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LEAST-COST ALLOCATIONS OF RELIABILITY 

INVESTMENT 

John D. Kettelle, Jr. 

Kettelle & Wagner, Paoli, Pennsylvania 

(Received February 24, 1961) 

This paper presents two complementary techniques for determining optimal 
allocation of reliability investment in a multi-stage system. The first is a 
step-wise dynamic programming algorithm, which has proved to be a simple 
and direct means for obtaining the exact solution to the basic problem of 
least-cost allocation of redundancy. The second technique is an explicit 
solution to the investment allocation problem if the unreliability of each 
stage decreases exponentially (and continuously) as its cost increases. 
This solution is based on an inequality, which for reasonably reliable 
systems justifies minimizing the sum of the stage unreliabilities instead 
of the system unreliability. 

DYNAMIC PROGRAMMING ALGORITHM 

THIS SECTION presents a simple algorithm which has provided an 
exact solution to a problem of redundancy allocation in a multi-stage 

system. It is a direct application of dynamic programming, with a few 
additional aspects to organize and speed up the calculations. The prob- 
lems to which it has so far been applied have been nonrepetitive analyses 
of the major components of large radar, communications, and data- 
processing systems, and have been conveniently worked out by hand as 
described below. However, a flow chart is included as an alternative de- 
scription of the algorithm. The last part of the section proves the validity 
of the algorithm under rather general conditions, and discusses other appli- 
cations. 

Statemen-t of the Redundancy Allocation Problem 

An M-stage system is specified, which is operational only if each 
(series) stage has at least one operational component from among pos- 
sibly more than one in parallel. A component of stage i costs ci and has 
availability ai (i = 1, -, M). Availability is defined here as the prob- 
ability (constant over time) a component or system is operational at a 
point in time. Failure behavior, and repair behavior, among all com- 
ponents are assumed independent, so that system availability is 

A = [- ai2 49], 
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where ni is the number of parallel components provided at stage i. The 
cost of this configuration is 

i=M C= ZiLi ci ni. 

Given a system availability requirement R, the probleni is to determine 
a least-cost Configuration [i.e., (ni, , flM)] that yields A >R. 

As an example, consider the following four-stage system, with a system 
availability goal of 0.99: 

Stage 12 3 4 

Component cost ................ I.2 2. 3 3.4 4.5 
Component availability .............. o. 8 1 0.7 0.75 o. 85 

This example will be carried forward through this section, with extra 
indentions to illustrate the steps of the algorithm. 

Dominating Sequences 

For a given group of redundancy configurations, defined over a given 
set of stages, an availability-cost sequence [(Ao,Co), (A1,Cl), .] is 
defined to be a dominating sequence if (A ,Cj) for i = 1, 2, . is a cheapest 
entry in the group with reliability exceeding Ai-,. In a similar spirit, 
one configuration is said to dominate another if it has either (a) more 
availability and no more cost, or (b) no less availability and less cost. 
Note that a dominating sequence contains only configurations that are 
undominated. The dominating sequence is essentially the optimal policy 
of BELLMAN 1 and the (complete) optimal n* curve of BLACK AND PROS- 
CHAN.-] The dominating sequence for the entire system, for all possible 
redundancy configurations, is simply the system reliability-cost curve 
(assuming optimal allocations). 

The given reliability-cost sequence for each individual stage is (trivi- 
ally) dominating for the stage. The algorithm described below con- 
structs dominating sequences for successively larger groups of stages until 
the entire system is included. The following three sections present in 
order: 

(1) A version of the algorithm suitable for hand computation, (2) 
A computer flow chart, (3) General conditions under which the algorithm 
is valid, and further applications. 

Steps for Hand Computation 

The successive steps of the procedure are presented below, with appli- 
cation to the particular example set off by an extra indention. 
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(1) Plan successive pairings of stages or groups of stages, each new com- 
bination consisting of two previous stages or combinations. Continue 
until the entire system has been combined. 

The following indicate two alternate pairings of the four-stage system 
-the one on the right will be used in this example: 

4 f 4 

There will always be M -1 such pairings. Although it is not clear pre- 
cisely how much can be gained by ingenious pairings, simplifications 
will arise if both members in the pair have equal steps in reliability or 
cost. 

(2) For each stage in the system, determine the minimum number of 
components required to attain the availability R at that stage alone. 
These minimum requirements for each stage are called 'base' require- 
ments. The rest of the computation will concentrate on additional 
costs and additional requirements above these base requirements. In 
particular, only configurations with availability greater than R will 
be considered in the dominating sequences. 

If there is any interest in the possibility of saving money by investigat- 
ing lower requirements (than the R originally specified), those should 
be specified at this time if they are not introduced until later, the whole 
problem may have to be reworked. 

The total allowable unavailability for the sample system is only 0.01, 
so the base requirement and resulting costs and unavailabilities for 
the four stages are as follows: 

Stage 2 3 4 

Basic number of components required... 3 4 4 3 
Basic cost ............................ 3.6 9. 2 I3 . 6 I3. 5 
Basic stage unavailability ..............0 . oo8o 0. oo8 i 0.0039 0.0034 

(3) For the first pair of stages, prepare a table similar to Fig. 1. Across 
the top, post the costs c1i and the unavailabilities bjj(bij=z- 1 -aij) eor- 
responding to successive additions of components above the base re- 
quirement-i.e., the first bij posted should be less than Q(Q=1-R). 



252 John D. Kettelle, Jr. 

In our example (Fig. I combines the first two stages) the first stage 
has a component unavailability of 0.2, a unit cost of 1.2, and a base 
requirement of 3 components, so 

cl1- (3+j) 1.2, 

and bij= (0.2)--'-j. (,j=0O 1, 2, 

Post successive steps along the top until the stage unavailability pron- 
ises to be low enough to support the system requirement (Q/M might 

Steps for Stage 1 

C 3,6 11 i/ ..o 7.5 r /o 
6 -o00Y -*DO6 ooo 3,0. .00oooo .,o00/- -oOoo.-3 

5~~- '-5?'9 "Ac6. Is4 

1001/ (3 9 7 o r 6* 

*002A3 -00'10 /6, 3 // < f //e 
.r' vo42 oo440 Ouw7 <_ ._ 

q /36-' 7 171 ,6 /I?" 98 o 

0 . 000 9 ,0003 , 00033 ___._. 

o o-Sva .f' j~/L ,8- 3 3 5? ,Rf g 

; 

0 
zw~t'O4-Zt 3fz 

rn 4 _ _ .oo3r6 .Doc .oooo7 oooo o 7 , 
Z Z 

ao7 q S7S, 
, 

A 9 3o.3 31, 5- 
o0OOA __ , _ . oooog4 -0033 

Fig. 1. (omibinfations of stages 1 and 2; i number of step, c cost above basic 
cost, b unavailablity; ( ) indicate step for next level. 

be a first guess). If subsequent calculations require it, the present 
table can be conveniently extended later. 

Post stage 2 in a similar fashion down the left-hand side of the figure. 

(4) To construct the dominating sequence for the first two stages, 
begin with the entry in the upper left corner. This will be the first term 
(except its unavailability may not necessarily be less than the system 
allowance Q), since it is clearly the cheapest entry. Compute and post 
the costs and the unavailabilities of other entries only as needed below. 

For the present example, the cost (ij of the combination and the 
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unavailability Bij achieved by the combination at row i and column j 
are given by 

Ci = C2i +Cij, 

and Bij = b2i+bl j-b2i bij. 

If b2i and b1j are both small, the product term can usually be disre- 
garded. An estimate of the possible cumulative effect of repeating 
this approximation all through the algorithm is provided by the in- 
equality reported in a later section. 

If an element Ei,, at the intersection of row i and column j, is an element 
of the dominating sequence, then search for the next element may be 
restricted to the rows r ? i and the columns s ? j. From each such 
row or column the candidate for the next member of the sequence is the 
cheapest element (in that row or column) with less unavailability. 
The cheapest of all these candidates becomes the next element. 

Often the remainder of an entire row or column can be rejected. In 
particular, if the unavailability Bij is less than the unavailability b2k 

posted at the left of a previous row k, then all entries in row k which 
cost more than Cij can be rejected. Note that Ckn is monotone in- 
creasing in n, and that Bkn b2k for n =0, 1, 2, * ' i. A symmetric re- 
mark holds for eliminating the lower portions of columns. 

In Fig. 1, the boundary of the rejected combinations has been indicated 
by shading. Each rejected combination is dominated by a combina- 
tion that has not been rejected. 

(5) Number in order of cost, starting with 0, the entries that cannot be 
dominated and whose unavailability is less than the system allowance Q. 
Continue until it appears that the dominating sequence has progressed 
to an availability that will eventually support the system requirement. 
(A first guess for such a limit may be Q/I. In subsequent figures, a 
better guess may be Q/S, where S is the number of subsystems that will 
be combined with the subsystem developed by the figure.) If in de- 
veloping subsequent figures it appears that the present figure has not 
been carried out far enough, it can still be extended with no wasted 
effort. 

In Fig. 1, the sequence has been extended (more than actually neces- 
sary) to 13 terms, for the last of which the unavailability is 0.000033, 
and the cost is 29.1. Figure 2 displays the calculations for stages 
3 and 4. 



254 John D. Kettelle, Jr. 

Steps for Stage 3 

C C3, 6 / 0 d 
b . o3q 0ooo5'7 -ooo02 - .ooo0ol/ .ooO/6 .0000oo0 

0 (i) ( 3 =2)=^ 
35 z. / 3 o. -339 37 3 

-0 3 o o00l3 wOLq 4 -o030 t 

t tt~~~o 3/V.6 3,5. O 3t /r, 
8 y4 stsv 

Wn .ooo ?q ? L 0 004' .ovio ooo oa7 , 

,. AS~s 3L.f 3%6 s9 s6.3 t97 6 53 9 
o 3 O76 ('/) 

X t%& uf7) / SS g SiR 57.67 7-1 

o _ _ __0 , __ _ 

3/8 f3~~~~ 55. 3 5(.7t 6n/ 31 6 _Zl~- 3 ooooo7 f 

Fig. 2. Combinations of stages 3 and 4; i number of step, c cost above 
basic cost, b unavailability; ( ) indicate step for next level. 

Ste s for Sta es 1 2 

k 0 / . 3 I/ 5- 7 / 
C 1 M.0v /S' C2 16.3 17 Z- 1r 6 /? S. g? - / -73 S3 9 6 _ 
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._ 

a.27 J L/./ '1.2.3 '/3. , 4?'.6 'Is? .16.' ' /6./ X/4 ?'. / 6 

0oo073 , ZLZL. / p ' ? / '.X?4 _ . 
I (4)(2 (3) () Cr) (4) 

M . // /- J0g 
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4 J/ 6s.r5S. . . - 5t.1 J 53 6o. . / 61. 3 4. 63.7 65 .1 6G.3 

Fig. 3. Combinations of stages 1, 2, 3, and 4; i number of step, c cost 
above basic cost, b unavailability; ( ) indicate step for next level. 
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(6) Proceed to the next level of combinations, using the availability 
and cost step functions represented by the previous dominating se- 
quences as the inputs. 

In the example, Fig. 3 gives the calculations for the second (and last) 
level of combinations. Note that in this level the increases in cost 
and the gains in availability are both quite irregular. If, at the first 
level, namely at the individual stages, the cost increases had been 

TABLE I 

DOMINATING SEQUENCE FOR STAGES 1, 2, 3, 4 

Components 
Cost Unavailability 

Stage I Stage 2 Stage 3 Stage 4 

0 44.6 0. OI00 5 5 4 3 
I 45.7 o. oo96 4 6 4 3 
2 46.8 o. oo84 4 5 5 3 
3 48. o 0.007I 5 5 5 3 
4 49-1 o.oo67 4 6 5 3 
5 50.3 0.0055 5 6 5 3 

6 5I .5 0.0052 6 6 5 3 
7 52.5 0.0042 5 5 5 4 
8 53.6 0.0038 4 6 5 4 
9 54.8 0.0025 5 6 5 4 

IO 56.o 0.0023 6 6 5 4 

II 57. I 0.0020 5 7 5 4 
I2 58.2 o.ooi8 5 6 6 4 
13 58.3 O.OOI76 6 7 5 4 
I4 59.4 o.OOI5 6 6 6 4 
I5 6o.5 o.OOI3 5 7 6 4 

irregular, the method would have worked equally well. In these 
figures, ci and bi are used to denote the cost and unavailability of the 
ith member of the dominating sequence for the group of stages. 

Continue through successive levels until all stages have been combined. 
The resulting dominating sequence represents the progressively more 
expensive (but more reliable) optimal configurations-its first element 
that meets the availability goal is the solution. The availability-cost 
function corresponding to optimal allocations for the system, and the 
corresponding configurations themselves (not necessarily unique) may 
also be tabulated. 
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It will be noted that often a dominating sequence contains a relatively 
inefficient step (see, for example, step 2 in Fig. 2, in which the unavail- 
ability decreases only from 0.0044 to 0.0036 at an increase in cost from 
30.5 to 33.9). These inefficient steps are often completely by-passed 
at the next level of computation (as was the example mentioned in the 
previous parentheses). A criterion by which individual steps may be 

Unavailability 

(Logarithmic Scale) 

.010 

.009 

.008 

.007 

.006 

.005 From algorithm 

.004 From 
maximum formula 

.003 

.002 o Inefficient steps 

Efficient steps 

.00 L 
40 50 60 

Cost 

Fig. 4. Unavailability versus system investment for sample system. 

judged, and inefficient ones immediately discarded, is presented in the 
next section. 

The dominating sequence for the entire system in the sample problem 
(as derived in Fig. 3) is posted, together with the corresponding con- 
figuration, in Table I. The resulting availability-cost (step) func- 
tion is plotted in Fig. 4. 

Computer Flow Chart 

Figure 5 presents a general flow chart implementing essentially the 
same computations as are performed in the hand computation. It utilizes 
the following notation: 
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Begin 

2 m 

0 -a _a r b-S 
0- b6 

{z III,> MY r?4r ?-k 

E0 0-> E 

C 1 
A~~~~~~~~~, +X I r 

,r < no a?+ b1. 1<B n b 

.ye s yes 
010 Br~k< B no [Br k<B? 

1" J ->, j yes yes 
n +1-->n Cr 1<? no CkC?0 

1)2 I Er, k >Ej Erk-+E' 

Print o nEt? m 

Im =M? 0 

yes 
and1 

Fig. 5. Comnputer flow chart for allocation algorithm. 

Inputs: 

{ I m =Sequence of unavailability-cost pairs for stage m. 
M = Total number of stages. 
Bm=Lower limit for computing combined unavailability for first m 

stages. 

Outputs: 

{El,, =Dominating sequence of unavailability-cost pairs for combination 
of first m stages. 

Internal: 

XI =Dominating sequence I(bo0o co0o), (bojco,j) ... of previous stages 
(column headings). 



258 John D). Kettelle, Jr. 

I }UnavNailability-cost pails (b1, oclo), (b1, ci,1), } of next stage 
to be added (row headings). 

E }= Dominating sequence generated from {X } and Y}. 
a= Number of rejected rows. 
b =Number of rejected columns. 

(Brk,Cr,k) = Unavailability-cost pair from combining X,. with Ik. 

E = Last element (B,C) = (BijCij) of dominating sequence. 
E'=Candidate (B',C') = (Bi j',Ci',j') for next element of dominating 

sequence. 

Genera!ization, Validity, and Further Applications 

This section proves the basic validity of the algorithm under somewhat 
general conditions, and describes briefly some additional applications. 

Validity. Basic to the validity of this algorithm is the guarantee that 
one may restrict attention to dominating sequences for matrices-that 
as later stages are added, there is no previously-rejected combination of 
earlier stages that might somehow fit better with new ones. 

As a generalization from the reliability application, assume that 

1. if a and a' are the payoffs for two disjoint combinations of stages, then they 
determine a unique combined payoff f(a,a'). 

2. f is monotone in the sense that 

a, > a2 and a,' > a2' implies f(a1,ai') >f(a2,a2') 

for all payoffs al,a2,a1',a2'. Then the following theorem furnishes the desired 
guarantee: 
THEOREM: Suppose that (A,C) is the payoff-cost pair of a configuration of 
the combined stages of the disjoint subsystems F and F'. Then (A,C) either 
equals or is dominated by some term of the dominating sequence of the matrix 
formed from the dominating sequences of F and F'. 

Proof. For an inductive proof, assume that the theorem has already 
been proved for the subsystems (and associated matrices) denoted by F 
and F'. If F (or F') is a single stage, then its dominating sequence is 
simply its entire sequence of payoff-cost pairs, so that the first step of the 
induction is trivial. 

The configuration represented by (A,C) is the series combination of a 
configuration of F and a configuration of F'; let the payoff-cost pairs of the 
latter configurations be (a,c) and (a',c') respectively. Let (ajcj) and 
(ai', ci') be terms, whose existence is guaranteed by inductive hypoth- 
esis, in the respective dominating sequences for F and F' such that (ac) 
and (a',c') respectively equal or are dominated by (aj,cj) and (ai',ci'). 
Then by condition 2 on f 

AX j =f (ai',ai) >f (a',a) = A. 
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But (a,c) is dominated by or equals (aj,cj) and (a',c') is dominated by or 
equals (ai',ci'), so that 

cj _?c and ci'_c'. 

Finally, Cij=cj+c'1<c+c'= C. 

Thus (A,C) is dominated by or equals (Ai jCij), which is an entry in the 
matrix. 

It remains to prove that (A ijCi) is dominated by or equals a term in 
the dominating sequence of the matrix. Let Em-= (AC) be the first 
term of the dominating sequence whose cost exceeds Cij; so that Cmi < Cii. 
Then it follows from the definition of the dominating sequence thatA _rn- 

Aij. Therefore (AxjCij) is dominated by or equals Emi1, and the proof 
is completed. 

There remains the question of feasibility-whether the algorithm can 
indeed generate a dominating sequence leading to a payoff-cost pair of 
interest in a finite (hopefully rather small) number of steps. Here the 
basic requirement is that 

3. for each individual stage, the sequence of improvements has unbounded 
cost. 

This prevents the algorithm from getting trapped in a single row or column 
with a never-ending sequence of trivial improvements. It is also useful 
if reasonably low upper bounds for the payoff function in each row (or 
column) of the matrix are available. One simple such bound derives from 
the condition 

4. f(a,a') ? a. 

Conditions 1 through 4 are indeed used directly in both the hand and 
the machine versions of the algorithm, and are sufficient to guarantee their 
termination in a finite number of steps. Practical success and efficiency 
depend naturally on the size of the proposed single-stage improvements 
-for example, carrying a long string of very small improvements through 
various successive combinations can be annoying. However, the reliabil- 
ity problems so far submitted (involving up to eight stages) to the al- 
gorithm have typically been solvable by hand in a few hours. 

Discussion of applications. This section describes a few additional 
applications that have been tried for the algorithm. 

Reliability. Other reliability problems to which the algorithm has 
been applied include multi-channel availability and switching. 

(1) Multi-channel availability. If a system requires at least rn parallel chan- 
nels (instead of just one as considered in the text), to be operable, the generalized 
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algorithm may be applied directly. On the other hand, if there is some payoff 
for one channel and merely additional payoff for more than one, then conditions 
1, 2, and 3, are, in general, not met. 

(2) Switching. A three-dimensional version of the algorithm matrix may be 
used to account for switching between adjacent stages. The joint availability of 
two stages depends, in general, on the availability of each stage plus certain char- 
acteristics (e.g., availability and reaction time) of the switching system that is 
provided between them. Also, the cost of the switching depends in part on the 
lumber of elements in each of the adjacent stages. Thus one would consider 
investments in stage 1 parallel to one axis, investments in stage 2 parallel to the 
second, and investments in switches parallel to the third. This three-dimen- 
sional algorithm may then be iterated for combinations of subsystems, with 
the third axis always representing the investment in the switches joining the two 
subsystems under consideration. 

Sprinkler system design. This illustration is intended to suggest the 
versatility of the algorithm. 

A simplified sprinkler system may be regarded as composed of a series 
of three prefabricated pipes (and identical nozzles) of progressively 
smaller cross-sections. In the event of a fire, the underwriters assume all 
the nozzles will be triggered, and require that the gallonage (gallons per 
minute) delivered by each be at least a specified amount. The gallonage 
delivered at a nozzle depends only on the dynamic pressure at the nozzle; 
the pressure drop in the next (inner) section of pipe depends on its dimnen- 
sions and on the gallonage. The problem is to design a least-cost sprinkler 
system, including -the costly water tower to provide the necessary pressure, 
that meets underwriter requirements. 

The generalized version of the algorithm may be applied, where the 
payoff function at each stage is the pressure. (As a minor complication, 
the resultant gallonage totals must also be kept track of.) Complica- 
tions associated with branches in the pipe are handled with no essential 
difficulties. 

ALLOCATION WITH (CONTINUOUS) EXPONENTIAL STAGE 
AVAILABILITY 

This section proves that if for each stage of a system the unavailability 
decreases exponentially (and continuously) with investment then so 
does the unavailability for a properly allocated system. In particular, a 
formula for maximum system availability (as a function of cost) is de- 
rived, together with a rule for attaining it. Since this exponential be- 
havior may be regarded as a continuous approximation to the step-wise 
stage response to redundancy, this formula affords a check on the calcula- 
tions of the preceding algorithm. In support of the formula, a rather 
powerful inequality is presented to justify minimizing the sum of the stage 
unavailabilities. 
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Maximum Availability Formula 

The theorem below establishes a formula for the minimum sum of stage 
unavailabilities. 
THEOREM: For an n-stage system, make the following assumptions, for i= 1, 

(1) The unavailability Bi of stage i, if y dollars are invested in it, is 

B i(y)= /. 

(2) For a given system investment x, ,8(x) is the minimum sum of stage 
unavailabilities attainable by distributing x among the stages, i.e., 

:(X)-=minz ,=z=x t-lbic 

Then there exist numbers X, D, and 'y, such that 

A(x) =D eX!7 for x >X. 

Moreover, X, D, and - may be calculated by the following formulas: 

X = maxf maxk=.l, ,n ,-1[ck+1logtk],max$=1,... ,n1[-Yklogtk]J, for n> 1, 

X 0 for n =1, 

D =Dny 
and 'Y=7Yn, 

where co= ci/logbi, (i=, *, n) 

at 
E 

jjl1 CWj) 
... (i==1,.**Xn) 

Di= -,Yi/Hjt_ (-<oj) Wli (I2 n) 
ti=Dixsi+11/t. U ...(i-1, ,n-1) 

Proof. The proof is by induction. First define 3k(X) to be the cor- 
responding minimal sum for the first k stages; if the investment x is re- 
stricted to these stages: 

fk(X) =min . Z ,k bXi/Ci (k=1, *1 , n) 

Then 3 (x) = /c =ex(logbj)/cj eal', (xO0) 

which verifies the theorem for n = 1. Assume now that the theorem holds 
for n =1, 2, ., 7. Then (as an example of the dynamic programming 
principle of optimality), 

kd-+1(X)= minO <v ?x[1k(X -y) +eYtk+], 

=mino g! ?x[Dke(x^Y)/y; +eY/C'ok.j. (X > X) 

Here y is the cost allocated to the Lo+lth stage. 
To calculate #kl(x), denote the expression. in the brackets as f(y), 
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then solve f'(y) = 0 for y. The solution is 

Y=YO= r[(XfYk) +logtk]/[(1,byk) +(1/COk+])1] 

Since" is always positive, and f'(yo) =0, f has a minimum at yo. That 
yo is actually inside the interval 0? y x, follows from the assumption 
x > X. Therefore 

k+1(X) =f(yo) [Dkt -lk 1/I 1A I+t YklYk+ 1I 

exp {X( 1/sk) (1/Wk+1) /[( 1-/7k) + (1/COk+1) 1I. 

Remembering that =Yk = Ci, the right-hand bracket becomes simply 
1/Yk+1. The left-hand bracket establishes a recursive formula for Dk. This 
can be converted to the direct expression in the theorem as follows:* 

Di t"+11" tiz+t7'/'Y'-il-t=i/O "'1 [I + (Dilti) I==(,yi+ 7-/&l~t 
t 

Thus ti Diw/?i+,/,yi= (cojitl zi. 

Now tI= 2/co1 

and, by induction, 

so that Di= -,yNi/ fly_] _j) co 
/ 

This completes the proof. 

Error Estimate 

The pertinence of the foregoing result depends on how well system un- 
availability is approximated by the sum of the stage unavailabilities. 
This section outlines a proof that if 

A(x) miny -i=z J Bi (xB), 

5W x)min2 ZiZI~t] _ { 11= . -Bi(xi) }]} 

and (X) < %; 

then 0g< (X) _ :(x) < 32(X). 

To prove the above error estimate, one may first show that such a sum 
B of stage unavailabilities is an approximation for system unavailability 
P-that in particular, if B <hi and B < 1, then 

0O!~ a B(xi, * X >Un) - B(XI, * * *, Xn) <Ad B2(Xl, ** X.) 1 

p o 2(X1, * . * , /[I - 2B(xj,***,Sn) ], 

* The author is grateful to MRS. BETTY J. FLEHINGER for discovering this direct 
formull for DI. 
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where, for an n-stage system with stage unavailabilities Bi(i= 1, **,) 

B(xi, .., xn) P - i(xi), 

B (xi,* *, Ix -) =1- i=,.jn [1 BP(xi) ]. 

The inequalities (1) can be derived from the equation 
n In,1 

I-B=1-By+Y, BiBj-aB j kr*r(1IIf 
ij=1 i,j,k=l i=1 

t F) j i 5d j~AziGZ 

rTlhe ternis following B alternate in sign and can be shown to decrease in 
absolute value. Therefore, 

n I 

O<B-B< Z BE Bjj =2 B2)<1 B2. 
i,j=l I=1 

i ,j 

This proves the first two inequalities ill (1). It also follows from 
B-B< 1, B that 

B<1- (I-2B)"2, 

2B <1-B-(1-2B)"2 

P [1 P2 P2 3 _ k=-o j(2B) "lk!2 k I jj-l (2j -3)] 

<i3B2+i B3+i/ Z_4 (2B) k 

_11 B2+IfB3+2B/( 1-2B) 

iB2[( BB2) /( 2B) ] <i B2/(12B) 

Assume that the particular arrangement (x1', , xl') yields the mini- 
mum unavailability $ for a given total cost x X xi'. Since 

$-2< B(xi', * x) 
we therefore have 

0</3- 8<B(xj', .. * x.1 
P 

t(Xix* * ZXaI,) <d 52 /(I 25i) 

But for $ and f both less than hi, j: <f implies 

/1i 521(1 _25) <3 52/ (I -2,) < 027 

so that we have an estimate for the error in terms of the minimal sum itself. 

Note that the error estimate does not depend on the number of stages. 

This gives an estimate of the error (arising from minimizing the sum of 

stage unavailabilities instead of minimizing the more accurate expression 
for the system unavailability) in terms of the minimal sum. Typically 

the unavailabilities are small enough so that this error is negligible com- 

pared with the system unavailability for example, if fi is 0.01, then the 

error is less than 0.0001. 
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Computation Rules Implied by Formula 

It may be noted that the formula results from unavailability allocations 
to each stage in the ratio ci/logbi-a quantity that has long been recognized 
as controlling (for example, by Moskowitz and McLean in reference 3). 
This expression may be used to calculate two points on the maximum 
availability curve, which may then be plotted as a straight (as indicated 
by the formula) line on semi-log coordinate paper. 

Uses of the Maximum Formula 

For the sample system described in the first section, the straight line 
of the maximum formula is plotted in Fig. 4, together with the step 
function derived from the algorithm. This figure suggests the following 
uses of the maximum formula (in addition to its possible direct use where 
applicable): 

1. To check the step functions determined from the dynamic programming 
algorithm. The step functions are, of course, very irregular, and it is valuable to 
have a continuous approximation to check them against for reasonableness. Note 
that in the example the minimum unavailabilities actually attainable with whole 
numbers of components average about an order of magnitude larger than the 
'ideal' attainable with fractional components. 

2. To furnish a quick estimate of availability improvement that may be ex- 
pected by additional investment in redundancy. The easily-computed slope of the 
line graph in Fig. 4 is all that is needed to estimate marginal costs of additional 
availability. It specifies the (fixed) percentage by which the unavailability may 
be decreased per additional unit redundancy investment in the system. 

3. To speed up the dynamic programming algorithm. It was noted in the first 
section that the dominating sequence of a subsystem often contains a number of 
steps representing small improvements for relatively large additional costs. In 
the next level of calculations, when these subsystems are combined, such steps 
often are skipped entirely in favor of alternative investment in the other subsystem. 
The maximum formula provides an immediate criterion with which to judge the 
efficiency of individual steps. It is conjectured that inefficient steps, for example, 
those whose marginal decrease in unavailability per unit cost is less than half of 
the average determined by the maximum formula, could be rejected a fortiori. 
The solid points in Fig. 4 illustrate how the step function would change. The 
steps that would be omitted are small circles. Note that the efficient combinations 
are still preserved; that what is lost are some intermediate investments that force 
particularly awkward redundancy combinations. Although it appears likely that 
successive combinations of these simplified step functions would still contain the 
most efficient combinations (remember, for example, how the inefficient step 2 was 
skipped in Fig. 2), a systematic investigation of the consequences in later com- 
binations of such a rejection procedure has not been made. 
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In the same way as 3 above, the formula may be used to check the 
efficiency of the dominating configurations determined by the method of 
Black and Proschan. [2] 
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