
Proof Automation and Proof Style 1
Proof Automationand Proof Style

John HarrisonUniversity of Cambridge
(�Abo Akademi University)� What is a proof?� Assessment of proof styles� Classi�cation of proof styles� Some existing systems� Full programmability� Procedural vs. declarative� The best of both worlds?John Harrison University of Cambridge, 16 December 1996



Proof Automation and Proof Style 2
What is a proof?

We can distinguish between:� Informal proof sketches� Machine-checkable proof sketches� Proof objects in a formal system� Canonical proofsWe are concerned with machine-checkable proofsketches; with the general problem of how tocommunicate a proof to a machine.

John Harrison University of Cambridge, 16 December 1996



Proof Automation and Proof Style 3
Assessment of proof styles

Some qualities we might be interested in include:� Ease of writing� Ease of reading� Maintainability� E�ciency of processing� Tool support� Explicit control

John Harrison University of Cambridge, 16 December 1996



Proof Automation and Proof Style 4
Classi�cation of proof styles

Some variables include:� The level of automation provided, andconversely, the level of explicit controlprovided.� The emphasis on a declarative style (statingwhat is to be proved) or a procedural one(stating how to prove it).� Proof direction; whether one proceedsforward, backward or can mix the two or dosomething more 
exible still.� Whether one works interactively or in batchmode.
John Harrison University of Cambridge, 16 December 1996



Proof Automation and Proof Style 5
Some existing systems

We can see some sharp contrasts by consideringexisting systems:� AUTOMATH: Very low automation,completely procedural.� Mizar: Low but e�ective automation, almostcompletely declarative.� PVS: Highly automated but with goodinteractive features, largely procedural.� NQTHM: Very highly automated, nointeractive features, totally declarative.

John Harrison University of Cambridge, 16 December 1996



Proof Automation and Proof Style 6
Declarative proof examplelet f be A->A;assume L:antecedent;antisymmetry: (!x y. x <= y /\ y <= x ==> (x = y)) by L;transitivity: (!x y z. x <= y /\ y <= z ==> x <= z) by L;monotonicity: (!x y. x <= y ==> f x <= f y) by L;least_upper_bound:(!X. ?s:A. (!x. x IN X ==> s <= x) /\(!s'. (!x. x IN X ==> s' <= x) ==> s' <= s))by L;set Y_def: Y = {b | f b <= b};Y_thm: !b. b IN Y = f b <= bby Y_def,IN_ELIM_THM,BETA_THM;consider a such thatlub: (!x. x IN Y ==> a <= x) /\(!a'. (!x. x IN Y ==> a' <= x) ==> a' <= a)by least_upper_bound;take a;now let b be A;assume b_in_Y: b IN Y;then L0: f b <= b by Y_thm;a <= b by b_in_Y, lub;so f a <= f b by monotonicity;hence f a <= b by L0, transitivity;end;so Part1: f(a) <= a by lub;so f(f(a)) <= f(a) by monotonicity;so f(a) IN Y by Y_thm;so a <= f(a) by lub;hence thesis by Part1, antisymmetry;John Harrison University of Cambridge, 16 December 1996



Proof Automation and Proof Style 7
Procedural proof exampleREPEAT GEN_TAC THENREWRITE_TAC[contl; LIM; REAL_SUB_RZERO] THENBETA_TAC THEN DISCH_TAC THEN X_GEN_TAC "e:real" THENDISCH_TAC THENFIRST_ASSUM(UNDISCH_TAC o assert is_conj o concl) THENDISCH_THEN(CONJUNCTS_THEN MP_TAC) THENDISCH_THEN(\th. FIRST_ASSUM(MP_TAC o MATCH_MP th)) THENDISCH_THEN(X_CHOOSE_THEN "d:real" STRIP_ASSUME_TAC) THENDISCH_THEN(MP_TAC o SPEC "d:real") THENASM_REWRITE_TAC[] THENDISCH_THEN(X_CHOOSE_THEN "c:real" STRIP_ASSUME_TAC) THENEXISTS_TAC "c:real" THEN ASM_REWRITE_TAC[] THENX_GEN_TAC "h:real" THENDISCH_THEN(ANTE_RES_THEN MP_TAC) THENASM_CASES_TAC "&0 < abs(f(x + h) - f(x))" THENL[UNDISCH_TAC "&0 < abs(f(x + h) - f(x))" THENDISCH_THEN(\th. DISCH_THEN(MP_TAC o CONJ th)) THENDISCH_THEN(ANTE_RES_THEN MP_TAC) THENREWRITE_TAC[REAL_SUB_ADD2];UNDISCH_TAC "~(&0 < abs(f(x + h) - f(x)))" THENREWRITE_TAC[GSYM ABS_NZ; REAL_SUB_0] THENDISCH_THEN SUBST1_TAC THENASM_REWRITE_TAC[REAL_SUB_REFL; ABS_0]]);;

John Harrison University of Cambridge, 16 December 1996



Proof Automation and Proof Style 8
The procedural-declarative distinction

John Harrison University of Cambridge, 16 December 1996



Proof Automation and Proof Style 9
Full programmability

It is very useful to have a full programminglanguage as in HOL. Users of PVS feel the needfor it. We have the `Java problem' but LCFsystems solve it.However it brings disadvatages! One needs tosupport full programming when designinginterfaces, debuggers and other tools.Programmability is mainly used for:� Substantial enhancements to the proof system� Small one-o� nonce programsPerhaps with a suitable choice of primitives, thesecond is not needed? We can have something likethe Coq approach.John Harrison University of Cambridge, 16 December 1996



Proof Automation and Proof Style 10
Procedural vs. declarative (1)

� Ease of writing: Declarative style is certainlyeasier for the beginner because it requires asmaller `vocabulary'. For experienced users,which is better may well depend on the proof.� Readability: : Declarative proofs arenormally much easier to read. They make thecontext manifest, whereas in the proceduralstyle it need to be reconstructed by executingthe previous steps.

John Harrison University of Cambridge, 16 December 1996



Proof Automation and Proof Style 11
Procedural vs. declarative (2)

� Maintainability: Declarative proofs arecertainly easier to �x when broken. Ingeneral, as they are less explicit, they breakless easily if the proof system or the problemchanges. Terms are made manifest, and socan be changed by global editing.� E�ciency: : Procedural proofs clearly win asthey involve much less search.� Tool support: : Declarative proofs are better,again because it is easier to establish context.� Style of working: Declarative proofs supportbatch working because error recovery isbetter.
John Harrison University of Cambridge, 16 December 1996



Proof Automation and Proof Style 12
Procedural vs. declarative (3)

We can tentatively conclude that the declarativestyle is normally better for pure mathematics, butthat the procedural style may be better in anumber of veri�cation applications.However there may be some instances where thereverse is true, e.g. mathematical proofsestablished with computer assistance, or theGonthier-Doligez proof of garbage collectionalgorithms.How nice if we could have a free choice of both!

John Harrison University of Cambridge, 16 December 1996



Proof Automation and Proof Style 13
The best of both worlds?

We have implemented a system supportingMizar-style declarative proofs within a slightextension of the HOL tactic framework.The only extension to the tactic system is amethod for labelling assumptions.Mizar constructs have a procedural interpretationas HOL tactics, and we use automated theoremproving to turn the declarative proof outlines intoconcrete proofs.We still retain a Coq-style ability to write (safe)new proof procedures in ML and link them intothe Mizar mode. Moreover Mizar and HOL proofscan be arbitrarily intermixed.
John Harrison University of Cambridge, 16 December 1996



Proof Automation and Proof Style 14
Conclusions

The question of proof style is a fundamental one,and deserves more general consideration.The success of Mizar shows the strength of thedeclarative style, at least within puremathematics.The right style probably depends on the proof.Perhaps, then, the ability to mix these and otherstyles is the ideal for a general theorem prover.

John Harrison University of Cambridge, 16 December 1996


