
Using theorem proving in industry

Using theorem proving

in industry

John Harrison

Intel Corporation

• The cost of bugs

• Formal verification

• Machine-checked proof

• Automatic and interactive approaches

• HOL Light

• Floating point verification

• Theorem prover features

• Conclusions

John Harrison Intel Corporation, 7 June 2001

Using theorem proving in industry

The human cost of bugs

Computers are often used in safety-critical

systems where a failure could cause loss of life.

• Heart pacemakers

• Aircraft

• Nuclear reactor controllers

• Car engine management systems

• Radiation therapy machines

• Telephone exchanges (!)

• ...

John Harrison Intel Corporation, 7 June 2001

Using theorem proving in industry

Financial cost of bugs

Even when not a matter of life and death, bugs

can be financially serious if a faulty product has

to be recalled or replaced.

• 1994 FDIV bug in the IntelPentium
processor: US $500 million.

• Today, new products are ramped much

faster...

So Intel is especially interested in all techniques

to reduce errors.

John Harrison Intel Corporation, 7 June 2001

Using theorem proving in industry

Complexity of designs

At the same time, market pressures are leading to

more and more complex designs where bugs are

more likely.

• A 4-fold increase in bugs in Intel processor

designs per generation.

• Approximately 8000 bugs introduced during

Pentium 4 design process.

Fortunately, pre-silicon detection rates are now at

least 99.7%.

Just enough to tread water...

John Harrison Intel Corporation, 7 June 2001

Using theorem proving in industry

Limits of testing

Bugs are usually detected by extensive testing,

including pre-silicon simulation.

• Slow — especially pre-silicon

• Too many possibilities to test them all

For example:

• 2160 possible pairs of floating point numbers

(possible inputs to an adder).

• Vastly higher number of possible states of a

complex microarchitecture.

John Harrison Intel Corporation, 7 June 2001

Using theorem proving in industry

Formal verification

Formal verification: mathematically prove the

correctness of a design with respect to a

mathematical formal specification.

Actual system

Design model

Formal specification

Actual requirements

6

6

6

John Harrison Intel Corporation, 7 June 2001

Using theorem proving in industry

Verification vs. testing

Verification has some advantages over testing:

• Exhaustive.

• Improves our intellectual grasp of the system.

However:

• Difficult and time-consuming.

• Only as reliable as the formal models used.

• How can we be sure the proof is right?

John Harrison Intel Corporation, 7 June 2001

Using theorem proving in industry

Analogy with mathematics

Sometimes even a huge weight of empirical

evidence can be misleading.

• π(n) = number of primes ≤ n

• li(n) =
∫

n

0
du/ln(u)

Littlewood proved in 1914 that π(n) − li(n)

changes sign infinitely often.

No change of sign at all had ever been found

despite testing up to n = 1010 (in the days before

computers).

Similarly, extensive testing of hardware or

software may still miss errors that would be

revealed by a formal proof.

John Harrison Intel Corporation, 7 June 2001

Using theorem proving in industry

Formal verification is hard

Writing out a completely formal proof of

correctness for real-world hardware and software

is difficult.

• Must specify intended behaviour formally

• Need to make many hidden assumptions

explicit

• Requires long detailed proofs, difficult to

review

The state of the art is quite limited.

Software verification has been around since the

60s, but there have been few major successes.

John Harrison Intel Corporation, 7 June 2001

Using theorem proving in industry

Faulty hand proofs

“Synchronizing clocks in the presence of faults”

(Lamport & Melliar-Smith, JACM 1985)

This introduced the Interactive Convergence

Algorithm for clock synchronization, and

presented a ‘proof’ of it.

• Presented five supporting lemmas and one

main correctness theorem.

• Lemmas 1, 2, and 3 were all false.

• The proof of the main induction in the final

theorem was wrong.

• The main result, however, was correct!

John Harrison Intel Corporation, 7 June 2001

Using theorem proving in industry

Machine-checked proof

A more promising approach is to have the proof

checked (or even generated) by a computer

program.

• It can reduce the risk of mistakes.

• The computer can automate some parts of

the proofs.

There are limits on the power of automation, so

detailed human guidance is usually necessary.

John Harrison Intel Corporation, 7 June 2001

Using theorem proving in industry

The spectrum of theorem provers

From interactive proof checkers to fully automatic

theorem provers.

AUTOMATH (de Bruijn)

Stanford LCF (Milner)

Mizar (Trybulec)

. . .

. . .
PVS (Owre, Rushby, Shankar)

. . .

. . .
ACL2 (Boyer, Kaufmann, Moore)

Otter (McCune)

John Harrison Intel Corporation, 7 June 2001

Using theorem proving in industry

Automation vs. expressiveness

Tools like Boolean tautology checkers and

symbolic model checkers are:

• Completely automatic

• Efficient enough for nontrivial problems

• Incapable even of expressing, let alone

proving, many interesting properties.

On the other hand, proof checkers like Mizar:

• Can prove essentially any mathematical

theorem in principle

• Require detailed and explicit human guidance

even for relatively simple problems.

To verify interesting floating-point algorithms, we

need automation and expressiveness.

John Harrison Intel Corporation, 7 June 2001

Using theorem proving in industry

HOL Light

HOL Light is based on the approach to theorem

proving pioneered in Edinburgh LCF in the 70s.

• All theorems created by low-level primitive

rules.

• Guaranteed by using an abstract type of

theorems; no need to store proofs.

• ML available for implementing derived rules

by arbitrary programming.

The system can be extended reliably without

making unsafe modifications

The user controls the means of production (of

theorems).

John Harrison Intel Corporation, 7 June 2001

Using theorem proving in industry

Other LCF theorem provers

There are many versions of HOL:

• HOL88

• hol90

• ProofPower

• HOL Light

• hol98

and several other provers based on LCF:

• Coq

• Isabelle

• Nuprl

John Harrison Intel Corporation, 7 June 2001

Using theorem proving in industry

HOL Light primitive rules (1)

⊢ t = t
REFL

Γ ⊢ s = t ∆ ⊢ t = u
Γ ∪ ∆ ⊢ s = u

TRANS

Γ ⊢ s = t ∆ ⊢ u = v
Γ ∪ ∆ ⊢ s(u) = t(v)

MK COMB

Γ ⊢ s = t
Γ ⊢ (λx. s) = (λx. t)

ABS

⊢ (λx. t)x = t
BETA

John Harrison Intel Corporation, 7 June 2001

Using theorem proving in industry

HOL Light primitive rules (2)

{p} ⊢ p
ASSUME

Γ ⊢ p = q ∆ ⊢ p

Γ ∪ ∆ ⊢ q
EQ MP

Γ ⊢ p ∆ ⊢ q

(Γ − {q}) ∪ (∆ − {p}) ⊢ p = q
DEDUCT ANTISYM RULE

Γ[x1, . . . , xn] ⊢ p[x1, . . . , xn]

Γ[t1, . . . , tn] ⊢ p[t1, . . . , tn]
INST

Γ[α1, . . . , αn] ⊢ p[α1, . . . , αn]

Γ[γ1, . . . , γn] ⊢ p[γ1, . . . , γn]
INST TYPE

John Harrison Intel Corporation, 7 June 2001

Using theorem proving in industry

Floating point verification

We’ve used HOL Light to verify the accuracy of

floating point algorithms (used in hardware and

software) for:

• Division and square root

• Transcendental function such as sin, exp,

atan.

This involves background work in formalizing:

• Real analysis

• Basic floating point arithmetic

We’ll give some examples to show the importance

of some of HOL Light’s features.

John Harrison Intel Corporation, 7 June 2001

Using theorem proving in industry

Need for pre-proved mathematics

Many floating-point algorithms are based on

particular formulas for transcendental functions.

For example, to calculate the tangent of a number

close to π/2, we use the cotangent expansion,

valid for 0 < |x| < π:

cot(x) = 1/x − 1

3
x − 1

45
x3 − 2

945
x5 − . . .

To verify the error when approximating

tan(π/2 + x) with some truncation of this series

requires quite a lot of real analysis, e.g.

differentiable functions, continuity, Taylor series,

general theorems on reversing orders of

summations...

John Harrison Intel Corporation, 7 June 2001

Using theorem proving in industry

HOL’s pre-proved real analysis

• Definitional construction of real numbers

• Basic topology

• General limit operations

• Sequences and series

• Limits of real functions

• Differentiation

• Power series and Taylor expansions

• Transcendental functions

• Gauge integration

John Harrison Intel Corporation, 7 June 2001

Using theorem proving in industry

Examples of useful theorems

|- sin(x + y) =

sin(x) * cos(y) + cos(x) * sin(y)

|- tan(&n * pi) = &0

|- &0 < x /\ &0 < y

==> (ln(x / y) = ln(x) - ln(y))

|- f contl x /\ g contl (f x)

==> (g o f) contl x

|- (!x. a <= x /\ x <= b

==> (f diffl (f’ x)) x) /\

f(a) <= K /\ f(b) <= K /\

(!x. a <= x /\ x <= b /\ (f’(x) = &0)

==> f(x) <= K)

==> !x. a <= x /\ x <= b ==> f(x) <= K

John Harrison Intel Corporation, 7 June 2001

Using theorem proving in industry

The need for automation

Many industrial verification proofs are

enormously messy and complicated, involving

hundreds of millions of logical inferences.

But many of them are for quite routine tasks for

which a decision method is available, e.g. linear

real arithmetic:

a ≤ x ∧ b ≤ y∧
|x − y| < |x − a|∧
|x − y| < |x − b|∧
(b ≤ x ⇒ |x − a| ≤ |x − b|)∧
(a ≤ y ⇒ |y − b| ≤ |y − a|)
⇒ (a = b)

It’s also useful to be able to perform traditional

first order logical automation, to avoid a lot of

tedious application of inference rules collecting

lemmas together.

John Harrison Intel Corporation, 7 June 2001

Using theorem proving in industry

HOL’s automation

• Simplifier for (conditional, contextual)

rewriting.

• Tautology checker.

• Automated theorem provers for pure logic,

based on tableaux and model elimination.

• Tools for definition of (infinitary, mutually)

inductive relations.

• Tools for definition of (mutually) recursive

datatypes

• Linear arithmetic decision procedures over R,

Z and N.

• Differentiator for real functions.

• Nonlinear polynomial quantifier elimination

over C

John Harrison Intel Corporation, 7 June 2001

Using theorem proving in industry

Automation examples

Linear arithmetic:

REAL_ARITH

‘a <= x /\ b <= y /\

abs(x - y) < abs(x - a) /\

abs(x - y) < abs(x - b) /\

(b <= x ==> abs(x - a) <= abs(x - b)) /\

(a <= y ==> abs(y - b) <= abs(y - a))

==> (a = b)‘;;

First order logic (realistic examples are too big...)

prove

(‘(!x y z. P x y /\ P y z ==> P x z) /\

(!x y z. Q x y /\ Q y z ==> Q x z) /\

(!x y. Q x y ==> Q y x) /\

(!x y. P x y \/ Q x y)

==> (!x y. P x y) \/ (!x y. Q x y)‘,

MESON_TAC[]);;

John Harrison Intel Corporation, 7 June 2001

Using theorem proving in industry

The need for programmability

Many of the inference patterns that arise in

floating-point work don’t correspond to standard

decidable problems, but there are special

algorithms to solve them. For example:

• Bounding successive rounding errors using

relative error analysis and triangle inequality.

• Computing the approximation error in

approximating a mathematical function by a

polynomial with floating-point coefficients.

• Solving diophantine equations defining

difficult cases and proving by exhaustive case

analysis that an algorithm is always correct.

These are examples we’ve automated to the point

where they are ‘push-button’. Under the surface,

they may involve millions of inferences...

John Harrison Intel Corporation, 7 June 2001

Using theorem proving in industry

Square root perfect rounding

Several square root algorithms work by a final

rounding of a more accurate intermediate result

S∗. For perfect rounding, we should ensure that

the two real numbers
√

a and S∗ never fall on

opposite sides of a midpoint between two floating

point numbers, as here:

-
66√

a
S∗

Rather than analyzing the rounding of the final

approximation explicitly, we can just appeal to

general properties of the square root function.

John Harrison Intel Corporation, 7 June 2001

Using theorem proving in industry

Exclusion zones

It would suffice if we knew for any midpoint m

that:

|
√

a − S∗| < |
√

a − m|
In that case

√
a and S∗ cannot lie on opposite

sides of m. Here is the formal theorem in HOL:

|- ¬(precision fmt = 0) ∧
(∀m. m IN midpoints fmt

⇒ abs(x - y) < abs(x - m))

⇒ (round fmt Nearest x =

round fmt Nearest y)

And this is possible to prove, because in fact

every midpoint m is surrounded by an ‘exclusion

zone’ of width δm > 0 within which the square

root of a floating point number cannot occur.

However, it turns out that out that there are still

some cases where the error in some of our

algorithms might be too large.

John Harrison Intel Corporation, 7 June 2001

Using theorem proving in industry

Difficult cases

However, one can show that all the difficult cases

have mantissas m that are solutions of simple

diophantine equations, typically of the form:

2pm = k2 + d

It’s not difficult to program HOL to enumerate all

solutions to such equations for particular p and d,

and then to exhaustively test the algorithm for

correctness on these numbers (typically a few

hundred).

Thus, we have a general mathematical proof

covering most cases, and use number theory to

isolate the possible exceptions and check them

specially — all automatically, and all within a

strict formal proof.

John Harrison Intel Corporation, 7 June 2001

Using theorem proving in industry

Conclusions

• Formal verification of mathematical software

is industrially important, and can be attacked

with current theorem proving technology.

• A large part of the work involves building up

general theories about both pure mathematics

and special properties of floating point

numbers.

• It is easy to underestimate the amount of

pure mathematics needed for obtaining very

practical results.

• The mathematics required is often the sort

that is not found in current textbooks: very

concrete results but with a proof!

• Using HOL Light, we can confidently

integrate all the different aspects of the proof,

using programmability to automate tedious

parts.

John Harrison Intel Corporation, 7 June 2001

