OASIS: Architecture, Model and Management of Policy

Ken Moody

Computer Laboratory, University of Cambridge

Overview – OASIS: Architecture, Model and Policy

- 1. background to the research people, projects (motivation *EHRs* for the UK *NHS*)
- 2. fundamentals of *OASIS* architecture
 - Role-Based Access Control with parameters
 - Interoperation of Federated Services
 - Support for Active Security
- 3. establishing a useful Model for *OASIS*
 - Many-sorted First-Order Predicate Calculus
- 4. database and meta-data support for distributed applications
 - development of an active predicate store on top of PostgreSQL
 - active policy management, meta-policies and verification
- 5. FUTURE WORK

Experimenting with OASIS

people

- *OPERA Group* Computer Lab, Cambridge (UK)
 - Jean Bacon, Ken Moody (Faculty)
 - John H Hine sabbatical visitor, 1999 VU of Wellington (NZ)
- PhD students
 - Walt Yao, Wei Wang (employed on EPSRC grants)
 - András Belokosztolszki, David Eyers (independently funded)
 - Nathan Dimmock, Brian Shand (Trust-based access control)

research grants

- relating more or less specifically to *RBAC*
 - (EPSRC) evaluating the use of OASIS for EHRs in the UK NHS
 - (EPSRC) using an active database to manage access control policy
 - (EU Framework 5) SECURE Trust-based AC for wide-area computing

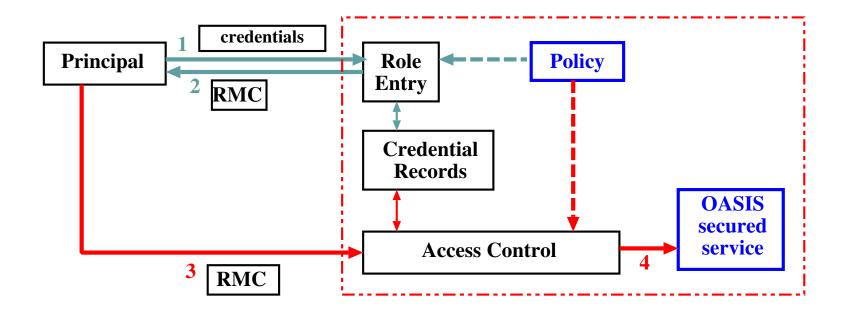
OASIS Access Control "you've gotta ROLL with it . . " (pop culture)

principals (clients?)

- PERSISTENT typically a person or job-title named by e.g. NHS_number
- TRANSIENT a computer process or agent named by e.g. session_Public-Key

scalability of *POLICY expression*

- classify *clients* by *ROLE* (parametrised?), *ROLE names specific to each service*
 - e.g. doctor, logged-in_user ("Fred")
 - potential for giving *client anonymity* if required
- specify *control of access* in terms of *ROLEs* (of *this* and possibly *other services*)
 - as held by **TRANSIENT PRINCIPALs**
 - each service defines its own rules for ROLE entry

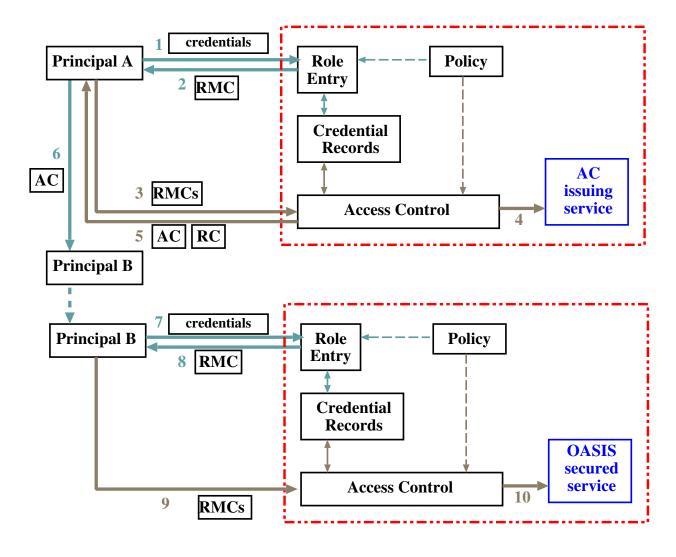

Long-lived rights for *PERSISTENT PRINCIPALs*

- APPOINTMENTS (bound to PERSISTENT NAMES)
 - grant entry to a new ROLE conditionally on
 OTHER ROLEs held + constraints on their parameters
- administered *via* specific *ROLE(s)* (direct expression of *management policy*?)

Managing ROLE MEMBERSHIP and APPOINTMENT CREDENTIALS

- via a *signed certificate* ("capability"), format determined by the issuing service
 - issued to and managed by a principal, TRANSIENT or PERSISTENT
- a *credential record* (maintained at the issuing service)
 - asserts the *validity* of each issued certificate
 - linked to the active conditions for ROLE membership
 - enables *rapid* and *selective revocation*
 - + dependent on asynchronous notification

A service secured by OASIS access control



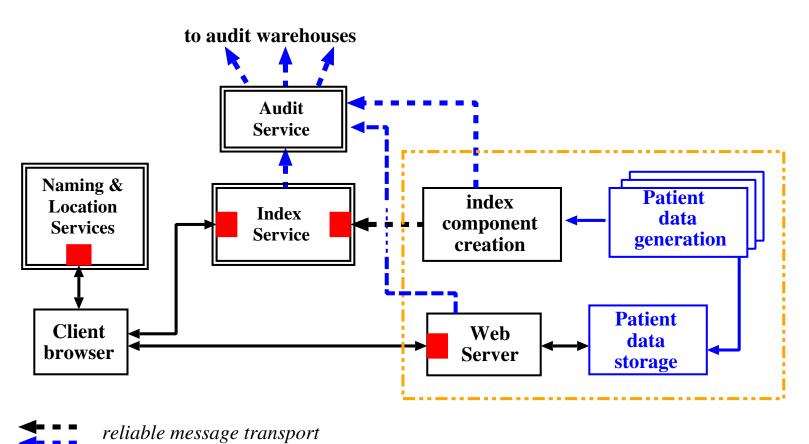
RMC = role membership certificate

= role entry

= use of service

Issuing and Using Appointment Certificates

- 1. principal A enters role AC-issuer
- 2. RMC as AC-issuer returned
- 3. AC-issuer requests an AC for principal B
- 4. validated request passed on
- 5. AC and RC returned to principal A
- 6. principal A passes AC to principal B but keeps RC


.

- 7. principal B enters a role using AC as one credential
- 8. RMC returned to principal B
- 9, 10. standard use of OASIS secured service

 $RMC = role \ membership \ certificate, \ \ AC = appointment \ certificate, \ \ RC = revocation \ certificate$

- = obtaining and using credentials for role entry
- = use of service

Overall EHR Architecture

service secured with Oasis access control
reliable, distributed, replicated national services
data-provider architecture

end systems including legacy systems

The OASIS Model

- Based on *Many-Sorted First Order Predicate Calculus*
 - *sorts* correspond to the datatypes in parameter value domains
 - predicate constants are interpreted as access control system entities
 - + environmental constraints which test context
 - rules are conjunctive (non-recursive Horn clauses)
 - *Many-Sorted* algebra of terms (no surprises)
 - + function symbols context sensitive
 - + constants 0-ary functions (e.g. current_time)
- syntax for parameter slots depends on the predicate type and the position in the rule
 - can include *named variables* as parameters (modes *in* and *out*-)
 - *variable instances* must match during rule interpretation (unification)
 - no theorem proving required, an efficient plan can be derived statically

Predicates taking part in rule evaluation

- Access Control System Entities
 - Role Membership Certificates have typed parameters
 - Appointment Certificates also have typed parameters
 - **Privileges** (correspond to e.g. **method invocations**)
 - granularity of *privileges* may be coarser

Environmental Constraints

- standard example is *database lookup* (use modes *in-* and *out-*)
- explicit predicates for testing *time* (various aspects)
- for efficiency require support from an *active platform* (*COBEA*)
 - in order to support *role membership conditions*
 - also helpful for caching authorising conditions

Role Activation Rules

• Syntax

$$r_1, r_2^*, \ldots a_1, a_2, \ldots e_1, e_2^*, \ldots \vdash r_T$$

- where each r_i is a **Role Membership Certificate** predicate
- and each a_i is an **Appointment Certificate** predicate
- and each e_k is an **Environmental Constraint**

These are the *preconditions* (* indicates that the condition must remain valid)

+ $r_{\rm T}$ is the *Target Role*

Interpretation

- r_i and a_i are simply matched against the required certificates
- $-e_k$ invoke predicates to test *the current context* (e.g. *active database*)
- matched parameters give values for slots in the *Target RMC*

Authorisation Rules

• Syntax

$$r_1$$
, e_1 , e_2 , ... $\vdash p_T$

- where r_1 is the authorising *Role Membership Certificate*
- and each e_k is an **Environmental Constraint**

These are the *authorising conditions*.

- + Here p_T is the *Target Privilege Instance*
- Interpretation
 - the *Target Privilege Instance* is derived from the invocation
 - parameter values are set by pattern matching from r_1 and p_T
 - can cache values of e_k with support from an *active platform*

Aims of the OASIS Model

High-level goals

- the rules should express policy precisely, and it should be explicable
- the model should act as a target for high-level policy languages
 - + have experimented with *Attempto controlled English*
- the consistency of policies derived from multiple sources should be decidable
- it must be easy to provide tools to support managers of applications
 - + support for interoperation across changes of policy locally
 - + via *active predicate* extension to the PostgreSQL DBMS
- rule evaluation must be efficient (particularly for authorization)
 - + static analysis to establish a plan for parameter matching
 - + caching of results of environmental predicates

• System-related goals – continuous monitoring of security conditions

- use snapshot semantics to reason about policy (no explicit transitions)
- use *platform properties* to reason about the behaviour under partition

Work in progress related to the OASIS Model

• Supporting a federation of management domains

- applications such as EHRs must accept policy from multiple sources
- require tools so that applications can discover how to obtain privileges
- require *conventions* for naming external environmental constraints
- must check consistency of policies derived from multiple sources
 - + **generate** a policy synthesis automatically

• Use of an active predicate store

- coordinating policy change in a federated management structure
 - + automatic generation of **Service Level Agreements**
- storing access control meta-data to support a *policy adviser*
 - + for *policy administrators*, application programmers
- implementing environmental predicates efficiently for *authorization*

The problems of reasoning within the OASIS Model

- Expressive power of the computational model
 - in general *environmental constraints* can express arbitrary computations
 - + hence *environmental predicates* are not in general decidable
 - + but support in active PostgreSQL extensions for binary relations
 - + $conjunctive form of rules <math>\Rightarrow predicates can only restrict access$
 - need for decidable sublanguages to express e.g. temporal constraints
 - opaqueness of the binding of predicates to their implementations
 - need for a formal specification (assertion) of the properties of predicates
 - + requires *integration* into the *policy store* technology

• Implicit behaviour of the active platform

- monitoring *membership conditions* requires a *notification* mechanism
 - + mustn't be any side effects on the Access Control System
- validity of *external predicates* depends on the *integrity* of the network
 - + network partition is detected using a heartbeat protocol
- in what sense is the procedure of *falsification* under *partition* a *safe* one?

Meta-policies as a means of coordinating a policy federation

Reference: András Belokosztolszki and Ken Moody

"Meta-Policies for Distributed Role-Based Access Control Systems", Proc. Policy 2002 (Monterey, June 2002), IEEE CS Press, pp. 106-115.

- Intuition behind our approach to meta-policies (decidable and compositional)
 - formalization of an interface specification at policy level
 - + specify *invariance properties* to which local managers must *comply*
 - + allow *certification* of participants in a *federated application* (*NHS*)
 - + provide a *stable framework* to support *interoperation* of domains
 - components comprising the *formal specification* of a *meta-policy*
 - + type system information data types, objects, functions
 - + access control system signatures roles, appointments
- Current progress with the experimental framework (proving hard!)
 - matching policy instances against a meta-policy (checking compliance)
 - managing service level agreements automatically across change of policy

This talk: http://www.cl.cam.ac.uk/~km/UofHull-talk.pdf

Other talks: http://www.cl.cam.ac.uk/~km/Active DB-AB.pdf

http://www.cl.cam.ac.uk/~km/MW2000-talk.pdf

http://www.cl.cam.ac.uk/~km/MW2001-talk.pdf

http://www.cl.cam.ac.uk/~km/NL_policy.pdf

Computer Laboratory OPERA Group Web pages

http://www.cl.cam.ac.uk/Research/SRG/opera/publications/index.html

(all of these papers can be downloaded from the publications pages)

Research Overviews

Jean Bacon, Ken Moody, John Bates, Richard Hayton, Chaoying Ma, Andrew McNeil, Oliver Seidel, Mark Spiteri,

"Generic Support for Distributed Applications" IEEE Computer, March 2000, pp. 68-76.

Jean Bacon, Ken Moody,

"Towards Open, Secure, Widely Distributed Services" Communications of the ACM, June 2002, pp. 59-64.

Other papers most relevant to this talk

- R. Hayton, J. Bacon, and K. Moody

 "OASIS: Access Control in an Open, Distributed Environment"

 Proc IEEE Symposium on Security and Privacy, Oakland CA, May 1998, pp. 3-14.
- J. Hine, W. Yao, J. Bacon, and K. Moody
 "An Architecture for Distributed OASIS Services" Proceedings of Middleware 2000,
 LNCS 1795, Springer-Verlag, Heidelberg and New York, April 2000, pp. 107-123.
- J. Bacon, M. Lloyd, and K. Moody"Translating Role-based Access Control within Context" Proceedings of Policy2001,LNCS 1995, Springer-Verlag, Heidelberg and New York, Jan 2001, pp. 107-119.
- J. Bacon, K. Moody, and W. Yao (expanded from SACMAT 2001) **MODEL**"A Model of OASIS Role-Based Access Control and its Support for Active Security"
 ACM TISSEC, Vol. 5, No. 4, November 2002, pp. 492-540.
- J. Bacon, K. Moody, and W. Yao

 "Access Control and Trust in the Use of Widely Distributed Services"

 Proceedings of Middleware 2001, LNCS 2218, Springer, Nov 2001, pp. 295-310.