
Automated Reasoning: A Survey 1

Automated Reasoning:

A Survey

John Harrison

University of Cambridge

(visiting TU München)

• What is automated reasoning?

• Theoretical and practical limits

• Successes of the AI and logic approaches

• Development of formal logic

• History of automated reasoning

• Applications

• Interactive systems

• Reflection and LCF

John Harrison University of Cambridge, 16 March 1998

Automated Reasoning: A Survey 2

What is automated reasoning?

We interpret ‘automated’ broadly and ‘reasoning’

narrowly:

• We are interested in reasoning in logic and

mathematics, rather than in general

reasoning.

• On the other hand, we consider both fully

automatic and interactive systems.

The field is also called automated theorem proving

or mechanized theorem proving.

John Harrison University of Cambridge, 16 March 1998

Automated Reasoning: A Survey 3

Decidable systems

There are well-known fields of logic and

mathematics where validity is decidable, e.g:

• Propositional logic, e.g. ¬(p ∨ q) ⇒ ¬p ∧ ¬q.

• AE fragment of first order logic, e.g.

∀x. ∃y. P [x] ⇒ P [y].

• Linear arithmetic over N, e.g.

x < y ⇒ 2x+ 1 < 2y.

• Nonlinear arithmetic over R, e.g.

∃x. x2
− 3x+ 1 = 0.

However, this only covers small fragments of

mathematics.

John Harrison University of Cambridge, 16 March 1998

Automated Reasoning: A Survey 4

Theoretical limits

Full automation has strong theoretical limits, by

virtue of the following (related) theorems:

• Tarski’s theorem on the undefinability of

truth

• Gödel’s first incompleteness theorem.

• Church’s theorem.

John Harrison University of Cambridge, 16 March 1998

Automated Reasoning: A Survey 5

A naive proof procedure

However, there are still ways of searching for

proofs that can in principle prove most of the

facts of present-day mathematics (e.g. everything

in Bourbaki). A crude way is follows.

1. Express the mathematical axioms φ and the

desired theorem ψ in first order logic.

2. Dual-Skolemize the formula φ⇒ ψ into the

form ∃x1, . . . , xn. P [x1, . . . , xn]

3. Search for substitution instances such that

P [t11, . . . , t
1
n]∨ . . .∨P [tk1 , . . . , t

k
n] is a tautology.

John Harrison University of Cambridge, 16 March 1998

Automated Reasoning: A Survey 6

Practical Limits

Even if a theory is decidable in principle, the time

or space usage of the decision procedure may

make it ineffective in practice.

Anyway with general methods like the above, we

have the problem of searching with no upper

bound on the time taken.

The key is to cut down search space. There are

two main approaches:

• Look at and copy human behaviour (the AI

approach)

• Use more refined search methods backed up

by metatheorems (the logic approach).

There was (is?) still a controversy over whether

the human-oriented ‘AI’ approach or the ‘logic’

approach is better.

John Harrison University of Cambridge, 16 March 1998

Automated Reasoning: A Survey 7

A theorem in geometry

One of the early successes in automated theorem

proving (on the AI side) was the proof of the

following theorem:

A

B C

�
�

�
�

�
�

�
�

A
A
A
A
A
A
A
A

If the sides AB and AC are equal (i.e. the

triangle is isoseles), then the angles ABC and

ACB are equal.

John Harrison University of Cambridge, 16 March 1998

Automated Reasoning: A Survey 8

The usual proof

The usual proof proceeds by dropping a

perpendicular down from the point A to the side

BC, meeting it at a point D:

A

B C
D

�
�

�
�

�
�

�
�

A
A
A
A
A
A
A
A

and then using the fact that the triangles ABD

and ACD are congruent.

John Harrison University of Cambridge, 16 March 1998

Automated Reasoning: A Survey 9

The computer’s proof

The computer found an ingenious proof which

had been missed by most writers on geometry

(though it had already been used by Pappus).

A

B C

�
�

�
�

�
�

�
�

A
A
A
A
A
A
A
A

Simply, the triangles ABC and ACB are

congruent. Q.E.D.

John Harrison University of Cambridge, 16 March 1998

Automated Reasoning: A Survey 10

The Robbins Conjecture (1)

A very recent success in automated reasoning, this

time on the logic side, was the proof by McCune’s

program EQP of the Robbins Conjecture.

Huntington (1933) presented the following axioms

for a Boolean algebra:

x+ y = y + x

(x+ y) + z = x+ (y + z)

n(n(x) + y) + n(n(x) + n(y)) = x

Shortly thereafter, Herbert Robbins conjectured

that the Huntington equation can be replaced by

a simpler one:

n(n(x+ y) + n(x+ n(y))) = x

John Harrison University of Cambridge, 16 March 1998

Automated Reasoning: A Survey 11

The Robbins Conjecture (2)

This conjecture went unproved for more than 50

years, despite being studied by many

mathematicians, even including Tarski.

It because a popular target for researchers in

automated reasoning.

In May 1996, it was claimed that a proof had been

found automatically using the REVEAL prover.

However this was traced to a bug in REVEAL.

Then, in October 1996, a correct proof was found

by McCune’s program EQP.

The successful search took about 8 days on an

RS/6000 processor and used about 30 megabytes

of memory.

John Harrison University of Cambridge, 16 March 1998

Automated Reasoning: A Survey 12

Origins of mechanization

The idea of mechanizing reasoning in a manner

similar to arithmetic calculation is an old one,

going back at least to Hobbes.

Reason [. . .] is nothing but Reckoning.

For as Arithmeticians teach to adde and

subtract in numbers [...] The Logicians

teach the same in consequences of words

[...] And as in Arithmetique, unpractised

men must, and Professors themselves may

often erre, and cast up false; so also in

any other subject of Reasoning the

ablest, most attentive, and most

practised men, may deceive themselves,

and inferre false conclusions.

Leibniz envisaged a calculus ratiocinator and a

characteristica universalis.

John Harrison University of Cambridge, 16 March 1998

Automated Reasoning: A Survey 13

Development of formal logic

We can highlight several important phases in the

development of formal logic.

• The Socratic method

• Aristotle’s syllogisms

• Leibniz’s attempts at a characteristica

• Boole’s algebra of logic

• Frege’s Begriffsschrift

• Peano’s Formulaire

• Russell and Whitehead’s Principia

Mathematica.

• Hilbert’s programme

• Metamathematical studies (Gödel, Tarski,

Church, Turing, . . .)

John Harrison University of Cambridge, 16 March 1998

Automated Reasoning: A Survey 14

Early computer experiments

The earliest uses of computers in theorem proving

were in the late 50s and early 60s. Among the

pioneers were:

• Newell and Simon (AI)

• Gelentner’s geometry machine (AI)

• Gilmore (logical)

• Wang (logical)

• Davis and Putnam (logical)

• Prawitz (logical)

The logic approach soon began to dominate, but

still had strong limitations.

Prawitz’s method used a much more intelligent

way of searching for ground instances, based on a

simple form of unification. This was later

generalized by Robinson.

John Harrison University of Cambridge, 16 March 1998

Automated Reasoning: A Survey 15

More recent methods

The two most efficient general first order theorem

proving methods were invented in the 60s.

• Resolution, invented by Alan Robinson, is a

bottom-up, local, proof method based on a

single, very simple, inference rule:

p ∨ q ¬p

q

• Model elimination, invented by Donald

Loveland, is a top-down, global, proof method

which in many versions is quite similar to

Prolog.

These are still the big two methods today,

represented by Otter (from Chicago) and SETHEO

(from Munich), probably the most powerful

general first order provers at present.

John Harrison University of Cambridge, 16 March 1998

Automated Reasoning: A Survey 16

Higher Order Logic

Most attention has been devoted to automatic

proofs in either (i) pure first order logic, or (ii)

particular mathematical theories.

However, higher order logic is a promising

alternative. This line has mainly been pursued by

Andrews and his collaborators and led to TPS.

TPS uses a version of the ‘connection’ or

‘matings’ method, with higher-order unification à

la Huet replacing first order unification. It can

prove automatically:

• Cantor’s theorem: there is no mapping from a

set onto its powerset.

• If some fn has a unique fixed point then f

has a fixpoint

John Harrison University of Cambridge, 16 March 1998

Automated Reasoning: A Survey 17

The Boyer-Moore Prover

Boyer and Moore’s NQTHM is unusual in that it

doesn’t work in pure logic. Instead it uses a very

simple system of ‘primitive recursive arithmetic’

(Skolem, Goodstein).

It has the remarkable ability to do proofs by

induction automatically.

These properties make it much more useful in

many real situations than provers for pure logic.

It has been used for many impressive applications,

mainly in verification, which we consider later.

It is fully automatic. Nevertheless, the user still

has to guide it in some way by selecting a

sequence of lemmas. And there is not much

control over what it does.

A new system ACL2 supersedes NQTHM in most

respects.

John Harrison University of Cambridge, 16 March 1998

Automated Reasoning: A Survey 18

Formalized Mathematics

One application of theorem provers is to check

large bodies of existing mathematics, making

them completely formal.

Peano started such a project with his Formulaire

but did not really formalize proofs.

Bourbaki seems to believe in formalization ‘in

principle’, but not in practice.

However with the help of the computer we can

actually achieve formalization.

The most impressive example is the Mizar project.

There is a recent proposal for a QED Project to

extend this formalization much further.

John Harrison University of Cambridge, 16 March 1998

Automated Reasoning: A Survey 19

Verification

The idea of verification is to make sure computer

systems (hardware, software) work correctly by

formal verification of the design.

Actual system

Mathematical model

Mathematical specification

Actual requirements

6

6

6

It is only the central link that is mathematically

precise. The others are still informal — all we can

do is try to keep them small.

John Harrison University of Cambridge, 16 March 1998

Automated Reasoning: A Survey 20

Interactive theorem proving

Automated systems may be capable of impressive

feats, but they are not usually much use either in

mathematics or verification.

The current trend is to combine automation with

human control and guidance. This idea goes back

to the SAM (semi-automated mathematics)

project. Other pioneering proof checkers appeared

in the 70s:

• AUTOMATH (de Bruijn)

• Mizar (Trybulec et al.)

• Stanford LCF (Milner)

However, these tended to be tedious to use. What

was needed was a better mix of automation with

the manual controllability. Nowadays, PVS is

perhaps the state of the art.

John Harrison University of Cambridge, 16 March 1998

Automated Reasoning: A Survey 21

Obviousness

The ideal is to leave the subtle parts of the proofs

to humans, and have the computer fill in the

obvious parts. But what humans and computers

find obvious are not the same. For example

computers find:

(∀x y z. P (x, y) ∧ P (y, z) ⇒ P (x, z)) ∧

(∀x y z. Q(x, y) ∧Q(y, z) ⇒ Q(x, z)) ∧

(∀x y. Q(x, y) ⇒ Q(y, x)) ∧

(∀x y. P (x, y) ∨Q(x, y))

⇒ (∀x y. P (x, y)) ∨ (∀x y. Q(x, y))

very obvious, but most people need to think about

it. Conversely, most people find McCarthy’s

‘mutilated checkerboard’ obvious (when shown

the trick) but computers have trouble. Computers

are really oriented towards ‘logical’ obviousness.

John Harrison University of Cambridge, 16 March 1998

Automated Reasoning: A Survey 22

Sound extensibility

The ideal interactive theorem prover should be

extensible with new inference capabilities as the

need arises.

Moreover, especially if it is to be used in

verification, the system itself and any extensions

should be reliable (at least logically consistent...)

There are two main approaches to this problem:

• Reflection

• LCF

Crudely speaking, the difference is between

verifying code and making code self-checking.

As such it represents a general choice in designing

correct software (see papers by Blum on results

checking).

John Harrison University of Cambridge, 16 March 1998

Automated Reasoning: A Survey 23

Reflection

Reflection in theorem proving is vaguely related to

logical reflection, which involves adding rules like:

⊢ Pr(pφq)

⊢ φ

The idea is:

• Take a new inference rule, implemented by a

piece of code C.

• Verify in the existing system that C is correct.

• Add C to the implementation of the theorem

prover.

Not exactly a logical rule or principle in the

traditional sense. As yet, there are few non-trivial

examples.

John Harrison University of Cambridge, 16 March 1998

Automated Reasoning: A Survey 24

Edinburgh LCF

The LCF alternative started with Edinburgh LCF

(Milner et al.)

A core of primitive inferences is provided, each

simply an ML function, returning a thm.

Users can write custom inference rules in ML,

decomposing to these primitive inferences.

Although proofs are not explicitly constructed,

theorems are members of an abstract type and

can only be created by applying the primitive

inferences.

Thus, derived inference rules are correct by

construction, in the sense that all ‘theorems’

produced really are theorems.

There are many LCF descendants including HOL

(Gordon, Melham et al.), Coq (Huet et al.) and

Nuprl (Constable et al.).

John Harrison University of Cambridge, 16 March 1998

Automated Reasoning: A Survey 25

Fully-expansive decision procedures

How can we code sophisticated derived rules that

decompose to primitives? At first sight this might

seem hopelessly inefficient.

• Represent inference steps as object-level

theorems

• Separate search from inference

Many useful decision procedures can be coded in

this manner, without unacceptable slowness.

For example, HOL has linear arithmetic,

tautology checking and model elimination.

Other things, like explicit arithmetic with very

large numbers, or the BDD-based fixpoint

calculations in model checking, seem more

challenging.

John Harrison University of Cambridge, 16 March 1998

Automated Reasoning: A Survey 26

Isabelle

Isabelle (Paulson, Nipkow et al.) belongs to the

LCF family but uses slightly different principles.

Inference rules are theorems in a metalogic, which

itself is formalized in the traditional LCF way.

This means:

• The system can be made generic, i.e. to work

for a family of object logics, including HOL

and ZF.

• Inference rules are represented more

‘declaratively’ rather than as black boxes.

on the other hand:

• The primitive rules are less efficient; they

perform a higher-order unification step each

time.

• The system is more complex, since it has

both a metalogic and (several) object logics.

John Harrison University of Cambridge, 16 March 1998

Automated Reasoning: A Survey 27

Conclusions

• Purely automatic theorem proving is an

interesting research field with connections

both to pure logic and to AI.

• Automatic systems can still make new

contributions to mathematics in the right

areas.

• Although applications mainly use interactive

systems, automated subsystems are vital, and

these can draw on the body of existing work.

• The LCF methodology seems a promising line

of research for obtaining powerful but reliable

syetems.

• Applications have their own interest.

Formalizing mathematics is often fascinating,

while systems verification is a challenge and

potentially very valuable in practice.

John Harrison University of Cambridge, 16 March 1998

Automated Reasoning: A Survey 28

Postscript

A theorem prover in 6 lines of Prolog (Beckert

and Possega):

prove((E,F),A,B,C,D) :- !,prove(E,[F|A],B,C,D).

prove((E;F),A,B,C,D) :- !,prove(E,A,B,C,D),

prove(F,A,B,C,D).

prove(all(I,J),A,B,C,D) :- !,

\+length(C,D),copy_term((I,J,C),(G,F,C)),

append(A,[all(I,J)],E),prove(F,E,B,[G|C],D).

prove(A,_,[C|D],_,_) :-

((A= -(B);-(A)=B) -> (unify(B,C);

prove(A,[],D,_,_))).

prove(A,[E|F],B,C,D) :- prove(E,F,[A|B],C,D).

John Harrison University of Cambridge, 16 March 1998

