Proof Automation and Proof Style

Proot Automation
and Proof Style

What is a proof?
Assessment of proof styles
Classification of proof styles
Some existing systems

Full programmability

Procedural vs. declarative

The best of both worlds?

University of Cambridge, 16 December 1996




Proof Automation and Proof Style

What is a proof?

We can distinguish between:

e Informal proof sketches
e Machine-checkable proof sketches
e Proof objects in a formal system

e Canonical proofs

We are concerned with machine-checkable proof
sketches; with the general problem of how to

communicate a proof to a machine.

University of Cambridge, 16 December 1996




Proof Automation and Proof Style

Assessment of proof styles

Some qualities we might be interested in include:

e Ease of writing
Ease of reading
Maintainability
Efficiency of processing
Tool support

Explicit control

University of Cambridge, 16 December 1996




Proof Automation and Proof Style

Classification of proof styles

Some variables include:

e The level of automation provided, and
conversely, the level of explicit control
provided.

The emphasis on a declarative style (stating
what is to be proved) or a procedural one

stating how to prove it).
g

Proof direction; whether one proceeds
forward, backward or can mix the two or do

something more flexible still.

Whether one works interactively or in batch

mode.

University of Cambridge, 16 December 1996




Proof Automation and Proof Style

Some existing systems

We can see some sharp contrasts by considering

existing systems:

e AUTOMATH: Very low automation,
completely procedural.

e Mizar: Low but effective automation, almost

completely declarative.

e PVS: Highly automated but with good

interactive features, largely procedural.

e NQTHM: Very highly automated, no
interactive features, totally declarative.

University of Cambridge, 16 December 1996




Proof Automation and Proof Style

Declarative proof example

let £ be A->A;
assume L:antecedent;
antisymmetry: (!x y. x <=y /\ y <= x ==> (x = y)) by L;

transitivity: (Ix y z. x <=y /\ y <= z ==> x <= z) by L;

monotonicity: (!x y. x <=y ==> f x <= f y) by L;
least_upper_bound:
('X. ?7s:A. (!'x. x IN X ==> s <= x) /\
('s?. ('x. x IN X ==> g’ <= x) ==> g’ <= g))
by L;
set Y_def: Y ={b | £ b <= b};
Y_thm: !'b. b INY =f b <=D
by Y_def,IN_ELIM_THM,BETA_THM;
consider a such that
lub: (!'x. x IN Y ==> a <= x) /\
(ta’. ('x. x IN Y ==> a’ <= x) ==
by least_upper_bound;
take a;
now let b be A;
assume b_in_Y: b IN Y;
then LO: f b <= b by Y_thm;
a <= b by b_in_Y, lub;
so f a <= f b by monotonicity;
hence f a <= b by LO, transitivity;
end;
so Partl: f(a) <= a by lub;
so f(f(a)) <= f(a) by monotonicity;
so f(a) IN Y by Y_thm;
so a <= f(a) by lub;
hence thesis by Partl, antisymmetry;

University of Cambridge, 16 December 1996




Proof Automation and Proof Style

Procedural proof example

REPEAT GEN_TAC THEN
REWRITE_TAC[contl; LIM; REAL_SUB_RZERO] THEN
BETA_TAC THEN DISCH_TAC THEN X_GEN_TAC "e:real" THEN
DISCH_TAC THEN
FIRST_ASSUM(UNDISCH_TAC o assert is_conj o concl) THEN
DISCH_THEN (CONJUNCTS_THEN MP_TAC) THEN
DISCH_THEN(\th. FIRST_ASSUM(MP_TAC o MATCH_MP th)) THEN
DISCH_THEN (X_CHOOSE_THEN "d:real" STRIP_ASSUME_TAC) THEN
DISCH_THEN(MP_TAC o SPEC "d:real") THEN
ASM_REWRITE_TAC[] THEN
DISCH_THEN (X_CHOOSE_THEN "c:real" STRIP_ASSUME_TAC) THEN
EXISTS_TAC "c:real" THEN ASM_REWRITE_TAC[] THEN
X_GEN_TAC "h:real" THEN
DISCH_THEN (ANTE_RES_THEN MP_TAC) THEN
ASM_CASES_TAC "&0 < abs(f(x + h) - f(x))" THENL
[UNDISCH_TAC "&0 < abs(f(x + h) - f(x))" THEN
DISCH_THEN(\th. DISCH_THEN(MP_TAC o CONJ th)) THEN
DISCH_THEN (ANTE_RES_THEN MP_TAC) THEN
REWRITE_TAC[REAL_SUB_ADD2];
UNDISCH_TAC "~ (&0 < abs(f(x + h) - f£(x)))" THEN
REWRITE_TAC[GSYM ABS_NZ; REAL_SUB_0] THEN
DISCH_THEN SUBST1_TAC THEN
ASM_REWRITE_TAC[REAL_SUB_REFL; ABS_011);;

University of Cambridge, 16 December 1996




D
The procedural-declarative distinction

University of Cambridge, 16 December 1996




Proof Automation and Proof Style

Full programmability

It is very useful to have a full programming
language as in HOL. Users of PVS feel the need

for it. We have the ‘Java problem’ but LCF
systems solve it.

However it brings disadvatages! One needs to
support full programming when designing
interfaces, debuggers and other tools.

Programmability is mainly used for:
e Substantial enhancements to the proof system

e Small one-off nonce programs

Perhaps with a suitable choice of primitives, the
second is not needed? We can have something like
the Coq approach.

University of Cambridge, 16 December 1996




Proof Automation and Proof Style

Procedural vs. declarative (1)

e Ease of writing: Declarative style is certainly
easier for the beginner because it requires a
smaller ‘vocabulary’. For experienced users,

which is better may well depend on the proof.

Readability: : Declarative proofs are
normally much easier to read. They make the
context manifest, whereas in the procedural
style it need to be reconstructed by ezrecuting
the previous steps.

University of Cambridge, 16 December 1996




Proof Automation and Proof Style

Procedural vs. declarative (2)

Maintainability: Declarative proofs are
certainly easier to fix when broken. In
general, as they are less explicit, they break
less easily if the proof system or the problem
changes. Terms are made manifest, and so

can be changed by global editing.

Efficiency: : Procedural proofs clearly win as
they involve much less search.

Tool support: : Declarative proofs are better,

again because it is easier to establish context.

Style of working: Declarative proofs support
batch working because error recovery is
better.

University of Cambridge, 16 December 1996




Procedural vs. declarative (3)

We can tentatively conclude that the declarative
style is normally better for pure mathematics, but
that the procedural style may be better in a

number of verification applications.

However there may be some instances where the
reverse is true, e.g. mathematical proofs
established with computer assistance, or the
Gonthier-Doligez prootf of garbage collection
algorithms.

How nice if we could have a free choice of both!

University of Cambridge, 16 December 1996




Proof Automation and Proof Style

The best of both worlds?

We have implemented a system supporting
Mizar-style declarative proofs within a slight
extension of the HOL tactic framework.

The only extension to the tactic system is a
method for labelling assumptions.

Mizar constructs have a procedural interpretation
as HOL tactics, and we use automated theorem
proving to turn the declarative proof outlines into

concrete proofs.

We still retain a Coqg-style ability to write (safe)
new proof procedures in ML and link them into
the Mizar mode. Moreover Mizar and HOL proofs

can be arbitrarily intermixed.

University of Cambridge, 16 December 1996




Proof Automation and Proof Style

Conclusions

The question of proof style is a fundamental one,

and deserves more general consideration.

The success of Mizar shows the strength of the
declarative style, at least within pure

mathematics.

The right style probably depends on the proof.
Perhaps, then, the ability to mix these and other

styles is the ideal for a general theorem prover.

University of Cambridge, 16 December 1996




