Is it practical to build a truly distributed payment system?

Ross Anderson, Khaled Baqer
Cambridge
Centralised or distributed payment?
Centralisation and tech

• The pendulum has swung back and forth but for most of my working life we’ve been centralising payments and putting them online
• E.g. UK ATMs moved online-only in 1993
• EMV uses shared-key crypto card <-> bank
• However some applications have always resisted the move online
• Many others use offline as a fallback
• And bitcoin: is it really distributed?

CCS, Vienna, Oct 26 2016
Prepayment meters

- The STS specification we did 20+ years ago (IEEE S&P 95) is now used in 100+ countries
- Idea: copy 20-digit ciphertext from a ticket
The mobile money revolution

CCS, Vienna, Oct 26 2016
Mobile money achievements

• Helped poorest communities in many ways!
• Brought banking services to hundreds of millions who didn’t have them
• Built mechanisms for direct payments and remittances; store of value; personal safety; transaction history; access to credit
• Provided direct channel for government payments and services
• Connected lots of people to the online world
What are the remaining challenges?

• Extend payments to areas with no mobile service (mountains, deserts, islands)?
• Make service still work when network service intermittent (congestion, power cuts)?
• Cut network charges / transaction fees?
• Establish standards and interoperability for international remittances?

CCS, Vienna, Oct 26 2016
The DigiTally project

• The Gates Foundation asked for ideas to increase merchant use of mobile money
• We talked to operators and users in several countries: top issues were network access, then costs (though this varies between countries)
• So: how can you do a payment between two phones when there’s no GSM signal?
• It’s easy with two smartphones, but what about basic handsets?

CCS, Vienna, Oct 26 2016
DigiTally

- DigiTally is a prototype purse system we built to do research on offline mobile payments
- It works by copying short authentication codes from one phone to another
- Our prototype is implemented in overlay SIMs for use in simple phones
- It can also be implemented in your SIM toolkit or as a smartphone app
Overlay SIMs

- Tamper-resistant SIM
- Sticks on top of the regular SIM
- Bypasses the mobile network operator
- Independent secure device, like SE in NFC
- Can be used to compute authorization codes, just as in EMV

CCS, Vienna, Oct 26 2016
Background:
Short Message Authentication

• Short message authentication codes: telex test keys, firing codes, CVV auth codes
• Goal: operate in offline or constrained environments
• Tradeoffs between security and usability
• We set out to design for usability
• Our starting point was minimum change to the familiar transaction flow
Background: M-Pesa transaction

- Alice wants to pay Bob Ksh 400 ($4)
- Bob gives her his phone number
- Alice enters it, and ‘$4’
- She’s asked for her PIN
- An encrypted SMS is sent to the phone company
- After a random delay (+- 1 minute) Bob gets a confirmation SMS
DigiTally payment, step 1

- Alice wants to pay Bob $4 for a taxi ride
- The first step is for each of them to give the other their phone number which they each enter into their DigiTally menus
- This is just like in current systems, where Alice and Bob use the phone system to verify and store each other’s phone numbers
DigiTally payment, step 2

• If Bob wants $4 from Alice, he selects her name and enters the amount, “$4”, on his phone
• It shows an 8-digit authorization request, say ‘4761 0825’ which he shows or reads or shows to Alice
• She taps “$4” and “4761 0825” on her phone
• If they agree on the two phone numbers and the amount, then Alice’s phone proceeds to the next stage
DigiTally payment, step 3

• Alice enters her PIN (just like in a normal phone payment)
• Her phone displays “$4 paid” and an 8-digit authorization response, say “6409 3527”, which she reads or shows to Bob
• He taps in the code
• If it’s correct, his phone displays “$4 received” at once, with a full log of the transaction
Under the hood – first protocol

• Alice agrees to pay Bob X and each of them enters both this amount and the other party’s phone number into their phones

• Bob chooses a 3-digit nonce N_B and forms a 3-digit MAC C (using the shared secret key K) of B and X. He tells Alice the values (N_B, C) where $C = \text{Mac}_K(B, A, X, N_B) \mod 10^3$
First protocol (continued)

• Alice verifies the MAC, then authorises the transaction (using her PIN) to create a nonce and the response to the challenge \((N_A,R)\) where \(R = \text{Mac}_K (A,N_A,C,N_B,B) \mod 10^4\)

• Bob enters \(N_A\) and \(R\) into his purse, and checks it increments by \(X\)

• This verified in a straightforward way using the BAN logic (see Protocols Workshop paper)
First protocol – bugs

• Bob now chooses a higher price X'
• Bob generates new nonces, to find a collision:
 $$\text{Mac}_K(A,X,N_B,B) \equiv \text{Mac}_K(A,X',N_B',B) \equiv C \mod 10^3$$
• Bob aborts all other trial transactions
• Bob then gives (N_B,C) to Alice, but on his SIM uses N_B' and X'.
• Thus, Alice pays X; Bob gets $X' > X$
• Fix: $R = \text{Mac}_K(A,N_A,X,N_B,B)$
Further design constraints

• Bob could try to add money to his SIM card by faking transactions with fake customers and just guessing the response \(R \)
• Bob can also try to fake transactions with real customers \(A \), by keeping a record of their \(\text{Mac}_K(A, N_A, X, N_B, B) \) replies:
 – Bob can choose \(A \) and \(N_A \)
 – if the real Alice has already paid \(n \) times, then Bob finds some \((N_B, R) \) fake a transaction with prob \(n \cdot 10^{-3} \)
• Issue: most formal tools don’t track entropy!
Evolution 2: Delay-Tolerant Needham–Schroeder

• Banks happy with universal shared secrets only for small transactions. So what about big ones?
• Answer: turn the bug in the Needham-Schroeder (NS) protocol into a feature!
• A and B can ask for Sam’s help to establish KAB
• Either of them starts NS protocol with Sam when connectivity is available, and gets encrypted KAB
• Challenge: exchanging digits for the encrypted key, as 20 digits give you only 66 bits
• General mechanism for delay-tolerant networks?
Field trial

• Initial usability study with Joe Sevilla and Lorna Mutegi, Strathmore University, Nairobi

• Three outlets:
 – Bookshop (one till, quiet)
 – Coffee shop (two tills, bursty traffic)
 – Cafeteria (five tills, madly busy at mealtimes)

• We anticipated problems at the cafeteria!

• Twelve students (split male/female, arts/science, urban/rural)
The students
The bookshop
The coffee shop
The coffee shop
The cafeteria
What we found

• It worked fine in the bookshop, as expected
• The coffee shop staff didn’t like it as they were making coffee and also taking money
• The cafeteria staff, to our surprise, strongly preferred it to M-Pesa!
What we found

• It worked fine in the bookshop, as expected
• The coffee shop staff didn’t like it as they were making coffee and also taking money
• The cafeteria staff, to our surprise, strongly preferred it to M-Pesa!
• They did not have to wait about a minute for the confirmation SMS to come through
• Full usability study paper in preparation...
Pre-market research

• We talked to
 – the incumbent
 – the other phone company
 – the President’s office
 – and one bank that has been trying to establish its own mobile money system using overlay SIMs

• We then did market research in one of the richest towns (Thika) and one of the poorest (Busia)
Busia, near Lake Victoria
Busia county office

CCS, Vienna, Oct 26 2016
What we found

• The rich county thought it an interesting tech, but of most use for controlling money
• The poor county thought it was awesome and could transform their lives
• The phone network is awful there, so phone payments are really hard
• However the incumbent phone company wants to maximise profits from its SIM space
• That means gambling apps, not offline payments
The project so far

- The Gates Foundation paid us to develop a tech to extend mobile payments offline
- We’ve done that, and it works – both in the lab and the field
- Deployment in Kenya looks hard for now
- We’ve been talking to phone and payment companies elsewhere, and to bodies like the World Food Programme

CCS, Vienna, Oct 26 2016
Why tools like this matter

• Perhaps something other than payment will be the killer app
• Pay-as-you-go solar energy is growing fast
• Delay-tolerant networks will be pervasive!
• Also, we’re now getting tamper-resistant devices and enclaves everywhere
• Lightweight shared-key crypto can be used for optimistic bootstrapping, rate control / DoS prevention
Lessons learned

• Build it and try it out!
• (My thesis adviser Roger Needham used to say ‘good research comes from real problems’)
• Start with the people, not the tech
• Look at needs, design for usability
• Ceremonies – protocols with human participants – are worth systematic study
• Short message authentication protocols are a surprisingly common example
• Ask: can I do more with less?
Deeper lessons learned

• Economic incentives determine not just security, but deployability too
• Institutions matter, and regulation
• Often disruptive technology is about defeating regulation so as to replace tired institutions
• Ask: “what’s the source of market power?”
• Here, it’s not just network effects; a short resource the ability to turn cash into electrons
• The incumbent saw off a bitcoin challenger!
• Finally – think through the ethics
More

• More on DigiTally at the project web page
 http://www.cl.cam.ac.uk/~kabhb2/DigiTally/

• More on the security group at
 http://www.cl.cam.ac.uk/research/security/

• More on bank fraud in our blog
 http://www.lightbluetouchpaper.org

• And get my book on security engineering from
 http://www.cl.cam.ac.uk/~rja14/book