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Abstract

Interactive theorem provers require too much effort from their users. We have been
developing a system in which Isabelle users obtain automatic support from auto-
matic theorem provers (ATPs) such as Vampire and SPASS. An ATP is invoked at
suitable points in the interactive session, and any proof found is given to the user in
a window displaying an Isar proof script. There are numerous differences between
Isabelle (polymorphic higher-order logic with type classes, natural deduction rule
format) and classical ATPs (first-order, untyped, clause form). Many of these differ-
ences have been bridged, and a working prototype that uses background processes
already provides much of the desired functionality.

1 Introduction

Automatic theorem provers (ATPs) such as Vampire [19], which work by res-
olution, are impressive in their power. Interactive proof tools such as Isa-
belle [14] and PVS [5] provide much less automation; proofs require substan-
tial user effort. However, interactive tools are better suited for verification
projects. They admit complicated definitions and specifications, including re-
cursive definitions of types, functions and relations.

An obvious step is to gain the best of both worlds by integrating resolution
provers with interactive ones, but many complications make this task diffi-
cult. Most automatic theorem provers work in first-order logic, while interac-
tive provers typically use higher-order logic. Most resolution theorem provers
are untyped, while interactive provers often have complicated type systems.
Resolution theorem provers are designed to handle one-shot problems, while
interactive provers are designed to support lengthy developments. Resolution
provers are designed to run for minutes or hours, while the user of an interac-
tive tool expects to get a response in seconds.
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Our approach integrating the two types of system is based on a few simple
principles. The guiding idea is that user interaction should be minimal. The
system should invoke automatic provers spontaneously or in response to a
trivial gesture such as a mouse click. These proof attempts should run in the
background, not disturbing the user unless a proof is found. Proofs should
refer to a large library of known lemmas: users should not have to select the
relevant ones. The automatic prover should not be trusted; instead, proofs
should be translated back into the formalism of the interactive prover. Proofs
should be delivered in source form to the user, who can simply paste them
into her proof script.

Governed by these principles, we have taken a systematic approach to reconcil-
ing the differences between an interactive tool (Isabelle) and automatic theo-
rem provers (Vampire, SPASS). We have simply enumerated the differences—
types, clause form, higher-order concepts, etc.—and dealt with each one in
turn. The implementation is essentially complete, although still in need of
many refinements to make it generally usable.

There is much related work. Many others have attempted to integrate inter-
active and automatic provers.

• Coq has been integrated with Bliksem [4].
• HOL has integrated with various first-order provers, including Gandalf [9]

and Metis [10], the latter designed specifically for that integration.
• Isabelle has been integrated with a purpose-built prover, blast [17].

• KIV has been integrated with a tableau prover, 3TAP [1].

Closest to our conception is Ωmega [21]. It shares with our work the idea
that automatic provers can run in the background without being invoked by
the user. However, there are also some important differences between the two
projects. Ωmega is a novel architecture, using proof planning to invoke external
reasoners. The objective of the Ωmega project is to identify techniques that can
assist mathematicians. Isabelle is an established verification tool with many
users and a huge amount of already formalized material. Our objective is to
strengthen our existing framework rather than to create a new one. The only
external reasoners we consider are resolution provers, and from this narrow
focus we hope to provide the best possible integration.

The rest of the paper is as follows. We begin by describing Isabelle (§2) and
our target resolution provers, Vampire and SPASS (§3). We describe how to
formalize Isabelle’s type system in first-order logic (§4) and how to translate
lemmas and goals from Isabelle’s higher-order logic into clauses (§5). We de-
scribe the overall process management framework (§6) and the two stages of
proof reconstruction: how we check that the proof works in Isabelle (§7) and
how we turn it into a proof script (§8). We describe the prototype’s current
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status (§9) and finally give brief conclusions (§10).

2 Isabelle

Isabelle [14] is an interactive proof tool. Like others based on the LCF archi-
tecture, it allows proofs to be constructed only within a small kernel, which
defines the basic inference rules. All decision procedures and other proof mech-
anisms must ultimately reduce their deductions to basic inference rules and
axioms. Such an architecture makes proof procedures more difficult to imple-
ment, but it greatly improves their reliability. A difference between Isabelle
and other LCF-based provers is that Isabelle’s built-in logic, the meta-logic,
is intended only for the formalization of other logics, the object-logics.

The LCF approach uses type-checking of the underlying programming lan-
guage (typically a dialect of ML) to enforce soundness. The definition of thm,
the abstract type of theorems, constitutes the inference kernel. A value of type
thm can only be constructed by applying inference rules (which are built-in
functions with types such as thm -> thm) ultimately to axioms (typically con-
stants of type thm). Because ML’s type-checker prevents arbitrary formulae
from being assigned type thm, any expression having this type represents a
correct proof.

Isabelle is generic: it supports a wide range of formalisms. The most impor-
tant object-logic is higher-order logic (HOL), but several others are available,
including Zermelo-Fraenkel set theory (ZF) [18]. The version of higher-order
logic in Isabelle has polymorphic types (here we mean logical types, not ML
types). Unlike other implementations of HOL, Isabelle also provides the con-
cept of axiomatic type class : a collection of types, each possessing a specified
set of operations that satisfy specified axioms. Typical type classes include
partially ordered set and ordered field. A type class is open-ended: any new
type that meets the specification can be admitted to the class. Unlike PVS,
Isabelle does not support predicate subtyping, where the combination of a
type and a predicate yields a new type.

Isabelle’s most basic inference mechanism is a form of Horn clause resolution,
which must not be confused with the resolution performed by the automatic
provers we invoke. A typical Isabelle theorem is a nested implication of the
form

φ1 =⇒ (· · · (φn =⇒ θ) · · · ),
with implicit universal quantification over its free variables. This theorem is
abbreviated as

[[φ1; . . . φn]] =⇒ θ,
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and represents the object-logic inference rule

φ1 . . . φn

θ.

Isabelle’s resolution combines such rules in the obvious way. For example,
the two Isabelle theorems φ =⇒ θ and θ =⇒ ψ can be resolved to obtain
φ =⇒ ψ; more generally, either clause may have multiple negative literals,
and the complementary literals may undergo unification. 1 The Isabelle proof
state has much in common with a Prolog goal clause. When a user performs
single-step proof checking, applying some rule to reduce a goal to subgoals,
she is actually performing Isabelle resolution between that rule and the proof
state [16].

Isabelle provides a variety of automatic tools—known as tactics—that can be
used to construct proofs. They include

• simp, which simplifies subgoals using rewriting and decision procedures,
• blast, which proves subgoals by classical reasoning (see below),
• auto, which combines simplification and classical reasoning,
• and other classical reasoning tools such as fast and clarify.

The rewriting engine and arithmetic decision procedures are similar to those
found in competing systems such as PVS [5] and HOL [7]. Unique to Isa-
belle is its generic classical reasoner, which searches for proofs using tableau
methods [17]. Within the realm of first-order logic, the classical reasoner is
much weaker than resolution theorem provers. However, the classical reasoner
is not restricted to first-order logic: it uses any supplied collection of lemmas
to perform forward or backward chaining, governed by depth-first iterative
deepening. The classical reasoner can prove many theorems that are difficult
for most automatic provers, such as A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C), and
theorems that cannot easily be expressed in first-order logic at all, such as( ⋃

i∈I∪J

Ai

)
=

(⋃
i∈I

Ai

)
∪

(⋃
i∈J

Ai

)
.

The classical reasoner’s other great advantage is that it can utilize a large
set of lemmas without suffering a combinatorial explosion. Although certain
proofs do require the user to name crucial lemmas, hundreds of other lemmas
are available to the classical reasoner at all times. These are lemmas that were
previously designated as being useful for classical reasoning, and they consti-
tute a knowledge base for the user’s application domain. Typically omitted
from this knowledge base are transitivity laws and similar lemmas that would
blow up the search space. While integrating Isabelle with automatic theorem

1 Isabelle uses higher-order unification [8].
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provers, we have sought to preserve this advantage: the user should only have
to identify a few crucial lemmas, while the resolution search automatically
finds other needed facts from the knowledge base. Separating relevant facts
from irrelevant ones is a task that resolution theorem provers find difficult [13].

Isabelle provides two proof styles, linear and structured. Linear proofs resemble
the tactic scripts of HOL and PVS, and consist of commands that manipulate
the proof state. Structured proofs (of the Isar language [26]) are an attempt
at formalizing mathematical style. We have concentrated on supporting struc-
tured proofs, chiefly because they work on different subgoals independently.
In the linear style, an Isabelle tactic can affect all subgoals, so they are likely
to change before an automatic prover manages to prove any of them. Our
methods are thus applicable to traditional LCF-style systems such as HOL,
where even linear proof scripts respect the goal-subgoal tree structure.

Notational remark. This paper follows the usual convention in the logic
and theorem proving communities, where the scope of quantifiers is as small as
possible. For example, ∀xA∧B abbreviates (∀xA)∧B rather than ∀x (A∧B).
This convention differs from that used in interactive tools such as Isabelle,
where the quantifier syntax includes a dot (as in ∀x.A ∧B) and the scope of
quantifiers extends to the right as far as possible.

3 Automatic Theorem Provers

Most automatic theorem provers implement some form of resolution. They
work in untyped first-order logic; they use clause form; their main inference
rules are resolution, factoring, and paramodulation; they output a summary
of the proof found. The better ones utilize advanced indexing data structures
and subsumption, and they can prove exceptionally complex theorems.

We hope that integration with a resolution prover will equip Isabelle with an
effective combination of equational and classical reasoning, via paramodula-
tion. One of the most popular Isabelle tactics, auto, performs a naive combi-
nation of rewriting and classical reasoning. It begins by performing obvious
classical reasoning steps (such as reducing the goal A ∧ B to the separate
subgoals A and B interleaved with simplification; it attempts to prove the
resulting subgoals using classical reasoning. What it cannot do is interleave
equational reasoning with search as paramodulation does.

We performed much experimentation using Vampire [19], which has repeat-
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edly won at CASC (the CADE ATP System Competition). 2 We have even
used a version of Vampire modified (by its developers) to support forward and
backward inference, as Isabelle does. However, we have also used SPASS [24],
largely because its proof output is easier to interpret. We intend that our work
should be applicable to most resolution provers. Standardization of inputs and
outputs would make this objective attainable. For input, the tptp2X utility
can translate from TPTP (Thousands of Problems for Theorem Provers [23])
format into the input languages of all major resolution provers. Output of
proofs is more problematical because systems differ in their inference rules,
simplification steps, and problem transformations. We hope that many theo-
rem provers will eventually produce complete, explicit proofs in TSTP (Thou-
sands of Solutions from Theorem Provers [22]) format.

4 Coding Isabelle Types in First-Order Logic

Isabelle/HOL implements classical higher-order logic, whose complex type sys-
tem is not supported by standard ATPs. Therefore, we need to model Isabelle’s
type system within first-order logic. The purpose of encoding type information
is to ensure soundness, but it also turns out to reduce the ATP’s search space:
theorems will take part in proof attempts only if the types are appropriate.

4.1 Type Classes

In Isabelle, a type class is a set of types for which certain operations are
defined [25]. An axiomatic type class has a set of axioms that must be satisfied
by its instances, namely the types belonging to that class. If a type τ belongs
to a class C then it is written as τ :: C. A type class C is a subclass of another
type class D provided all axioms of D can be proved in C; if a type τ is an
instance of C then it is an instance of D as well. Furthermore, a type class
may have more than one direct superclass. If C is a subclass of both D1 and
D2, then C is a subset of the intersection of D1 and D2. The intersection of
type classes is called a sort.

We formalize types as first-order terms. For each type class, we introduce a
unary predicate. If a type τ is an instance of a class C, then C(τ) will be true.
The subclass relation “C is a subclass of D” is expressed by the universal
implication ∀τ [C(τ) → D(τ)]. Similarly, the sort constraint τ :: C1, . . . , Cn is
expressed by the conjunction C1(τ) ∧ . . . ∧ Cn(τ).

2 See http://www.cs.miami.edu/~tptp/CASC/.
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Isabelle provides compound types through the use of type constructors. Each
type constructor has one or more arities, which describes the type class infor-
mation of the arguments and the result of this type constructor. For instance,
the list type constructor list may have an arity written as

list :: (type) order

This means, if the argument of list is an instance of class type, then the
resulting type (of lists) belongs to class order. (It can be realized by the prefix
ordering on lists, which does not require an ordering to be defined on list
elements.) We formalize this arity by the first-order formula

∀τ [type(τ) → order(list(τ))].

In general, for a type constructor op, each arity of the form

op :: (C1, . . . , Cn)C

is translated into a Horn clause

∀τ1 . . . τn [C1(τ1) ∧ . . . ∧ Cn(τn) → C(op(τ1, . . . , τn))].

4.2 Embedding Type Information in Clauses

Isabelle’s predicates and functions are typed—many of them are
polymorphic—and this information must be conveyed to the ATP. We embed
the types of predicates and functions, formalized as shown above, in clauses:

• A function or predicate (other than equality) takes its type as an additional
argument.

• Equality is discussed below. However, equalities between boolean values—
which are legal in HOL—are simply replaced by two implications.

• Any type class constraints on type variables occurring in a clause are in-
cluded as preconditions, in the form of additional negative literals.

The equality predicate requires special treatment because it is built into most
ATPs to support inference rules such as paramodulation. It takes two argu-
ments only, so adding a third argument is out of the question. We briefly
experimented with embedding type information into the two-argument equal-
ity relation by pairing each operand with its type. Thus A = B became

equal(typeinfo(A, τ), typeinfo(B, τ)),

where τ is the type of A and B and typeinfo effectively behaves as a pairing
function. To make equality reasoning work, we included an axiom for stripping
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away type information:

equal(typeinfo(A, τ), typeinfo(B, τ)) → equal(A,B)

This approach is useful in certain situations, such as proving the set equality
A = B by separate consideration of the cases A ⊆ B and B ⊆ A, or proving
the integer equality i = j by separate consideration of the cases i ≤ j and
j ≤ i. It prevents the (untyped) ATP from attempting to prove absurdities like
A ≤ B or x ⊆ y. However, this representation harms performance, probably
because it complicates equality reasoning. We now simply regard equality as
untyped.

Isabelle’s type information exists in various places and needs to be extracted
and converted to first-order format. The type information in Isabelle goals and
lemmas are translated into additional clauses. Type information such as sub-
class relationships are global facts, and hence are converted to axiom clauses.
The type information from Isabelle rules are translated into extra literals of
the rule clause. Unfortunately, these extra clauses and literals complicate proof
reconstruction: they represent Isabelle’s type system rather than actual Isa-
belle inferences. When reconstructing a proof, we have to identify and remove
subproofs that perform type checking.

4.3 Examples

Here are two examples taken from Isabelle-generated TPTP files in order to
illustrate the formalization of types. To improve readability, we have reformat-
ted the output, simplifying the computer-generated names. The first example
expresses the theorem A ⊆ B∧B ⊆ A→ A = B. Isabelle identifies the subset
relation with the overloaded constant ≤, whose third argument below restricts
it to sets.

input_clause(cls_0_Set_subset_antisym, axiom,
[++equal(V_A, V_B),
--lessequals(V_B, V_A, fun(set(T), fun(set(T), bool))),
--lessequals(V_A, V_B, fun(set(T), fun(set(T), bool)))]).

The second example expresses the theorem ¬(x < x). It refers to the over-
loaded constant <. Its type argument, together with the clause’s first literal,
restricts it to elements whose type belongs to the type class of partial order-
ings, order.

input_clause(cls_0_Orderings_order_less_irrefl, axiom,
[--class_order(T),
--less(V_x, V_x, fun(T, fun(T, bool)))]).
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5 Preparing Isabelle Goals for ATPs

Recall that invocation of the ATP should be invisible to the user. She works
normally, refining goals to subgoals; proof attempts on open subgoals take
place in the background, and any successes are reported. The automatic prover
must receive

• existing lemmas,
• assumptions local to the current proof, and
• the subgoals to be proved.

The automatic theorem prover must be given clause form, with Isabelle’s con-
ventions for natural deduction removed. Isabelle types must also be removed,
as described above. Finally, these translations must be integrated with Isa-
belle’s interactive proof language.

5.1 Translating Existing Lemmas to Clause Form

Lemmas that were previously proved in Isabelle need to be converted to clause
normal form (CNF). This transformation must be performed using Isabelle
inferences in order to allow proof reconstruction. As a result, our CNF trans-
formation is a function of type thm -> thm, which in LCF-based provers is
the type of derived inference rules. This CNF transformation is performed by
two functions.

• skolem axiom converts an Isabelle theorem into negation normal form
(NNF), Skolemizes it and finally removes all existential variables.

• cnf axiom performs the same steps, then converts the result into conjunc-
tion normal form (CNF), represented by a list of clauses. Each clause has
type thm, and is therefore an Isabelle theorem.

Skolemization takes several steps and treats lemmas differently from negated
conjectures. It begins with a formula whose outermost universal quantifiers
have been discarded. It then moves every existential quantifier to the front of
the theorem by applying the rewrite rule

(∀x ∃y P (x, y)) ⇐⇒ (∃f ∀xP (x, f(x))).

This equivalence expresses the axiom of choice, which appears to be necessary
when performing Skolemization by inference. 3 A single application of this

3 In simple cases, we can avoid the use of the axiom of choice by instead pulling
out and discarding the quantifier ∀x whenever we encounter a formula of the form
∀x∃y P (x, y), at the cost of substantially increased proof complexity [3].
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equivalence yields a function of one variable. Repeated application—to move
an existential variable past several universal variables—results in a function
of all of those variables. Rewriting with this equivalence, along with others
to extract existential quantifiers from conjunctions, disjunctions, etc., yields a
formula in which all existential quantifiers are lined up at the front. If we were
to reinstate the outermost universal quantifiers, we would obtain a ∀∃-prefix.

These existential quantifiers must now be removed altogether. The procedure
depends upon whether the clauses have been produced from the negated con-
jecture or from existing theorems. Skolemization of the negated conjecture is
easy: we transform an Isabelle goal (the conjecture) into one that is headed
by existential quantifiers. These can be removed using the standard treat-
ment of existentially quantified assumptions, namely application of the rule
of ∃-elimination. Skolemization of theorems is harder: we transform an Isa-
belle theorem into one that is headed by existential quantifiers. Removing
those quantifiers requires a further use of the axiom of choice, in the form of
Hilbert’s ε-operator. The term εx P (x) denotes some value x such that P (x)
is true, if such exists; otherwise, it denotes any value of the appropriate type.
If we have transformed a lemma into the form ∃xP (x), then we may conclude
P (εx P (x)); this inference is trivial in Isabelle, using the basic properties of
Hilbert’s ε-operator. This step can be repeated for each existential quantifier.

For instance, the Isabelle lemma subsetI expresses the natural deduction rule
for introducing the subset relation: to show A ⊆ B, it suffices to show that for
arbitrary x, if x ∈ A then x ∈ B. This lemma is equivalent to the first-order
formula

∀x (x ∈ A→ x ∈ B) → A ⊆ B.

The variables A and B are implicitly universal, but since the outermost uni-
versal quantifiers are discarded, there is no prefix ∀AB. Transforming this
formula into NNF and Skolemizing yields

∃x [(x ∈ A ∧ x /∈ B) ∨ A ⊆ B].

The replacement of existential variables by ε-terms yields a large formula.

εx [(x ∈ A ∧ x /∈ B) ∨ A ⊆ B]︸ ︷︷ ︸
ε−term

∈ A ∧ εx [(x ∈ A ∧ x /∈ B) ∨ A ⊆ B]︸ ︷︷ ︸
ε−term

/∈ B

∨ A ⊆ B

The two ε-terms are identical, representing the eliminated ∃x. It would obvi-
ously be preferable to define a Skolem function by

f(A,B)
def
= εx [(x ∈ A ∧ x /∈ B) ∨ A ⊆ B].
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because the result would be more compact:

(f(A,B) ∈ A ∧ f(A,B) /∈ B) ∨ A ⊆ B

Causing such function declarations to be generated presents some practical
problems: Isabelle’s concept of “theory” makes it difficult to declare constants
on the fly. For the present, proof reconstruction in Isabelle uses the versions
containing ε-terms. Efficiency concerns will probably force us to replace these
by automatically-defined Skolem functions.

Obviously, the ε-terms must be replaced by proper Skolem terms such
as f(A,B) before the clauses are delivered to an ATP. For each ε-term, we
generate a unique Skolem term. The universally quantified variables that cover
the scope of a Skolem term are exactly those variables that appear inside the
ε-term. Therefore it is enough to inspect each ε-term separately in generating
a Skolem term. This step (which is not performed by Isabelle inferences) yields
clauses that are ready to be delivered to ATPs.

5.2 Preprocessing of Elimination Rules

The code that converts formulas into clauses raises an exception if it detects
that the formula is higher-order, since these clauses will be used by first-order
ATPs. However, one class of apparently higher-order theorems can be con-
verted. Many Isabelle lemmas are expressed to resemble the introduction and
elimination rules of natural deduction [16]. The format of Isabelle elimination
rules can be expressed directly in higher-order logic:

∀P [A→ (∀x1 B1 → P ) → · · · → (∀xn Bn → P ) → P ]

Here, A is a formula that contains an operator to be eliminated. Each xi is a
list of universally quantified variables, while B1, . . . ,Bn are lists of formulae,
regarded as conjunctions. (Any of the lists may be empty.) Finally, P is a
predicate variable.

Clearly any theorem of this form should be transformed into an equivalent
first-order formula, removing the predicate variable, before we transform it
into CNF. For an elimination rule like this, we transform it to

A→ (∃x1 B1 ∨ . . . ∨ ∃xn Bn).

If n = 0, the elimination rule is simply ¬A.

The transformation described above is difficult to perform simply by applying
Isabelle inference rules. An alternative approach was adopted that still ensures
correctness. This approach can be divided into two major steps.
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(1) From the elimination rule, we construct an Isabelle term that represents
the first-order formula equivalent to the rule. This is straightforward pro-
gramming.

(2) We then invoke an Isabelle function that takes a term and a tactic, yield-
ing an Isabelle theorem. The tactic applies the elimination rule under
consideration, then delivers the resulting subgoals to Isabelle’s classical
reasoner.

As an example, consider the elimination rule UnionE. Intuitively, it says that if
A ∈ ⋃

C, then there is some x such that A ∈ x and x ∈ C. It can be expressed
in higher-order logic as follows:

∀P AC [A ∈
⋃
C → ∀x (A ∈ x ∧ x ∈ C → P ) → P ]

The result of our transformation is a first-order theorem:

∀AC [A ∈
⋃
C → ∃x (A ∈ x ∧ x ∈ C)]

This formula is finally converted to CNF as two clauses

A /∈
⋃
C ∨ [εx [A /∈

⋃
C ∨ (x ∈ C ∧ A ∈ x)]] ∈ C

and

A /∈
⋃
C ∨ A ∈ εx [A /∈

⋃
C ∨ (x ∈ C ∧ A ∈ x)]

where A and C are implicitly universally quantified. Since the procedure above
is carried out by Isabelle inferences, each clause has the type thm, which means
it is an Isabelle theorem. The versions of these clauses given to the ATP will
replace εx (A /∈ ⋃

C ∨ x ∈ C ∧ A ∈ x) by a Skolem term of the form f(A,C).

5.3 A Generic Clause Datatype

Although ATPs accept clauses in a textual format, it is useful to have an
internal representation of clauses that captures all of the essential information.
We define type clause to represent clauses derived from Isabelle lemmas and
goals. A clause contains several fields.

• A unique identifier. If the clause is derived from an Isabelle rule, then the
rule’s name is recorded as well.

• An indication of whether the clause should be labelled as an axiom or
negated conjecture clause. This distinction is important for heuristics such
as SOS, which attempt to focus the proof search on the conjecture. (Recall
discussion in §3.)

• A list of literals in this clause. Since our inputs to ATPs are typed, predi-
cates’ and functions’ types are included.
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• Additional type information. This includes type classes of type variables
that occur in the clause.

During the conversion of an Isabelle lemma or negated subgoal into the clause
datatype, type information is gathered and stored in the form of additional
literals, as described in §4.2 above. A first-order Horn clause represents the
arity of each type constructor. Every such clause is represented by a type
arityClause, which is analogous to clause but simpler. Fields included in
arityClause are

• a unique identifier,
• a positive literal (the type class of the type constructor’s result), and
• a list of negative literals (the type classes of the type constructor’s argu-

ments).

A similar datatype, classrelClause, stores information about the subclass
relationship between type classes. Each such relationship is formalized as a
Horn clause.

The clause datatypes defined above can easily be translated to any ATP-
specific clause syntax. We have implemented the conversion to the widely-used
TPTP format. By default, the clauses include type information, as described
in the previous section. Users can modify this behaviour (for instance, on
including type information for equalities) by setting boolean flags.

5.4 Summary of Preliminary Experiments

Before undertaking any implementation, we carried out a series of experiments
in order to examine whether our approach would be practical [12,13]. The ex-
periments consisted of taking basic tactic invocations (the tactics were blast,
fast, clarify, auto and simp) from existing proofs. We attempted to repro-
duce them using Vampire and SPASS, with a time limit of 60 seconds per
proof. In each case, clauses from the negated conjecture were combined with
axiom clauses obtained from the default classical and simplifier rules: the rules
that Isabelle tactics such as auto would use. In some of the examples, we used
formula renaming [15] before the CNF transformation in order to minimize
the number of clauses.

Overall, our experiments showed that our methods of translating ZF and HOL
into first-order clauses were effective. Most of the goals that were proved by
Isabelle’s blast and auto were proved by Vampire and SPASS. In addition,
the inclusion of type information in HOL was shown to be important: rules
involving polymorphic operators did not increase the search space, probably
because the type information constrained the search.
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Fig. 1. System Architecture

Since the aim of this integration is to improve automation, it is important to
know whether Vampire and SPASS can prove goals that were not proved by
Isabelle’s automatic tools. For this, we took 15 lemmas that were proved in
Isabelle by a short sequence of proof steps and gave them to Vampire. Vampire
proved ten of these.

However, our experiments also showed that having a large number of axioms—
which is inevitable if we include the default classical and simplifier rules—often
overwhelms ATPs. Many of those failed proof goals could be proved if we
removed some of the irrelevant axioms. Thus, we have had advance warning
of the need to implement heuristics for coping with redundant information.

6 Architecture Overview

Figure 1 presents a block diagram of the system. Isabelle interacts with the
user through a generic interface, Proof General. In order to send subgoals to
resolution provers while the user continues with what she is doing, a watcher
process is created. This is another Isabelle process, running concurrently with
the Isabelle process the user interacts with, and which can communicate with
that process by two Unix pipes, one for input, the other for output.

POSIX is an international standard that defines how an application obtains
the basic services of an operating system. 4 The watcher calls the POSIX
functions specified in the Standard ML Basis Library [6]. Both Poly/ML and
Standard ML of New Jersey implement these functions.

4 See http://www.pasc.org/.
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6.1 Watcher Process

From the main Isabelle process, a watcher process can be created with the
command

val (watcherIn, watcherOut, watcherPid) = createWatcher();

This uses the POSIX fork() command to create an identical copy of the
original Isabelle process, and then sets up communication pipes between the
two. The process runs concurrently with the original process, and the user
should be unaware of its existence unless it finds a proof.

Once the watcher has been created, it polls its input pipe every 100 millisec-
onds for commands from the main Isabelle process. If it sees a command to
prove a subgoal, it calls an automatic prover using a modified version of the
execute function from the Unix structure. This creates a process running the
resolution prover on the desired subgoal.

Each time a prover is called, a data structure containing information on that
process is added to a list in the watcher. This data structure contains

• the process ID of the new process,
• the name of the prover,
• the file containing the subgoal to be proved, and
• the file descriptors of the input and output pipes connecting the watcher to

the resolution proof process.

All processes in the watcher’s list are polled for output, each poll timing out
after 100 milliseconds. If the watcher sees that a child has responded, it checks
to see whether a proof has been found and, if so, reads in the proof and carries
out a reconstruction. It then signals the Isabelle process that a proof has been
found and transferring the commands necessary for reconstruction via the
output pipe. Once a proof has been found, reconstructed, and transmitted to
Isabelle, the information for that proof process is removed from the watcher’s
list.

Resolution provers can run either on the same machine as the main Isabelle
process and watcher, or remotely using ssh, the secure shell. Once an ssh key
has been set up on the calling machine, ssh connections can be authenticated
automatically.
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6.2 Interaction with the User

The standard user interface for Isabelle is Proof General [2]. Based on the
Emacs text editor, Proof General connects the evaluation of a proof to the
editing of a proof script containing a series of commands. Once a command
has been executed by Isabelle, the corresponding line in the script is locked,
preventing any modification.

Communication with Proof General takes place in three buffers.

• The script buffer contains the text of the proof script; unlocked portions
can be edited.

• The goals buffer displays the current list of subgoals to be proved.
• The response buffer displays output from the proof tool.

Users tell the system to execute parts of the proof script by clicking an icon
at the top of the Proof General window. In order to provide for output from
an ATP via the watcher process, we have added a resolution-response buffer
to Proof General. This works like the trace buffer, which displays any tracing
output. Both of these buffers, along with procedures to print warning messages
in the response buffer, rely on the output from the proof tool being enclosed
in urgent response characters. These are non-printing characters that direct
Proof General to do something special with this output, instead of displaying
it in the response buffer.

What Proof General does next with the output depends on the character
following the urgent response character. In the case of an ATP-based proof,
this is another non-printing character telling Proof General to put the output
in the resolution-response buffer, highlight it, and bring the buffer to the front.
Figure 2 shows an example. The upper window holds an interaction buffer
where the user has entered a conjecture followed by the command proof -. A
proof found by SPASS is displayed, for the user to insert into her proof script.
Note that the reconstructed proof emulates resolution rather than attempting
to be intuitive.

6.3 Interaction Between Proof General and ATPs

Since the aim of our integration is to reduce interaction, the invocation of
ATPs should be as easy as possible. In our current prototype, invocation is
automatic when Isabelle enters a mode in which subgoals are available to be
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Fig. 2. Proof General returning a proof script (shaded) to the user

proved. 5 Experience suggests that we should adopt a new mode of interaction,
ATPs are invoked by a single mouse gesture. Explicit invocation prevents the
waste of unnecessary ATP processes being spawned, and it keeps the user in
control. However invocation takes place, the following steps are taken:

• First, a file containing clauses derived from each subgoal is produced.
• Next, a watcher process is created and a request to call an ATP passed to

5 Precisely, this occurs at the entry to State mode, which signals the start of a
structured proof.
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Here is a proof with depth 4, length 9 :

1[0:Inp] || v_P(tconst_fun(typ__asc39_a,tconst_bool),v_x)*+ ->

v_P(tconst_fun(typ__asc39_a,tconst_bool),U)*.

3[0:Inp] || v_P(tconst_fun(typ__asc39_a,tconst_bool),U)*+ ->

v_P(tconst_fun(typ__asc39_a,tconst_bool),v_x)*.

5[0:Inp] || -> v_P(tconst_fun(typ__asc39_a,tconst_bool),U)*

v_P(tconst_fun(typ__asc39_a,tconst_bool),v_xa)*.

7[0:Inp] || v_P(tconst_fun(typ__asc39_a,tconst_bool),U)*+

v_P(tconst_fun(typ__asc39_a,tconst_bool),v_xb)* -> .

9[0:Fac:5.0,5.1] || -> v_P(tconst_fun(typ__asc39_a,tconst_bool),v_xa)*.

10[0:Res:9.0,3.0] || -> v_P(tconst_fun(typ__asc39_a,tconst_bool),v_x)*.

11[0:Res:10.0,1.0] || -> v_P(tconst_fun(typ__asc39_a,tconst_bool),U)*.

12[0:Fac:7.0,7.1] || v_P(tconst_fun(typ__asc39_a,tconst_bool),v_xb)* -> .

14[0:Res:11.0,12.0] || -> .

Fig. 3. A Proof Returned by SPASS

it, consisting of
· the ATP to be called, with any necessary settings
· the path and filename of the input file, and
· a textual representation of the negated, Skolemized goal (including types).
This initiates a call to the ATP and translation of any proof that is found,
and will be discussed in §7.

• Finally, the Isabelle process responds to a POSIX signal from the watcher
process by reading the proof found, transforming it into an Isar script, and
sending it to Proof General for display in the resolution-response buffer.
This will be described in §8.

7 Finding and Translating an ATP Proof

To illustrate the process of finding and translating an ATP proof, we follow
the progress of the proof of the following formula using the SPASS prover.

∃x ∀y (P (x) = P (y)) −→ (∃xP (x) = ∀y P (y))

We begin by transforming this subgoal into negation normal form, followed
by Skolemization and conversion to clauses. This allows us to generate ATP-
specific problem files for each subgoal. The pathnames of these files, along
with settings for the ATP to be called, are then sent to the watcher process,
which in turn calls an automatic prover. At present, the choice of prover is
determined by flag settings. If necessary, Isabelle uses tptp2X [23] to convert
the problem file from TPTP format into the format required by the chosen
prover.

Once a proof has been found by the resolution prover (Fig. 3), the watcher
reads it in. Resolution proof steps are represented in the watcher by the fol-
lowing datatype:
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datatype Proofstep = Axiom
| Binary of (int * int) * (int * int)
| MRR of (int * int) * (int * int)
| Factor of (int * int * int)
| Para of (int * int) * (int * int)
| Rewrite of (int * int * int)
| Unusedstep of unit

Inference rules currently emulated in Isabelle include binary resolution, match-
ing resource resolution, factoring, paramodulation and rewriting. The SPASS
proof is now parsed, yielding a list:

val proof_steps =
[(1, Axiom, ["P x", "~ P U"]), (3, Axiom, ["P U", "~ P x"]),
(5, Axiom, ["~ P U", "~ P xa"]), (7, Axiom, ["P U", "P xb"]),
(9, Factor (5, 0, 1), ["~ P xa"]),
(10, Binary ((9, 0), (3, 0)), ["~ P x"]),
(11, Binary ((10, 0), (1, 0)), ["~ P U"]),
(12, Factor (7, 0, 1), ["P xb"]),
(14, Binary ((11, 0), (12, 0)), [])]

Each element of the list contains

• the line number of the SPASS proof step,
• a proof step as an element of type Proofstep, and
• a list of strings representing the clause ordering in the SPASS proof.

The last element is necessary because SPASS reorders the literals in each
clause; we must reorder the literals in the Isabelle clauses to match this. Addi-
tionally, all literals that were inserted to model the Isabelle type system (recall
the discussion in §4.2) are removed, leaving only the literals that appear in
the Isabelle representation of the clause.

As the watcher starts off as an identical copy of the main Isabelle process, it
is able to create clauses for each subgoal by the same methods as the calling
program when it created the ATP problem files. A contradiction can be derived
from this set of clauses by emulating the steps of the resolution proof. Hurd [10]
describes a similar reconstruction procedure for HOL, which he applies to his
first-order prover, Metis.

In addition to producing the desired theorem, the translation procedure re-
turns a list of reconstruction steps. These consist of

• the line number,
• a proof step,
• an ordered list of the literals in the clause, and
• a list of the variables in the clause.
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The watcher process transforms this list of reconstruction steps into a string:

val reconstr =

"[P%x%xa%xb%]1OrigAxiom()[P x%~ P U%][U%]3OrigAxiom()[P U%~ P x%][U%]

5OrigAxiom()[~ P xa%~ P U%][U%]7OrigAxiom()[P U%P xb%][U%]

1Axiom()[P x%~ P U%][U%]3Axiom()[P U%~ P x%][U%]

5Axiom()[~ P U%~ P xa%][U%]

7Axiom()[P U%P xb%][U%]9Factor(5,0,1)[~ P xa%][]

10Binary((9,0),(3,0))[~ P x%][]

11Binary((10,0),(1,0))[~ P U%][U%]12Factor(7,0,1)[P xb%][]

14Binary((11,0),(12,0))[][]"

: string

This is sent, along with the string representation of the goal, to the Isabelle
process. At the same time a POSIX signal is sent, causing the Isabelle process
to interrupt what it is currently doing to deal with the information from the
watcher. The need to interrupt the main Isabelle process is unfortunate, but
this process is the only one that can communicate with Proof General.

8 Transforming the ATP Proof to an Isar Proof

In order to allow Isar scripts to express resolution proofs, we had to extend
the Isar language with the inference rules used in resolution provers. In Isar,
operations that transform theorems are called attributes. These new attributes
could then be used to produce an Isar script from the reconstruction string
obtained from the watcher process.

8.1 Resolution Proof Attributes for Isar

We extended the Isar proof language with the following attributes:

• binary, binary resolution
• factor, factoring
• paramod, paramodulation
• demod, demodulation (rewriting)

Each of these attributes operate on one or more already established facts in a
proof. For example, the line

by (rule cl9 [binary 0 cl3 0])

resolves the first literal (numbered 0) of the fact labelled cl9 with the first
literal of the fact labelled cl3. The code for these operations is the same as
that used to translate these operations inside the watcher process (§6.1).
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FILE “script.thy” 1

script.thy

theory Scratch = Main

files "/homes/clq20/Jia_Code/New-14-12-04/ROOT.ML" :

setup Reconstruction.setup

text{*A manual resolution proof of Thm B.*}

lemma "((∃ x. ∀ y. (P(x) = P(y))) −→ ((∃ x. P(x)) = (∀ y. P(y))))"

proof (rule ccontr,skolemize, make_clauses)

fix P x xa xb

assume cl1’: "
V

U . [[P x; ¬ P U ]] =⇒ False"

and cl3’: "
V

U . [[P U; ¬ P x ]] =⇒ False"

and cl5’: "
V

U . [[¬ P xa; ¬ P U ]] =⇒ False"

and cl7’: "
V

U . [[P U; P xb ]] =⇒ False"

have cl1: "
V

U . [[P x; ¬ P U ]] =⇒ False"

by (rule cl1’)

have cl3: "
V

U . [[P U; ¬ P x ]] =⇒ False"

by (rule cl3’)

have cl5: "
V

U . [[¬ P U; ¬ P xa ]] =⇒ False"

by (rule cl5’)

have cl7: "
V

U . [[P U; P xb ]] =⇒ False"

by (rule cl7’)

have cl9: " [[¬ P xa ]] =⇒ False"

by (rule cl5 [factor 0 1 ])

have cl10: " [[¬ P x ]] =⇒ False"

by(rule cl9 [binary 0 cl3 0])

have cl11: "
V

U . [[¬ P U ]] =⇒ False"

by(rule cl10 [binary 0 cl1 0])

have cl12: " [[P xb ]] =⇒ False"

by (rule cl7 [factor 0 1 ])

show "False"

by(rule cl11 [binary 0 cl12 0])

qed

endFig. 4. Generated Isar Proof Script

8.2 Production of an Isar Script

After the watcher has checked the correctness of the ATP proof by reconstruct-
ing it using Isabelle’s inference rules, it generates a structured Isar proof. The
user can insert this into her theory file, so that it can be reprocessed subse-
quently without the support of an ATP.

When the Isabelle process receives the appropriate POSIX signal, a handler
function reads the proof reconstruction information from the watcher’s output
pipe, and parses the reconstruction steps from the reconstruction string.

The Isar proof (Fig. 4) begins with the line

proof (rule ccontr, skolemize, make clauses)

This has the effect of applying the classical contradiction tactic to the goal,
Skolemizing it and transforming it to a list of clauses. The first element of the
reconstruction string is a list of variables that must be fixed, making them
effectively constants. Most of them are Skolem functions.

fix P x xa xb

The rest of the reconstruction string is parsed into a list of elements of the
form

(clause number, proof step, literals, variables).

We begin by assuming all the clauses produced by make clauses that are not
actually used in the resolution proof—Isar will complain otherwise—and then
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we assume the clauses that were used. The literals in each clause will be in
the order given to them by Isabelle, so if SPASS has re-ordered the literals,
we need to derive a new instance of the clause with the literals in the order
SPASS expects. We then simply emulate the SPASS proof, each time forcing
the literals into SPASS’s ordering.

9 Current Status

The architecture of the system is essentially complete. The implementation is
partly complete, but there are major gaps and numerous details to be fixed.

9.1 Proof Reconstruction Issues

One source of problems has been the difficulty of interpreting the output of
ATPs. (Hurd [9] has reported the same difficulty, with the Gandalf prover.)
When SPASS is given a set of clauses, it reorders the literals in them and may
preprocess and simplify them before attempting a proof, which may contain
various simplification steps in addition to the normal inference rules. Coping
with such details takes time, and reduces our ability to re-target the system
to other ATPs.

Our integration makes previously-proved lemmas available for use in the reso-
lution proofs. The same mechanism should work for facts proved locally within
the current scope of the structured proof. We also have a mechanism for tem-
porarily adding global theorems to the search. A declaration such as

note order trans [intro]

adds the transitivity of ≤ to the set of lemmas permitted in proofs.

The proofs given to the user are chains of resolution-style inference rules. Much
could be done to make them more concise and more readable. TRAMP [11]
generates natural proofs, but integrating it with our system would be a major
project. An alternative approach to proof reconstruction is to use the ATP’s
output merely to extract the names of the lemmas used in the proof, and
perhaps their instantiations; with these hints, a basic prover that works by
Isabelle inference could find the proofs afresh. A prover that could be adapted
for this purpose is Metis [10].

Despite its complications, we see some form of proof reconstruction as essen-
tial. Even if we trust the ATPs, we may not want to trust our translations
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between typed higher-order logic and untyped first-order logic. Moreover, hav-
ing proof reconstruction in source form makes the proof script self-contained.

9.2 User Interface

At present, any proofs found are displayed in one of Proof General’s buffers, in
a similar manner to the current goals and proof state. Preliminary experiments
suggest that this is quite distracting. The user has no control over when these
proofs are displayed and may be irritated by these sudden interruptions to her
train of thought.

It is possible that a better model of interaction may be that of the Office Assis-
tant in Microsoft Word. This occupies a separate window from the document
the user is working on, occasionally alerting them to possible problems that
have just arisen, or offering pertinent help. The proof assistant would, ideally,
have different settings for helpfulness; the user could tailor the amount and
types of assistance provided, thereby ensuring that it is helpful rather than
distracting.

9.3 Prover Performance

Isabelle’s full lemma library corresponds to about 1400 first-order clauses.
Automatic provers often fail to prove even trivial results in the presence of
so many clauses. The set of support heuristic (SOS) [27] is a classic means
of improving performance by ignoring irrelevant axioms: it requires all infer-
ences to involve the negated conjecture, preventing aimless forward inferences
involving the axioms alone. Unfortunately, modern theorem provers such as
Vampire and SPASS use different heuristics, restricting the application of res-
olution according to an ordering. The combination of ordered resolution and
SOS is incomplete, and in some cases the proof attempt fails quickly. More
research is needed to let us combine the goal-orientation of SOS with the
high performance of ordered resolution. The hierarchical structure of Isabelle
theories may support algorithms for removing irrelevant axioms or generating
effective orderings.

10 Conclusions

Our prototype is essentially complete and already demonstrates the key ideas.
Automatic provers run in the background. If a proof is found, it is delivered
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to the user in source form. The user does not have to prepare the problem
first, for example by identifying the necessary lemmas. Our prototype still
requires much tuning before it will be genuinely useful. We need to boost the
performance of the automatic theorem provers, for example by filtering out
some irrelevant axioms.
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Proving in Higher Order Logics: TPHOLs ’99, LNCS 1690, pages 311–321.
Springer, 1999.

[10] Joe Hurd. First-order proof tactics in higher-order logic theorem provers. In
Myla Archer, Ben Di Vito, and César Muñoz, editors, Design and Application
of Strategies/Tactics in Higher Order Logics, number NASA/CP-2003-212448
in NASA Technical Reports, pages 56–68, September 2003.

[11] Andreas Meier. Tramp: Transformation of machine-found proofs into natural
deduction proofs at the assertion level (system description). In David
McAllester, editor, Automated Deduction — CADE-17 International
Conference, LNAI 1831, pages 460–464. Springer, 2000.

[12] Jia Meng. Integration of interactive and automatic provers. In Manuel Carro
and Jesus Correas, editors, Second CologNet Workshop on Implementation
Technology for Computational Logic Systems, 2003. On the Internet at
http://www.cl.cam.ac.uk/users/jm318/papers/integration.pdf.

[13] Jia Meng and Lawrence C. Paulson. Experiments on supporting interactive
proof using resolution. In David Basin and Michaël Rusinowitch, editors,
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