
Formal Verification In Industry (II) 1

Formal Verification
In Industry (II)

John Harrison

Intel Corporation

• Introduction

• Quick overview of LCF and HOL.

• Floating point numbers and IA-64 formats

• HOL floating point theory

• Square root algorithm

• Correctness proof in HOL

John Harrison Intel Corporation, 4 September 1999

Formal Verification In Industry (II) 2

Introduction

We have seen that equivalence checking, model

checking, STE etc. are powerful tools for

verification, and are not limited to hardware.

However, for higher-level verification, e.g. against

specifications involving real numbers, a more

general mathematical framework is required.

A good example is the verification of certain

floating point operations. For this purpose, one

needs a more powerful theorem prover that is

capable of reasoning about the underlying

mathematics. One prover that is being applied

inside Intel for this purpose is HOL Light.

In this talk we will show how HOL Light has been

used to formalize floating point arithmetic and

applied to formal verification of mathematical

algorithms. We will use a square root software

algorithm as an example; it is implemented using

basic IA-64 instructions.

John Harrison Intel Corporation, 4 September 1999

Formal Verification In Industry (II) 3

The LCF approach

The prover we use, HOL Light, is based on the

approach to theorem proving pioneered in

Edinburgh LCF in the 70s. The key ideas are:

• All theorems created by low-level primitive

rules.

• Guaranteed by using an abstract type of

theorems; no need to store proofs.

• ML available for implementing derived rules

by arbitrary programming.

This gives advantages of reliability and

extensibility. The system’s source code can be

completely open. The user controls the means of

production (of theorems). To improve efficiency

one can:

• Encapsulate reasoning in single theorems.

• Separate proof search and proof checking.

John Harrison Intel Corporation, 4 September 1999

Formal Verification In Industry (II) 4

Some primitive rules of HOL Light

⊢ t = t
REFL

Γ ⊢ s = t ∆ ⊢ t = u
Γ ∪ ∆ ⊢ s = u

TRANS

Γ ⊢ s = t ∆ ⊢ u = v
Γ ∪ ∆ ⊢ s(u) = t(v)

MK COMB

⊢ (λx. t)x = t
BETA

Γ[x1, . . . , xn] ⊢ p[x1, . . . , xn]

Γ[t1, . . . , tn] ⊢ p[t1, . . . , tn]
INST

There are a few more similar primitive rules, and

two rules of definition.

John Harrison Intel Corporation, 4 September 1999

Formal Verification In Industry (II) 5

Some of HOL Light’s derived rules

• Simplifier for (conditional, contextual)

rewriting.

• Tactic mechanism for mixed forward and

backward proofs.

• Tautology checker.

• Automated theorem provers for pure logic,

based on tableaux and model elimination.

• Tools for definition of (infinitary, mutually)

inductive relations.

• Tools for definition of (mutually) recursive

datatypes

• Linear arithmetic decision procedures over R,

Z and N.

• Differentiator for real functions.

John Harrison Intel Corporation, 4 September 1999

Formal Verification In Industry (II) 6

Real analysis theory

• Definitional construction of real numbers

• Basic topology

• General limit operations

• Sequences and series

• Limits of real functions

• Differentiation

• Power series and Taylor expansions

• Transcendental functions

• Gauge integration

John Harrison Intel Corporation, 4 September 1999

Formal Verification In Industry (II) 7

Floating point numbers

There are various different schemes for floating

point numbers. Usually, the floating point

numbers are those representable in some number

n of significant binary digits, within a certain

exponent range, i.e.

(−1)s × d0.d1d2 · · · dn × 2e

where

• s ∈ {0, 1} is the sign

• d0.d1d2 · · · dn is the significand and d1d2 · · · dn

is the fraction. These are not always used

consistently; sometimes ‘mantissa’ is used for

one or the other

• e is the exponent.

We often refer to p = n + 1 as the precision.

John Harrison Intel Corporation, 4 September 1999

Formal Verification In Industry (II) 8

IA-64 floating point formats

A floating point format is a particular allowable

precision and exponent range.

IA-64 supports a multitude of possible formats,

e.g.

• IEEE single: p = 24 and −126 ≤ e ≤ 127

• IEEE double: p = 53 and −1023 ≤ e ≤ 1023

• IEEE double-extended: p = 64 and

−16382 ≤ e ≤ 16383

• IA-64 register format: p = 64 and

−65534 ≤ e ≤ 65535

There are various other hybrid formats, and a

separate type of parallel FP numbers, which is

SIMD single precision.

The highest precision, ‘register’, is normally used

for intermediate calculations in algorithms.

John Harrison Intel Corporation, 4 September 1999

Formal Verification In Industry (II) 9

HOL floating point theory (1)

We have formalized a generic floating point

theory in HOL, which can be applied to all the

IA-64 formats, and others supported in software

such as quad precision.

A floating point format is identified by a triple of

natural numbers fmt.

The corresponding set of real numbers is

format(fmt), or ignoring the upper limit on the

exponent, iformat(fmt).

Floating point rounding returns a floating point

approximation to a real number, ignoring upper

exponent limits. More precisely

round fmt rc x

returns the appropriate member of iformat(fmt)

for an exact value x, depending on the rounding

mode rc, which may be one of Nearest, Down, Up

and Zero.

John Harrison Intel Corporation, 4 September 1999

Formal Verification In Industry (II) 10

HOL floating point theory (2)

For example, the definition of rounding down is:

|- (round fmt Down x = closest

{a | a IN iformat fmt ∧ a <= x} x)

We prove a large number of results about

rounding, e.g. that a real number rounds to itself

if it is in the floating point format:

|- ¬(precision fmt = 0) ∧ x IN iformat fmt

=⇒ (round fmt rc x = x)

that rounding is monotonic:

|- ¬(precision fmt = 0) ∧ x <= y

=⇒ round fmt rc x <= round fmt rc y

and that subtraction of nearby floating point

numbers is exact:

|- a IN iformat fmt ∧ b IN iformat fmt ∧
a / &2 <= b ∧ b <= &2 * a

=⇒ (b - a) IN iformat fmt

John Harrison Intel Corporation, 4 September 1999

Formal Verification In Industry (II) 11

Floating point correctness (1)

Floating point operations are considered correct

when they yield an answer that is sufficiently

close to the exact mathematical answer. For

example, for the exponential function:

a

v(a)

EXP (a)

exp(v(a))
v(EXP (a))

-

-

6 6

EXP

exp

v v

In general, we can’t represent the exact

mathematical result as a floating point number.

John Harrison Intel Corporation, 4 September 1999

Formal Verification In Industry (II) 12

Floating point correctness (2)

The IEEE standard states that all the algebraic

operations should give the closest floating point

number to the true answer, or the closest number

up, down, or towards zero in other rounding

modes.

However, the standard makes no

recommendations about the transcendentals. It is

difficult to guarantee such a stringent criterion,

because of the ‘table maker’s dilemma’.

Being able to approximate a real number

arbitrarily closely does not in general mean that

one can decide the correctly rounded digits in a

positional expansion.

e1.626 = 5.083499996273 . . .

To decide whether 5.0834 or 5.0835 is the closest

5-digit number, we need to perform the evaluation

to much more than an accuracy of 10−5.

John Harrison Intel Corporation, 4 September 1999

Formal Verification In Industry (II) 13

Our algorithm example

Our example is an algorithm for square roots

using only single precision computations (hence

suitable for SIMD). It is built using two basic

IA-64 operations:

• The reciprocal square root approximation

frsqrta, which given an input a returns an

approximation to 1/
√

a with relative error at

most about 2−8.85.

• The fused multiply add and its negated

variant, which calculates xy + z or z − xy

with just a single rounding error.

Because it only uses single precision calculations,

readers can ‘try it at home’; it’s fairly easy to

simulate a single-precision fused multiply-add on

standard hardware. The actual tables used in the

frcpa instruction are documented in the IA-64

Architecture Guide.

http://developer.intel.com/design/ia64/downloads/adag.htm

John Harrison Intel Corporation, 4 September 1999

Formal Verification In Industry (II) 14

The square root algorithm

1. y0 = 1√
a
(1 + ǫ) frsqrta

b = 1
2a Single

2. z0 = y2
0 Single

S0 = ay0 Single

3. d = 1
2 − bz0 Single

k = ay0 − S0 Single

H0 = 1
2y0 Single

4. e = 1 + 3
2d Single

T0 = dS0 + k Single

5. S1 = S0 + eT0 Single

c = 1 + de Single

6. d1 = a − S1S1 Single

H1 = cH0 Single

7. S = S1 + d1H1 Single

John Harrison Intel Corporation, 4 September 1999

Formal Verification In Industry (II) 15

Proving IEEE correctness

Provided the input number is in a certain range,

this algorithm returns the correctly rounded

square root and sets all the IEEE flags correctly.

How do we prove that the result is correctly

rounded? We will concentrate on

round-to-nearest mode, which is the most

interesting case. What the algorithm actually

returns is the result of rounding the value:

S∗ = S1 + d1H1

The algorithm is correct if this is always the

same as the result of rounding the exact square

root
√

a.

Moreover, properties of this value S∗, e.g.

whether it is already exactly a floating point

number, determine the final flag settings

(intermediate steps do not set flags). We also

want to make sure these properties are the same

as for the exact square root.

John Harrison Intel Corporation, 4 September 1999

Formal Verification In Industry (II) 16

Condition for perfect rounding

A sufficient condition for perfect rounding is that

the closest floating point number to
√

a is also the

closest to S∗. That is, the two real numbers
√

a

and S∗ never fall on opposite sides of a midpoint

between two floating point numbers.

In the following diagram this is not true;
√

a

would round to the number below it, but S∗ to

the number above it.

-
66√

a S∗

How can we prove this?

John Harrison Intel Corporation, 4 September 1999

Formal Verification In Industry (II) 17

Exclusion zones

It would suffice if we knew for any midpoint m

that:

|
√

a − S∗| < |
√

a − m|
In that case

√
a and S∗ cannot lie on opposite

sides of m. Here is the formal theorem in HOL:

|- ¬(precision fmt = 0) ∧
(∀m. m IN midpoints fmt

=⇒ abs(x - y) < abs(x - m))

=⇒ (round fmt Nearest x =

round fmt Nearest y)

And this is possible to prove, because in fact

every midpoint m is surrounded by an ‘exclusion

zone’ of width δm > 0 within which the square

root of a floating point number cannot occur.

However, this δ can be quite small, considered as

a relative error. If the floating point format has

precision p, then we can have δm ≈ |m|/22p+2.

John Harrison Intel Corporation, 4 September 1999

Formal Verification In Industry (II) 18

Difficult cases

So to ensure the equal rounding property, we need

to make the final approximation before the last

rounding accurate to more than twice the final

accuracy.

The fused multiply-add can help us to achieve just

under twice the accuracy, but to do better is slow

and complicated. How can we bridge the gap?

Only a fairly small number of possible inputs a

can come closer than say 2−(2p−1). For all the

other inputs, a straightforward relative error

calculation (which in HOL we have largely

automated) yields the result.

We can then use number-theoretic reasoning to

isolate the additional cases we need to consider,

then simply try them and see! More than likely

we will be lucky, since all the error bounds are

worst cases and even if the error is exceeded, it

might be in the right direction to ensure perfect

rounding anyway.

John Harrison Intel Corporation, 4 September 1999

Formal Verification In Industry (II) 19

Isolating difficult cases

By some straightforward mathematics,

formalizable in HOL without difficulty, one can

show that the difficult cases have mantissas m,

considered as p-bit integers, such that one of the

following diophantine equations has a solution k

for d a small integer. (Typically ≤ 10, depending

on the exact accuracy of the final approximation

before rounding.)

2p+2m = k2 + d

or

2p+1m = k2 + d

We consider the equations separately for each

chosen d. For example, we might be interested in

whether:

2p+1m = k2 − 7

has a solution. If so, the possible value(s) of m

are added to the set of difficult cases.

John Harrison Intel Corporation, 4 September 1999

Formal Verification In Industry (II) 20

Solving the equations

It’s quite easy to program HOL to enumerate all

the solutions of such diophantine equations,

returning a disjunctive theorem of the form:

(2p+1m = k2 + d) =⇒ (m = n1) ∨ . . . ∨ (m = ni)

The procedure simply uses even-odd reasoning

and recursion on the power of two (effectively

so-called ‘Hensel lifting’). For example, if

225m = k2 − 7

then we know k must be odd; we can write

k = 2k′ + 1 and get the derived equation:

224m = 2k′2 + 2k′ − 3

By more even/odd reasoning, this has no

solutions. In general, we recurse down to an

equation that is trivially unsatisfiable, as here, or

immediately solvable. One equation can split into

two, but never more.

John Harrison Intel Corporation, 4 September 1999

Formal Verification In Industry (II) 21

Conclusions

Because of HOL’s mathematical generality, all the

reasoning needed can be done in a unified way

with the customary HOL guarantee of soundness:

• Underlying pure mathematics

• Formalization of floating point operations

• Proof that the condition tested ensures

perfect rounding

• Routine relative error computation for the

final result before rounding

• Number-theoretic isolation of difficult cases

• Explicit computation with those cases

Moreover, because HOL is programmable, many

of these parts can be, and have been, automated.

In short, HOL is an almost ideal vehicle for

verifications of this type.

John Harrison Intel Corporation, 4 September 1999

