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Chapter 1

Introduction

The aim of this book is to understand the spectral grpah theory. We combine all classic sources,
e.g. Fan Chung’s book, Dan Spielman and Luca Trevisan’s graduate courses. Also some other
important sources.

There is not much to say in the introduction. If later I have some insightful ideas about this
entire field I would probably write some rubbish here.
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Chapter 2

Linear Algebra Preliminaries

2.1 Views about a matrix for a graph

We have two important views about a matrix A. First it is a function that maps a vector x to
the vector Ax. Second, it is a function that maps a vector x to a number xTAx, which is a
quadratic form. Note the name quadratic form is very fancy but it just means

xTAx =
∑
i,j

x(i)A(i, j)x(j)

The adjacency matrix is

AG(u, v) =

{
1 if(u, v) ∈ E
0 otherwise

Though the adjacency matrix is natural to see a graph, it is the least useful. The eigenvectors
and eigenvalues are the most meaningful when trying to understand a natural operator or a natural
quadratic form.

2.2 Similar matrices and diagonalization

The definition of the similarity between two matrices is:

Definition 2.1. A matrix A is similar to a matrix B if there is a non-singular matrix M such
that M−1AM = B. In this case, A and B have the same eigenvalues.

Definition 2.2. A square matrix A is diagonalizable or nondefective it is similar to a diagonal
matrix, i.e. if there is an invertible matrix P such that P−1AP is a diagonal matrix.

2.3 Spectral Theory

Recall that an eigenvector of a matrix M with eigenvalue λ is defined as

Mf = λf

where λI −M should be a singular matrix. The eigenvalues are the roots of the characteristic
polynomial of M :

det(xI −M)

7



8 CHAPTER 2. LINEAR ALGEBRA PRELIMINARIES

Theorem 2.3 (The Spectral Theorem). If M is an n×n, real, symmetric matrix, then there exist
real numbers λ1 ≤ λ2 ≤ ... ≤ λn and n mutually orthogonal unit vectors f1, ..., fn and such that fi
is an eigenvector of M of eigenvalue λi for each i.

This is why we like symmetric matrices. If the matrix is not symmetric it might not have n
eigenvalues. Even if it has n eigenvalues, their eigvenvectors will not be orthogonal (prove
by contradiction).

If the matrix is not symmetric, we may even not be interested in their eigenvalues/eigenvectors.

Definition 2.4 (The Rayleigh quotient). The Rayleigh quotient of a vector x with respect to a
matrix < is the ratio

xTMx

xTx
Observe that if f is an eigenvector, then

fTMf

fT f
=
λfT f

fT f
= λ

Theorem 2.5. Let M be a symmetric matrix and x be a non-zero vector that maximizes the
Rayleigh quotient w.r.t. M . Then x is an eigenvectro of M with eigenvalue equal to the Rayleigh
quotient. Moreover, this eigenvalue is the largest eigenvalue of M .

Proof. The common trick we would use to prove stuff in spectral graph theory is to decompose the
vector into n eigenvectors directions.

x =
∑
i

(fTi x)fi

The intuition here is that, we first compute the projection length of x onto fi which is just the
inner product xT fi. Then we multiply it with the eigenvector of that direction. Assuming x is a
unit vector, then

xTMx

xTx
= xTMx

=

(∑
i

(fTi x)fi

)T

M

∑
j

(fTj x)fj


=

(∑
i

(fTi x)fi

)T
∑

j

(fTj x)λjfj


=
∑
i,j

(fTi x)(fTj x)λjf
T
i fj because fTi x and fTj x are constants

=
∑
j

(fTj x)2λj because the eigenvectors are orthogonal, their products are 0

≤ λn
∑
j

(fTj x)2

= λn because x is assumed to be a unit vector

It is easy to show that the equality can be reached. Hence the Rayleigh quotient is never greater
than λn.
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Note that this theorem shows how the Rayleigh quotient plus the spectral information char-
acterize the matrix M . When we want to study a symmetric matrix, we study this quotient
and it should reveal some information we need.
Similarly we have a very useful conclusion about the relationship between the eigenvalues
and the Rayleigh quotient.

λi = min
x⊥f1,...,fi−1

xTMx

xTx

So the ith smallest eigenvalue of M is the minimum Rayleigh quotient of M when x is an vector
from the perpendicular space of the subspece formed by f1 to fi−1. Note that when i = n, we only
have one dimension in our matrix, so x is trivial.

Similarly we have

fi = arg min
x⊥f1,...,fi−1

xTMx

xTx

2.4 Positive (Semi)definite Matrices

For a symmetric matrix A, we write
A < 0

if A is positive semidefinite, which means all the eigenvalues are nonnegative. This is equivalent
to

vTAv ≥ 0

for all v.
An extention is

A < B

if
A−B < 0

which is equivalent to
vTAv ≥ vTBv

for all v.

2.5 Matrix Norm

The operator norm of a matrix M also called the 2-norm is defined by

‖M‖ = max
v

‖Mv‖
‖v‖

It measures how much a vector can increase in size when it is multiplied by M . When M
is symmetric, the 2-norm is just the largest absolute value of an eigenvalue of M . Also we
have

‖M1M2| ≤ ‖M1‖‖M2‖
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Chapter 3

Graph Preliminaries

Definition 3.1. A graph is 3-connected if there is no set of two vertices whose removal disconnects
the graph.

Definition 3.2. A planar graph is a special graph that can be drawn in the plane without crossing
edges.

Definition 3.3. A planar graph divides the plane into connected regions called faces. Each face
is identified with the vertices and edges on its boarder.

Theorem 3.4. Let G = (V,E) and F be the set of faces. Then

|V | − |E|+ |F | = 2

Definition 3.5. A hypercube is the graph with vertex set {0, 1}d with edges between vertices whose
labels differ in exactly one bit.

11
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Chapter 4

The Matrices of Interest

We give some basic information about the matrices we like to discuss and some simple facts about
their eigenvalues.

4.1 Laplacian matrix

This is the most basic matrix in the spectral graph theory.

L := D −A

where D is the diagonal matrix in which

D(u, u) = deg(u)

and the rest are all 0s.

Why is this design important? If we look at the Laplacian quadratic form, we see its relationship
with the Rayleigh quotient

xTLx =
∑

(u,v)∈E

(x(u)− x(v))2

because we would have a −x(u)x(v) and a −x(v)x(u) and also one x(u)2 and one x(v)2. The thing
is we should notice that for one edge (u, v) we only compute it once. We do not consider the edge
(u, v) and (v, u).

This form measures the smoothness of the function x. It is small if the function x does not
jump too much over any edge. Intuitively, if x(u) − x(v) is large, then it contributes a lot
to the quadratic form. Note that if the edge is not in the graph, then it is ok to have large
difference between the two nodes.

If the graph is weighted then we can have G = (V,E,w) where w : E → R+. Then the Laplacian
quadratic form is

xTLx =
∑

(u,v)∈E

wu,v(x(u)− x(v))2

For two vertices in the graph G, the corresponding entries of them u, v, in the graph G in the
Laplacian is

LGu,v = (δu − δv)(δu − δv)T

13
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4.2 Adjacency Matrix

In this part we study the features of the adjacency matrix. We denote its eigenvalues by

µ1 ≥ µ2... ≥ µn

here we make it a bit different from what we do for the Laplacian. First we order them in a
decreasing order, and we use µ instead of λ. There is a reason why we do such things. Note that
in the Laplacian we use L = D − A. Hence µi in fact corresponds to λi. If the graph is d-regular,
then

L = Id−A

hence
λi = d− µi

Note that if it is not regular, then we do not see this relationship immediately. So the largest
eigenvalue of the adjacency matrix of a d-regular graph is d because we know the smallest eigenvalue
of the Laplacian is 0. The eigenvector is the uniform eigenvector.

4.3 Non-regular graphs

Now we look at a more interesting case, graphs that are not necessarily regular and we study its
eigenvalues.

Lemma 4.1. For a graph G, we let dmax be the maximum degree and let dave be the average degree.
Then we have

dave ≤ µ1 ≤ dmax

Proof. The lower bound proof simply follows the Rayleigh quotient. The upper bound proof requires
using the eigenvector of eigenvalue.

Lemma 4.2. If G is connected and µ1 = dmax then G is dmax-regular.

The eigenvector corresponding to the largest eigenvalue is usually not a constant vector. It
is always a positive vector if the graph is connected.

Theorem 4.3 (Perron-Frobenius). Let G be a graph and A its adjacency matrix, then

• µ1 ≥ −µn

• µ1 > µ2

• The eigenvalue µ1 has a strictly positive eigenvector

Proposition 4.4. If G is connected, then µn = −µ1 if and only if G is bipartite.

Lemma 4.5. Let A be symmetric and S be a subset of its row and column indices then we have

λmax(A) ≥ λmax(A(S)) ≥ λmin(A(S)) ≥ λmin(A)



Chapter 5

Spectral Information

We have seen some interesting facts in the first preliminary chapter. Here we basically focus more
on the eigenvalues stuff.

5.1 Eigenvectors of the Laplacian

The matrix M in previous chapter is general. We need the theorems because we want to study the
Laplacian matrix L and we want to know its eigenvalues.

By observing the above theorem, we should notice that the quadratic form xTLx is non-negative.
Hence the smallest eigenvalue λ1 is 0. We can also show that λ2 > 0 if and only if the graph
is connected. If the graph is disconnected, then we can construct two orthogonal vectors with
eigenvalue zero: consider we have two components, then one eigenvector can be constant on one
component and 0 everywhere else for the other component.

λ2 has a name: algebraic connectivity of a graph [1]. When we relate λ2 to how well a graph
is connected, we are converting qualitative statements to quantitative statements.

An interesting thing is that if we compute all the eigenvectors of the Laplacian, and for each
node u, we use two of the eigenvectors as its cordinates say fi(u), fj(u) we can have very nice
embedding drawings.

5.2 The Courant-Fischer Theoerm

We have seen this theorem briefly before, now we give the complete verison of it.

Theorem 5.1 (Courant-Fischer Theorem). Let L be a symmetric matrix with eigenvalues λ1 ≤
λ2 ≤ ... ≤ λn. Then,

λk = min
S⊂Rn

dim(S)=k

max
x∈S

xTLx

xTx
= max

T⊂Rn

dim(T )=n−k+1

min
x∈T

xTLx

xTx

In previous chapters, we denote S as the eigenspace formed by the first k eigenvectors. Also we
denote T as the complement space of the eigenspace formed by the first k − 1 eigenvectors.

To see it more intuitively, when k = 1, then S is just the span of f1 and T is all of Rn. For
general k, the optima will be achieved when S is the span of f1, ..., fk and T is the span of fk, ..., fn.

15
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Proof. We only prove the first equlity because they are similar.
For x ∈ Sk which is the span of f1, ..., fk, we decompose x:

x =

k∑
i=1

cifi

so we apply the old trick,

xTLx

xTx
=

∑k
i=1 λic

2
i∑k

i=1 c
2
i

≤
∑k

i=1 λkc
2
i∑k

i=1 c
2
i

= λk

Now we should explain the min S⊂Rn

dim(S)=k
part. Essentially this says that we should pick a subspace

S of dimension k, among all candidates, we pick the S in which the maximum Rayleigh quotient
that x ∈ S can make is minimized.

We pick Tk be the span of fk, ..., fn. Then we know S must have an intersection with Tk because
their dimensions sum to n+ 1.

max
x∈S

xTLx

xTx
≥ max

y∈S∩Tk

yTLy

yT y

We decompose y as

y =

n∑
i=k

cifi

and so
yTLy

yT y
=

∑n
i=k λic

2
i∑n

i=k c
2
i

≥
∑n

i=k λkc
2
i∑n

i=k c
2
i

= λk

This shows that all k-dimensional subspaces should have a lower bound on the Rayleigh quotient
λk. The equality holds trivially.

5.3 Bounds on λ2

We apply the Courant-Fischer theorem then we have

λ2 = min
v:vT 1=0

vTLv

vT v



Chapter 6

Graph Coloring

Definition 6.1. A coloring of a graph is an assignment of one color to every vertex in a graph
so that each edge attaches vertices of different colors.

It is easy to see that we are interested in using as few colors as possible.

Definition 6.2. The chromatic number of a graph, χG, is the least k for which G is k-colorable.

Lemma 6.3. A graph is 2-colorable if and only if it is bipartite.

6.1 Wilf’s theorem

Theorem 6.4. χG ≤ bµ1c+ 1.

Proof. We order all the vertices. Then we look at the number κ where

∀u, |{v : v < u, (u, v) ∈ E}| ≤ κ

Once we have the smallest κ we can color the graph because for i we can always pick a color
different from its previous less than κ neighbours. Now we need to show κ ≤ bµ1c.

Since we know the average degree is less than µ1 we put a node with that degree as n. For the
subgraph, meaning we remove the row/column corresponding to that vertex, the largest eigenvalue
of the new adjacency matrix is at most µ1, so we put another node to n − 1 and we keep doing
so.

Note that the graph’s max eigenvalue can be smaller than dmax so the chromatic number can
be smaller than dmax + 1 where we can easily show that all graphs can be colored by dmax + 1
colors.

6.2 Hoffman’s bound

Hoffman proved a bound on the chromatic number of a graph in terms of its adjacency matrix
eigenvalues that is tight for bipartite graphs.

17
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Chapter 7

Conductance

7.1 Isoperimetry and λ2

Here λ2 is the second smallest eigenvalue of the Laplacian.

Definition 7.1. For a subset S of the vertices of a graph. One way of measuring how well S can
be separated from the graph is to count the number of edges connecting S to the rest of the graph.
It is the boundary of S:

∂(S) = {(u, v) ∈ E : u ∈ S, v /∈ S}

Then we can define the isoperimetric ratio of S.

h(S) =
|∂(S)|
|S|

The isoperimetric number of a graph is the minimum isoperimetric number over all sets of at
most half the vertices:

h(G) = min
|S|≤n/2

h(S)

Theorem 7.2 (Lower bound of Cheeger).

h(S) ≥ λ2(1− s)

where s = |S|/|V |. In particular
h(G) ≥ λ2/2

Proof. By the min-max theorem, we know for all vectors orthogonal to 1, we have

xTLx ≥ λ2xTx

Hence we construct an indicator vector χS where

χS(u) =

{
1 u ∈ S
0 otherwise

We can observe a nice feature:

χT
SLχS =

∑
(u,v)∈E

(χS(u)− χS(v))2 = |∂(S)|

19
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To make χS orthogonal to 1, we make x = χS − s1. Then x satisfies everything. To finish the
proof we only need to see

xTx = |S|(1− s)

The isoperimetric number shows the worst connected part of the graph because it has the
least ratio. This is lower bounded by the second-smallest eigenvalue of the Laplacian. Hence
λ2 shows how good a graph is connected: if it is large, then G is well connected. If

7.1.1 Complete Graph Kn

Lemma 7.3. The Laplacian of Kn has eigenvalue 0 with multiplicity 1 and n with multiplicity
n− 1.

7.2 Conductance

In previous section we have seen some relationship between the isoperimetric parameter and the
second smallest eigenvalue of the Laplacian. To get tighter bounds and cleaner results, we use the
conductance and the second smallest eigenvalue of the normalized Laplacian.

Definition 7.4 (Conductance). We define

Φ(S) =
|∂(S)|

min(vol(S), vol(V − S))

where vol(S) is the sum of the degrees of the vertices in S. Note that many similar, though slightly
different definitions appear in the literature, like

vol(V )∂(S)

vol(S)vol(V − S)

Also the conductance of a graph is
ΦG = min

S⊂V
Φ(S)

7.3 The Normalized Laplacian

Definition 7.5. We define the normalized Laplacian:

L = D−1/2LD−1/2

7.4 Cheeger’s inequality

Theorem 7.6. Let 0 = ν1 ≤ ν2 ≤ ... ≤ νn be the eigenvalues of L. Then Cheeger gives us

ν2
2
≤ ΦG ≤

√
2ν2

Proof. For now we omit it and if we have time we go back to type in the proof. The harder part,
which is the square root part, should be one’s favorite theorem in spectral graph theory.



Chapter 8

Random Walks

The details about random walks can be found in other books on Markov chains. Here we only see
its analysis in spectral graph theory.

The matrix form of a lazy random walk is

W =
1

2
(I +D−1A)

The distribution of the walk p we use is a row vector, though in many places people use column
vectors. The difference is minor. Note that the degrees of different nodes are not necessarily the
same, hence the matrix may not be symmetric.

How do we deal with this matrix and how to see its eigenvalues? We borrow the normalized
Laplacian:

W = I − 1

2
(I −D−1A)

= I − 1

2
D−1/2(I −D−1/2AD−1/2)D1/2

= I − 1

2
D−1/2LD1/2

where L = I −D−1/2AD−1/2. L is symmetric, hence D−1/2LD1/2 is diagonalizable. Therefore W
is also diagonalizable.

Assuming we know fi and νi are the eigenvectors/eigenvalues of L, then we can prove that
fiD

1/2 is a left-eigenvector of W of eigenvalue 1− νi/2.

(fiD
1/2)W = (fiD

1/2)

(
I − 1

2
D−1/2LD1/2

)
= fiD

1/2 − 1

2
fiLD1/2

= fiD
1/2 − νi

2
fiD

1/2

= (1− νi/2)fiD
1/2

Note that because in Markov chain theory we usually use row vector. So here we adjust the
eigenvector to be left row vector. Essentially it is the same as using right column vector. Also

21



22 CHAPTER 8. RANDOM WALKS

here we use the advantage that L is symmetric, so the eigenvectors are the same no matter which
form we would use. Also note that since W can be asymmetric, so these eigenvectors of W are not
necessarily orthogonal.

Lazy random walk has some good features. One is that the eigenvalues of W are all between 1
and 0. Also from the above relationship, we can see the relationship between the eigenvalues
of the normalized Laplaican and the eigenvalues of the random walk matrix: ωi = (1−νi/2).
So the second largest eigenvalue of W corresponds to 1 − ν2/2. Then the spectral gap of
W is just ν2/2. So when we use Cheeger to discuss the second smallest eigenvalue of the
Laplacian we are talking about the spectral gap of the random walk. They are essentially
the same thing.

8.1 The rate of convergence

We know the mixing time is related to the relaxation time: 1/γ where γ is the spectral gap of the
random walk matrix.

Theorem 8.1. For all a, b and t, if p0 = ea, then

|pt(b)− π(b)| ≤

√
deg(b)

deg(a)
ωt
2

To be consistent with our Markov chain stuff, we use row vectors.

Proof. First of all, we have
pt(b) = pte

T
b

and we decompose p0D
−1/2 =

∑
i cifi.

pt = p0W
t

= p0

(
D−1/2

(
I − 1

2
L
)
D1/2

)t

= p0

(
D−1/2

(
I − 1

2
L
)t

D1/2

)

=

(∑
i

cifi

)(
I − 1

2
L
)t

D1/2

=

(∑
i

cifi

)∑
j

(1− νi/2)tfTi fi

D1/2

=

(∑
i

(1− νi/2)tcifi

)
D1/2

= c1f1D
1/2 +

∑
i≥2

(1− νi/2)tcifi

D1/2
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The last line is true because ν1 = 0. Also note that c1f1D
1/2 = π, so we have

pt(b) = π(b) +

∑
i≥2

(1− νi/2)tcifi

D1/2eTb

Since p0 = ea, hence
ci = eaD

−1/2fTi

and∑
i≥2

(1− νi/2)tcifi

D1/2eTb =

∑
i≥2

ωt
ieaD

−1/2fTi fi

D1/2eTb =

√
deg(b)

deg(a)

∑
i≥2

ωt
ieaf

T
i fi

 eTb

We upper bound the right hand side.∣∣∣∣∣∣
∑

i≥2
ωt
ieaf

T
i fi

 eTb

∣∣∣∣∣∣ ≤
∑
i≥2

ωt
i |eafTi ||fieTb | ≤ ωt

2

∑
i≥2
|eafTi ||fieTb | ≤ ωt

2

We know ω2 = 1− ν2/2. So when converging t = O(log n/ν2).

Note that this proof is very classic. We should memorize it. How? Essentially we decompose
the product of W t and notice that the first eigenvector is related to π. Then the rest is to bound
the rest of the decomposition using the second largest eigenvalue.
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Chapter 9

Expanders

Intuitively expanders are graphs that connect well. For a set of vertices within an expander graph,
we can expect it to have a lot of neighbours and that is why people like expanders.

Definition 9.1. Expander graphs are an incredibly useful family of graphs. An expander is a
graph with constant vertex degree and constant conductance.

An expander family is a sequence of graphs of increasing numbers of vertices if there
exist constants d and φ such that every graph in the family has degree d and conductance at least
φ.

The spectral characterization of expanders is:

|λi − d| ≤ εd,∀i ≥ 2

Random d-regular graphs are expanders with high probability.

9.1 Approximations of the Complete Graph

By introduing the approximation of graphs, we use this theory to determine good graphs when we
cannot achieve complete graphs.

Definition 9.2. An ε-expander is a d-regular graph such that

|µi| ≤ εd

for i ≥ 2 where µ1 ≥ ... ≥ µn are the eigenvalues of the adjacency matrix. The Laplacian eigenvalues
are

λi = d− µi
which is equivalent to what we have above.

Note that if the spectral gap is a constant, then the mixing time is also of order log n which is
very small.

Definition 9.3. A graph G is ε-approximation of a graph H if

(1− ε)H 4 G 4 (1 + ε)H

where H 4 G means for all x,
xTLHx ≤ xTLGx

25
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9.2 Vertex Expansion

Expanders have a good property: for a small set of vertices, it has unusually large number of
neighbours.

Theorem 9.4. Let G = (V,E) be a d-regular graph on n vertices that ε-approximates d
nKn. Then

for all S ⊂ V ,

|Γ(S)| ≥ |S|
ε2(1− α) + α

where |S| = αn

9.3 Ramanujan graphs

The Ramanujan grpahs constructed by Margulis [3] and Lubotzky, Phillips and Sarnak [2] achieve

ε ≤ 2
√
d− 1

d

What does it mean? It means the Ramanujan graph can be very close to a complete graph in
terms of the adjacent matrices.
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