so, it sends the payment authorization to M, who sends to C the con-
firmation and possibly the purchased goods. C acknowledges the result and M
passes to the next stage.

Payment Capture. In this last phase, M sends to PG one or more payment
requests and the corresponding capture tokens obtained during the previous
steps. PG checks that everything is satisfactory and replies to M. The actual
funds transfer from C to M is done outside the protocol.

To accomplish these tasks, SET uses numerous combinations of cryptographic
functions. Even for the handling of certificates, SET makes many extensions to
the PKCS standards by RSA-Security [20, 21].

2.2 Cardholder Registration: A Closer Look

Our analysis concerns the Cardholder Registration phase of the protocol. Fig-
ure 1 [11, p. 36] provides a high-level view of this phase. We can distinguish three
message pairs. The first pair starts the registration process; the second gives the
cardholder an appropriate registration form; the last exchanges the completed
registration form for the requested certificate. Let us describe them in a bit more
detail.

Initiate Request. The cardholder C starts the protocol.

Initiate Response. When the CA receives the request, it transmits a signed
answer and its certificates to the cardholder. The signature certificate is used to
verify the signature affixed to the response. The encryption certificate provides
the cardholder with the key necessary to protect the payment card account
number (PAN) in the registration form request. The CA will identify the issuer
of the card using the first six to eleven digits of the account number to select
the appropriate registration form.



Fig. 1. Cardholder Registration in SET

1 . C −→ CA : C, NC1

2 . CA −→ C : SignCA {C, NC1} , CertERCA {CA} , CertSRCA {CA}
3 . C −→ CA : {C, NC2 , H(PAN)}KC1

, EncrCA {KC1 , PAN, H(C, NC2)}
4 . CA −→ C : SignCA {C, NC2 , NCA} , CertERCA {CA} , CertSRCA {CA}
5 . C −→ CA :

{
m, {H(m, PAN, NSecC)}privSKC

}
KC3

,

EncrCA {KC3 , PAN, NSecC}
where m = C, NC3 , KC2 , pubSKC

6 . CA −→ C :
{
SignCA {C, NC3 , CA, NSecCA} , CertSCA {C} ,
CertSRCA {CA}

}
KC2

Fig. 2. High-level View of Cardholder Registration



Registration Form Request. C verifies the certificates of CA and the signature
in the response. Then he sends a registration form request with his PAN. The
request is encrypted with a random symmetric key that is encrypted along with
the PAN in a digital envelope, sealed using the CA’s public encryption key.

Registration Form. The CA unpacks the digital envelope, signs the appropriate
registration form and returns it to C.

Cardholder Certificate Request. C verifies the certificate of CA and the signature
on the received message. Now C fills in the registration form with the informa-
tion the issuing bank deems necessary to identify him as a valid cardholder. C
generates a signature key pair and a random number which will be used by CA
to generate the certificate. Then, C creates a certificate request containing the
registration form, the proposed public key and a random symmetric key used
by CA to encrypt the response. This message is signed with C’s private key.
This signature yields no authentication—the corresponding public key is not yet
certified—but it proves to CA that the requester knows the private key. The
signed message is then encrypted with another fresh symmetric key; this key
is encrypted along with the PAN and the random number, and the resulting
message is sent to CA.

Cardholder Certificate. CA decrypts the request, checks C’s signature and veri-
fies the information on the registration form. In addition, CA should check that
the key has not been registered by another cardholder; this obvious check is not
mentioned in the specifications. Next, CA generates a random number and com-
bines it with the one created by C to generate a secret value. Then CA generates
the cardholder certificate by signing a message containing the public key and a
hash of PAN and secret value. The certificate and a response message (with the
CA half of the secret value) are encrypted with the symmetric key from the
previous message and sent to C, together with CA’s certificates.

Finally, before storing the certificate, C verifies it by comparing the hash
contained in it with the correct value he can generate.

3 Making Sense of the Documents

The starting point of a formal analysis is defining an abstract model of the pro-
tocol. We eliminate technology dependent features and other inessential details.
This must be done with care: keeping too many details results in an unmanage-
able model, while neglecting essential details allows unrealistic properties to be
proved.

Usually, we can abstract away from particular cryptographic algorithms. The
difference between SHA-1 and MD5 is inessential, since we merely expect hashing
to be collision-free and non-invertible. We typically assume perfect encryption;
in consequence, we can eliminate message components that are introduced only
to circumvent the limitations of real-world cryptosystems.



The next obvious step is the elimination of all optional parts. But with SET,
we found that this cannot be so easily done, as some options are not options at
all. This is one of the major problems of the current SET specifications.

Here is an example. The task of the registration phases is to distribute cer-
tificates, which contain either encryption or signature keys. Both components
are declared optional in the formal specification [12, p. 171], but omitting both
‘options’ would make the protocol vacuous. Only the informal text outside the
definition [12, p. 170] says that at least one of them must be present.

Another example concerns symmetric keys. The specification of Cardholder
Registration says that, at a certain stage, the cardholder C should send a sym-
metric key in order to get from the CA a message encrypted with that key. The
field where the key is stored is tagged as optional [12, p. 171]. But the Program-
mer’s Guide [13, p. 177] states that if the key field is missing then CA replies
with an error message.

The SET designers do acknowledge this problem. The API reference guide to
the SET reference implementation version 1.0 by Visa and MasterCard (available
in the CD-ROM packaged with Loeb [9]) mentions this problem in the NOTES
section at the end of the manual pages of the code:

There is a difference between non-required and optional. Non-required
fields may be omitted according to the SET protocol. Optional fields
may be omitted according to ASN.1 encoding rules. In some messages, a
field may be optional according to ASN.1, but still required by the SET
protocol. In these cases, it is incumbent on the application to fill in these
fields.

It is hard to believe that such a statement could be part of the specification of
a security protocol. The manual pages do not distinguish the non-required and
optional parts.

Another example is the use of certificates. According to the Business Descrip-
tion, CA always sends the certificates (or thumb-prints) for the signing keys. The
reason, we think, is that Cardholder Registration is designed so that it can be in-
terrupted and resumed later (we do not know whether this is intended) and that
CA may want to offer C the possibility of always getting the most recent key.
However, certificates for the encryption keys are sometimes missing, and this
difference in managing the two different kinds of certificates is not explained.
The handling of certificates can only be understood by making reference to the
PKCS standards. So, to decide which message component is required for our
analysis, we need a case-by-case analysis, which can only be done with a full
comprehension of the protocol goals and structure.

Such problems of formalization are sadly typical of commercial protocols.
Once a protocol reaches the stage of an RFC (Request for Comments), it is
often specified in an elaborate but unsatisfactory manner. The meanings of the
fields of a message are only given informally. Often it is hard to know precisely
what the recipient of a message will do with it or when a particular message
will be sent. It is often unclear what counts as a successful outcome. When it
comes to syntax, we have the opposite problem: too much detail. The fields of



each message are specified down to the last bit. Current verification technology
cannot cope with detailed descriptions.

The SET protocol documentation suffers from the same problem. SET-Book
3 [12] provides a Formal Protocol Definition in ASN.1. It specifies each message
field and yet it is not sufficient, as we have already noted. To resolve issues one
must look elsewhere, such as in the Programmer’s Guide [13] or in the Business
Description [11], but sometimes they contradict each other. The SET designers
state, ‘In the event of discrepancy between this and any other description of the
protocol, the ASN.1 in Part II takes precedence’ [12, p. 1] but (as we have seen)
this is sometimes impossible.

The Business Description [11] is most misleading — its figures especially.
For instance, the description of the Payment Authorization phase suggests that
each merchant will receive from the payment gateway a digital envelope con-
taining in clear the primary account number of the customer [11, p. 66]. This
contradicts the text which forbids such eventuality [11, p. 12]: ‘SET ensures that
in the cardholder’s interactions with the merchant, the payment card account
information remains confidential.’ To complicate matters, in the fine print of the
formal definition, a field in the certificate gives some merchants the privilege of
receiving the cardholder account information in clear. The explicit requirement
of confidentiality specified by the SET designers can then be overruled by an
implementation which adheres to the specifications. The effect of this trap-door
on the formal analysis of the payment phase remains to be seen.

We used the Programmer’s Guide [13] as the ultimate reference. Other read-
ers of the specification may resolve its ambiguities in other ways.

4 Cryptographic Functions for Cardholder Registration

This section presents the Cardholder Registration phase in a format similar to
those used in security protocol papers. It also shows the relationship between the
SET documentation and its Isabelle formalization. We introduce some notation
and explain how we encode the complex combinations of hashing, strong and
weak encryption that are used in SET and in the PKCS#7 standard.

Below, M and m denote messages, s denotes a sender, r denotes a receiver
(s and r are SET entities). Here are the building blocks of our construction:

C, CA, RCA: entities involved in the CR-phase, respectively Cardholder, Cer-
tification Authority and Root Certification Authority

NX , KX : nonce N and symmetric key K generated by an agent X
pubEKX , privEKX : public and private encryption keys held by agent X
pubSKX , privSKX : public and private signature keys held by agent X
PANX : Primary Account Number of agent X
{X,Y, Z, . . . }: a sequence (tuple) of zero or more data elements
H(X): hash of tuple X
{X}K : encryption of X with key K



The DigestedData DD(M) is a simple construction. It is defined as the con-
catenation of a message and its digest, but in this case the plain message is
absent; so we have only H(M) for a message M . The Linkage L(M,m) is a
shorthand for {M,DD(m)}. It links m to M as only someone possessing m or a
trusted hash of m can verify the linkage. The intuition is that m contains some
pieces of M . We express it as {M,H(m)}.

The Signature only SO(s,M) is the signature of entity s on message M ,
omitting the plaintext of M , and corresponds to a PKCS#7 SignedData with the
‘Content’ field set to ‘absent.’ In our notation it is {H(M)}privSKs . The Signed
message S(s,M) is a shorthand for {M,SO(s,M)}. It represents a full signature,
the concatenation of a message M and its signed digest, and corresponds to a
PKCS#7 SignedData. In our model it is expressed as {M, {H(M)}privSKs} and
is abbreviated as Signs {M}.

The Asymmetric encryption E(r,M) uses a mixture of symmetric and asym-
metric encryption. Given a message M , this is encrypted with a fresh sym-
metric key K and K itself is encrypted with the receiver r’s public encryption
key. It corresponds to the PKCS#7 EnvelopedData combining RSA encryption
and Bellare-Rogaway Optimal Asymmetric Encryption Padding (OAEP). Since
OAEP just aims at strengthening the cryptographic algorithms, we simply code
this primitive as the pair {{M}K , {K}pubEKr} and abbreviates it as Encrr {M}.

The Extra encryption with integrity EXH(r,M,m) is a more complex form
of digital envelope. Here m is a message usually containing payment card in-
formation and a nonce useful to foil dictionary attacks. Extra encryption with
integrity is implemented in accordance with the following procedure:

– The hash of m is concatenated to M (as in a linkage);
– this is encrypted with a fresh symmetric key K obtaining a message m′;
– a digital envelope containing K, m, and the hash of M is encrypted with

the receiver r’s public key;
– m′ and the envelope are concatenated.

After being expanded and simplified, EXH(r,M,m) can be expressed as

{{M,H(m)}K , {K,m,H(M)}pubEKr}.

Hashing is used to verify integrity, but this primitive uses no signature and
cannot authenticate the sender.

Simple Encapsulation with signature Enc(s, r,M) models both digital sig-
nature and digital envelope and is an instance of PKCS#7 SignedData encap-
sulated in EnvelopedData. The message M is first signed with the private key
of s and then encrypted with a fresh symmetric key K sent to r in a digi-
tal envelope. Thus Enc(s,r,M) is equivalent to E(r,S(s,M)) and is expanded as
{{M, {H(M)}privSKs}K , {K}pubEKr}. This primitive authenticates the sender
and provides confidentiality.

Simple Encapsulation with signature and provided key data EncK(kd, s,M)
is an instance of PKCS#7 SignedData encapsulated in EncryptedData. It models
a message M first signed with the sender’s private key and then encrypted with a



symmetric key K. (The word ‘provided’ means that the key data must have been
provided in advance by some other message of the protocol.) It is typically used
if K is a symmetric key which has been previously sent by r. With this latter
hypothesis, it guarantees both data confidentiality and sender’s authentication.
It boils down to {M, {H(M)}privSKs}K .

The Extra encapsulation with signature EncX(s,r,M,m) is also a signed and
sealed message, but it requires a more complex procedure:

– The DER1 encoding of m is concatenated to M ;
– the sender s signs a digest of the resulting message, yielding m′;
– message m′ is concatenated to M ;
– the message resulting from the previous step is encrypted with a fresh sym-

metric key K, yielding a message m′′;
– K and m are sealed using the public encryption key of r;
– finally m′′ and this envelope are concatenated.

Since DER encoding is injective, we can replace DER(m) with m. Expanding
the primitive results in {{M, {H(M,m)}privSKs}K , {K,m}pubEKr}.

SET certificates make reference to X.509 Version 3 certificates [6], but in-
cludes the use of X.509 extensions (as defined in PKCS#6 [20]) and further
SET-specific extensions. The point of including a set of attributes is to extend
the certification process to other information about an entity, not just its public
key. For instance, such information includes whether a merchant is allowed to
get hold of his customer’s PAN.

For simplicity, our certificate has only the attributes relevant to the formal
analysis. The obvious attributes to take into consideration include the Subject
(the certificate owner’s identity) and the SubjectPublicKeyInfo (the certified pub-
lic key). The issuing certificate authority is identified by the key signing the cer-
tificate. Unusually, the CA signs the entire plaintext (not just an hash of it). So,
a certificate containing information I is implemented as {I, {I}privSKCA}. Since
an hash is much smaller than the actual message, by signing the whole message
the CA might have a better defence against brute force cryptanalysis.

Several attributes specify which entity is the certificate owner, the intended
use of the certified key and whether this key may be used to issue other certifi-
cates (the default answer is no). There is also a flag F to distinguish between
signature and encryption certificates. We omit certificate thumbprints, validity
periods and revocation lists. Finally we obtain the following encoding of the
certificates for cardholders and certification authorities:

certC = {{H(PAN,PANSecret), pubSKC , F},
{H(PAN,PANSecret), pubSKC , F}priSKCA}

certCA = {CA, pubKCA, F}, {CA, pubKCA, F}priSKRCA}

1 DER (Distinguished Encoding Rules) is a set of rules for representing OSI’s (Open
Systems Interconnection) abstract objects as strings of ones and zeros.



Note that PANSecret is obtained as the exclusive ‘or’ of two nonces NSecC , pro-
vided by the Cardholder C, and NSecCA, provided by the Certification Authority
CA.

We need a few more abbreviations. By CertECA {X} we denote the certificate
of the public encryption key of X by the certification authority CA (the flag F
is set to 0) and by CertSCA {X} we denote the certificate of the public signing
key of X by the certification authority CA (the flag F is set to 1).

Finally, we can compose all above constructs, fill the gaps in the specifica-
tions that we have mentioned in Sect. 3. We obtain the high-level model of SET
Cardholder Registration (Fig. 2 above).

5 Modelling Cardholder Registration in Isabelle

Modelling SET-CR requires new techniques. The generation of a pair of asym-
metric keys (step 5) and the verification preceding the issue of certificates (step 6)
have never been formalised before. To deal with the incompleteness of the official
SET specifications, we decided to adopt the following policy: the model should
allow everything that the official specifications do not forbid.

Isabelle includes generic theories for analysing security protocols. In order to
handle SET, we had to modify and extend them, especially the model of key
management. In this section we assume familiarity with the inductive approach
to verifying protocols [18].

5.1 Agents

First of all, we need to model the SET certification chain. The model reduces
the four levels of the actual hierarchy of trust to two, bypassing brand CAs
and geo-political CAs: we denote by RCA the root certification authority, and
introduce an unbounded number of first-level certification authorities CA’s.

datatype agent = RCA | CA nat | Friend nat | Spy

5.2 Messages

The Primary Account Number (PAN) of the payment card is exchanged during
SET sessions. We do not model a PAN as a nonce because it has a long lifetime,
while fresh nonces are chosen for each run. We extend the Isabelle datatype for
messages with a constructor Pan to allow PANs as message components.

datatype msg = Agent agent | Nonce nat | Number nat | Key key |

Pan nat | Hash msg | MPair msg msg | Crypt key msg

A datatype definition introduces injective type constructors with disjoint ranges.
Here this asserts that PANs cannot be confused with other numbers. Injectiv-
ity also implies that hashing is collision free and that an encrypted message
corresponds to exactly one plaintext.



The model presupposes that PANs cannot be guessed. Therefore, the spy can
synthesize them from a set H of message components, only if they are already
available in the set, as stated by the theorem

PanP ∈ synthH =⇒ PanP ∈ H.

The function pan maps agents into naturals so that Pan (panA) formalises
the message containing agent A’s PAN.

5.3 Cryptographic Keys

Classical authentication protocols presuppose that each agent owns certain long-
term keys and possibly acquires session keys. In contrast, certification protocols
distribute long-term keys. We need to formalize this scenario and to understand
new kinds of risks. In addition to distributing pairs of asymmetric long-term keys,
SET-CR allows each agent to own several pairs, with the possibility of collision.
The protocol uses different keys for different purposes: some for encryption, some
for message signature, others for certificate signature. For simplicity, we identify
the two kinds of signing keys. Thus, keys are associated to agents as follows.

– The root certification authority has a single pair of signature keys.
– A certification authority has a pair of encryption keys and a pair of signature

keys. The SET specifications do not clearly state whether a CA may have
more than one pair of each kind.

– A cardholder has no keys at the beginning but obtains them during a run.
We assume that he can obtain more than one pair of keys regardless of which
authority certifies them, as the SET specifications do not forbid this.

– The spy can obtain keys by running the protocol and also knows the keys of
an unspecified set of certification authorities (see Sect. 5.4).

Note that the standard mapping of agents into keys by a single function is not
acceptable: some keys that do not exist in reality would be associated to the
cardholders. Hence, a bit more work is necessary for the Isabelle formalization.

Suitable rules state that all the keys existing before any protocol run are
distinct. We call them crucial and put them in the set CrucialK.

5.4 Agents’ Knowledge

Our model allows some certification authorities to collude with the spy in three
different ways. An unspecified set badS of authorities has revealed their signature
keys to the spy. Another set badE has revealed their encryption keys. A third
set badN of authorities let the spy read any private notes, possibly containing
crucial information, taken during the protocol sessions. The sets are unrelated
and model many different scenarios. The Root CA is never compromised.

The existing formalisation of agents’ knowledge [1, 2] allows each agent to
know the messages he alone sends or receives, while the spy knows all messages
anybody sends or receives. This definition can easily be updated to capture the
requirements stated above.



5.5 The Protocol Model

The signature of a message or of a certificate are two slightly different opera-
tions. Signing a message X by a key K returns the concatenation of X with the
encryption by K of the hash of X. Signing a certificate X by a key K differs from
the preceding operation by omitting the hashing. We model them as follows:

sign K X == {|X, Crypt K (Hash X)|}

signCert K X == {|X, Crypt K X|}

The protocol uses two different kinds of certificates: one issued by the cardholder,
the other by the certification authorities. The cardholder issues a certificate by
signing a message that contains his PAN and a nonce previously generated. The
certification authorities issue certificates that bind an agent to a key. An extra
parameter F distinguishes the encryption certificates (F = 0) from the signature
certificates (F = 1).

certC PAN KA PS F SignK ==

signCert SignK {|Hash {|Account PAN, Nonce PS|}, Key KA, Number F|}

certCA A KA F SignK == signCert SignK {|Agent A, Key KA, Number F|}

The formal protocol model is declared as a set of traces. A trace is a list of the
events occurred during a particular history of the network.

consts set_cr :: event list set

The basic rules for defining set cr provide the base of the induction, allow recep-
tion of the messages that have been sent and model the spy’s illegal operations.
They are omitted here, for they are common to all protocol models. The re-
maining rules formalise the protocol steps. Because of space limitations, we only
quote the rules formalising the last two steps.

Rule SET CR5. Two fresh nonces are needed: NC3 establishes the freshness of
the subsequent message, while NSecC is used by the CA. The nonce NCA, sent
by the certification authority to verify the freshness of the subsequent message,
is not sent back by the cardholder (it is optional in the formal definition), so its
utility looks questionable. Two fresh symmetric keys are needed: KC3 is used to
create a digital envelope, KC2 to encrypt the reply.

The cardholder generates a key cardSK that he wants certified as a public
signature key. The only condition imposed on cardSK is that it should differ
from the crucial keys. The model allows the cardholder to propose keys that
have already been certified, possibly for a different cardholder or by a different
authority.

[| evs5 ∈ set_cr; C 6= (CA i);

Nonce NC3 6∈ used evs5; Nonce NSecC 6∈ used evs5; NC36=NSecC;

Key KC2 6∈ used evs5; isSymKey(KC2);

Key KC3 6∈ used evs5; isSymKey(KC3); KC26=KC3;

~isSymKey(cardSK); cardSK 6∈ crucialK; invKey cardSK 6∈ crucialK;



Gets C {|sign (invKey SK) {|Agent C, Nonce NC2, Nonce NCA|},

certCA (CA i) EK 0 priSK_RCA,

certCA (CA i) SK 1 priSK_RCA |} ∈ set evs5;

Says C (CA i) {|Crypt KC1 {|Agent C, Nonce NC2,

Hash (Account (pan C)) |},

Crypt EK {|Key KC1, Account (pan C),

Hash {|Agent C, Nonce NC2|} |} |}

∈ set evs5 |]

==> Says C (CA i)

{|Crypt KC3

{|Agent C, Nonce NC3, Key KC2, Key cardSK,

Crypt (invKey cardSK)

(Hash {|Agent C, Nonce NC3, Key KC2, Key cardSK,

Account (pan C), Nonce NSecC|} ) |},

Crypt EK {|Key KC3, Account (pan C), Nonce NSecC|} |}

# evs5 ∈ set_cr

Rule SET CR6. When the certification authority receives a certificate request,
he checks that the proposed public key has been used to sign the hash. Then he
generates a certificate, which includes the fresh nonce NSecCA. The condition

∀Y C’. Key cardSK ∈ parts{Y} → Says (CA i) C’ Y 6∈ set evs6

requires that the proposed key cardSK has never appeared in a message sent
by the certification authority. So the cardholder can be assured that the same
key has not been certified to some other agent. This condition is not explicitly
required by the SET specifications, but the Programmer’s Guide [13, p. 33] states
the general principle that a certificate should ‘bind a public key to a uniquely
identified entity.’ Our model does allow a private key of one agent to be certified
as a public key of another one.

[| evs6 ∈ set_cr; (CA i) 6= C;

Nonce NSecCA 6∈ used evs6;

∀Y C’. Key cardSK ∈ parts{Y} → Says (CA i) C’ Y 6∈ set evs6;

Gets (CA i)

{|Crypt KC3

{|Agent C, Nonce NC3, Key KC2, Key cardSK,

Crypt (invKey cardSK)

(Hash {|Agent C, Nonce NC3, Key KC2, Key cardSK,

Account (pan C), Nonce NSecC|} ) |},

Crypt (pubEK i) {|Key KC3, Account(pan C), Nonce NSecC|}|}

∈ set evs6 |]

==> Says (CA i) C

(Crypt KC2

{|sign (priSK i)

{|Agent C, Nonce NC3, Agent (CA i), Nonce NSecCA|},

certC (pan C) cardSK (XOR(NSecC,NSecCA)) 1 (priSK i),

certCA (CA i) (pubSK i) 1 priSK_RCA|})



6 Mechanically Proved Properties

At the start, we had to prove all over again the properties of the modified
theory of messages, which form the basis of Paulson’s inductive method. This
totals around 200 theorems. Isabelle’s automation made this task easy, allowing
us to concentrate on the novel aspects of the theories under study.

Security properties from the protocol verification literature [10, 18, 22], such
as authentication and agreement, are often impossible to prove for the whole
protocol run. A cause is the optional use of nonces, which are sent but need not
be returned. So, it impossible to establish linkages of messages throughout the
protocol.

For the analysis of Cardholder Registration, we have proved around 30 tech-
nical lemmas focussed towards the proofs of two major properties: a key is only
certified as belonging to one agent (at least by the same CA), and the PAN
remains confidential.

For the first property, we have been successful. Formally, if each authority
should certify a given key only once, this means that if there exist two messages
from a CA that certify the same key, then those messages are identical. This is
stated by the following theorem.

Theorem 1.
[| evs ∈ set_cr

Says (CA i) C

(Crypt KC2

{|sign (priSK i) {|Agent C, Nonce NC3, Agent(CA i), Nonce Y|},

certC (pan C) cardSK X 1 (priSK i),

certCA (CA i) (pubSK i) 1 priSK_RCA|}) ∈ set evs;

Says (CA i) C’

(Crypt KC2’

{|sign (priSK i) {|Agent C, Nonce NC3’, Agent(CA i), Nonce Y’|},

certC (pan C) cardSK X’ 1 (priSK i),

certCA (CA i) (pubSK i) 1 priSK_RCA|}) ∈ set evs

|] =⇒ C=C’ & KC2=KC2’ & NC3=NC3’ & X=X’ & Y=Y’

In the proof, after induction and simplification, the subgoal arising from the
modelling of the last step of the protocol requires further consideration. In this
step, an authority CA i′ certifies a key cardSK′. If either i 6= i′ or cardSK′ 6=
cardSK, then the inductive formula concludes the proof. Otherwise, the authority
CA i has certified cardSK twice, which our model forbids: contradiction.

While stressing that each authority certifies a specific key for a single card-
holder, the theorem does not prevent different authorities to certify the same
key for the same cardholder. Such a scenario is a subject for future analysis.

We have not managed to prove confidentiality of the PAN. In particular, we
have not been able to eliminate a subgoal stating that no collection of keys can
help the spy in getting the CAs’ private keys. Again, the difference with other
protocols is that here asymmetric key pairs are generated on the fly. The novelty
of the problem seems to require novel proof techniques.



7 Conclusions

The introduction described other work concerning the SET protocol. But no
previous work completely formalizes a phase of this protocol. One reason may
be that the official specifications of SET [11–13] describe the composition of
messages in minute detail, while failing to give them a satisfactory semantics.

Our inductive specification provides an operational semantics for the Card-
holder Registration phase. We have unveiled some potentially dangerous omis-
sions. We have proved that if a trusted CA keeps track of the registered keys,
the protocol is robust enough to guarantee that two different agents will never
get the same key certified by the same certification authority. However, different
agents may collude and register the same key with different CAs. We have not
investigated the consequences of this scenario, which might limit the account-
ability of the payment phase.

Our future work will cover the remaining phases of the protocol. Having
digested the specifications, the greatest task is behind us. We expect to be able
to derive further properties of SET with an acceptable amount of effort.
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