
Formal Verification In Industry (I) 1

Formal Verification
In Industry (I)
John Harrison

Intel Corporation

• Formal verification

• Importance of hardware verification

• Approaches to hardware verification

• Combinational comparison

• BDDs

• Symbolic simulation and STE

• Temporal logic model checking

• Theorem proving

• The best of both worlds?

John Harrison Intel Corporation, 4 September 1999



Formal Verification In Industry (I) 2

Formal Verification

Traditionally, errors in hardware and software

have been discovered empirically, by testing them

in many possible situations.

However, the number of possible situations is

usually so large that we can only exercise a tiny

proportion of them.

For example, there are about 280 double extended

precision floating point numbers. Testing an

operation on all of them will probably never be

feasible, even if it’s only unary.

Pre-silicon testing of microprocessor designs is

especially limited, since everything is run on

simulators orders of magnitude slower than real

hardware.

Formal verification is an alternative that involves

trying to prove mathematically that a computer

system will function as intended.

John Harrison Intel Corporation, 4 September 1999



Formal Verification In Industry (I) 3

Exhaustiveness

In mathematics, a general proposition can’t be

proved by testing many possible cases. A rigorous

proof is something different.

Sometimes even a huge weight of numerical

evidence can be misleading. For example,

Littlewood proved in 1914 that π(n) − li(n)

changes sign infinitely often, where π(n) is the

number of primes ≤ n and

li(n) =

∫
n

0

du/ln(u)

This came as a surprise since not a single sign

change had been found despite extensive testing of

values up to 1010. (In the days before computers.)

Similarly, extensive testing of hardware or

software may still miss errors that would be

revealed by a formal proof.

John Harrison Intel Corporation, 4 September 1999



Formal Verification In Industry (I) 4

Formal models

Formal verification aims to prove the correctness

of a design with respect to a mathematical formal

specification. This still leaves two gaps:

Actual system

Design model

Formal specification

Actual requirements

6

6

6

Note that the same criticisms can be levelled at

certain kinds of testing. A simulator is not the

same as a real chip. Checking against a ‘reference

implementation’ doesn’t prove that the reference

is correct.

John Harrison Intel Corporation, 4 September 1999



Formal Verification In Industry (I) 5

Formal verification is hard

Writing out a completely formal proof of

correctness for real-world hardware and software

is difficult.

One needs to make explicit lots of assumptions

and special cases that one often forgets about

informally. Moreover, one has to avoid making

any mistakes or oversights. This is a major

undertaking, even for a small system.

It’s not easy to get such long and detailed proofs

right, nor for others to read them and be assured

of their correctness.

The state of the art, at least in the software

world, is quite limited. Software verification has

been around since the 60s, but there have been

few major successes.

John Harrison Intel Corporation, 4 September 1999



Formal Verification In Industry (I) 6

Hobbes quotation

And as in Arithmetique, unpractised men

must, and Professors themselves may

often erre, and cast up false; so also in

any other subject of Reasoning, the

ablest, most attentive, and most practised

men, may deceive themselves and inferre

false Conclusions; Not but that Reason it

selfe is always Right Reason, as well as

Arithmetique is a certain and infallible

Art: But no one mans Reason, nor the

Reason of any one number of men, makes

the certaintie; no more than an account is

therefore well cast up, because a great

many men have unanimously approved it.

From Hobbes’s Leviathan, 1651.

John Harrison Intel Corporation, 4 September 1999



Formal Verification In Industry (I) 7

Computer theorem provers

A more promising approach is to have the proof

checked (or even generated) by a computer

program. This offers two potential advantages

over doing proofs by hand:

• It can reduce the risk of mistakes. The

computer can check that the user only proves

results in ways known to be sound.

• The computer can make (some parts of) the

proof easier than they would be by hand,

even automating large parts of it.

In the hardware world the latter has proven to be

especially important, and has led to a recent

upsurge of interest in formal hardware

verification.

John Harrison Intel Corporation, 4 September 1999



Formal Verification In Industry (I) 8

Faulty hand proofs

The paper “Synchronizing clocks in the presence

of faults” (Lamport & Melliar-Smith, JACM

1985) introduced the Interactive Convergence

Algorithm for clock synchronization, and

presented a ‘proof’ of it.

A later attempt to reproduce this by Rushby and

von Henke in a mechanical theorem prover

(EHDM) discovered serious flaws.

The paper presented five supporting lemmas and

one main correctness theorem.

Lemmas 1, 2, and 3 were all false. Lemma 4 was

false too, but only because of a minor

typographical error. The proof of the main

induction in the final theorem was wrong. The

main result, however, was correct!

John Harrison Intel Corporation, 4 September 1999



Formal Verification In Industry (I) 9

Hardware verification

In recent years, formal hardware verification has

become much more important, and used by most

or all leading hardware companies, while software

verification is still languishing. Why?

First, there seems a greater need for it. We have

already pointed out the greater commercial

significance of hardware errors. And the

complexity of hardware designs is increasing

rapidly, as designers rely on techniques such as

deep pipelining, out-of-order execution and

speculation. Because of the potential for subtle

interactions between components, it is

increasingly difficult to exercise a realistic set of

possibilities by simulation.

Secondly, important aspects of hardware design

are amenable to automated proof methods,

making formal verification easier to introduce and

more productive.

John Harrison Intel Corporation, 4 September 1999



Formal Verification In Industry (I) 10

Combinational comparison

One important question in hardware design is

whether two different combinational circuits have

the same behaviour (subject perhaps to some

conditions on the inputs).

For example, a synthesis tool may produce a

circuit automatically. However, typically the

designer would like to modify it, e.g. to reduce

the gate count or improve timing.

The task of showing that the unoptimized and

optimized circuits have the same functional

behaviour reduces simply to verifying a formula in

propositional (Boolean) logic (‘tautology

checking’).

This can be done completely automatically, e.g.

by truth tables.

John Harrison Intel Corporation, 4 September 1999



Formal Verification In Industry (I) 11

Efficiency

Even though purely propositional theorem

proving can ‘in principle’ be done completely

automatically, in practice it can be prohibitively

expensive when the formula is large and/or

involves many variables.

In fact, the tautology checking of propositional

formulas is a (co-)NP complete task, so it seems

likely that no algorithm will have good worst-case

behaviour.

One way of avoiding this difficulty in

combinational comparison is to partition the

circuits into many parts and verify corresponding

components.

Even so, one would like the underlying

propositional reasoning system to be as efficient

as possible. Truth tables rapidly become too

inefficient in practice.

John Harrison Intel Corporation, 4 September 1999



Formal Verification In Industry (I) 12

Efficient tautology checking

There are several ways of doing tautology

checking that often work out quite well in

practice, e.g.

• Classic algorithms like the Davis-Putnam

procedure.

• Reduction to an integer programming

problem.

• St̊almarck’s algorithm

• Binary decision diagrams (BDDs).

In the hardware industry, BDDs are currently the

most popular. They have a few other nice

features such as giving a canonical representation

of a formula.

John Harrison Intel Corporation, 4 September 1999



Formal Verification In Industry (I) 13

BDDs

a

b

c

d

e

f

0 1

a

c c

e e e e

b b b b

d d

f

0 1

Boolean functions are represented by directed

acyclic graphs with maximal sharing and a

canonical variables ordering.

The variable ordering can make a big difference!

John Harrison Intel Corporation, 4 September 1999



Formal Verification In Industry (I) 14

Symbolic simulation

Symbolic simulation is a generalization of

traditional logic simulation, where the ‘test

vectors’ are not just constants, but expressions

involving variables. This allows a single

simulation run to consider broad classes of inputs.

This approach to verification was developed in the

1970s, but the methods for handling the symbolic

expressions were primitive and inefficient, and the

method did not have much impact.

The introduction of BDDs to represent the

expressions made a dramatic difference; they give

a canonical representation of arbitrary Boolean

expressions, and turn out to be quite compact in

many practical situations.

Using symbolic simulation with BDDs, it is

possible to perform verification against a

specification simply by comparing the results with

the expectation, both symbolic expressions.

John Harrison Intel Corporation, 4 September 1999



Formal Verification In Industry (I) 15

Symbolic trajectory evaluation

Symbolic trajectory evaluation (STE) is a further

development of symbolic simulation.

The user can write specifications in a restricted

temporal logic, specifying the behaviour over

bounded-length trajectories (sequences of circuit

states).

A typical specification would be: if the current

state satisfies a property P , then after n time

steps, the state will satisfy the property Q.

The circuit can then be checked against this

specification by symbolic simulation.

John Harrison Intel Corporation, 4 September 1999



Formal Verification In Industry (I) 16

Temporal logic model checking

In temporal logic model checking, specifications

can be written in a more general temporal logic

without the limitation of bounded trajectories or

explicit time.

The hardware itself is regarded simply as a state

transition system. Each state gives rise to a

valuation on atomic formulas, saying whether

that atomic formula ‘holds in a state’.

In CTL (Computation Tree Logic), behaviour can

be specified by quantifying both over future time

and over the range of possible state transition

sequences. For example AGf means ‘for all

possible paths, f holds in every state’.

To make the model-checking algorithm practical,

the state transition system is coded up with

combinations of Boolean variables, so that

everything can be represented by BDDs.

John Harrison Intel Corporation, 4 September 1999



Formal Verification In Industry (I) 17

Limitations of automatic approaches

All the methods we have considered are largely

automatic. Moreover, in cases where the

verification fails, they can provide explicit

counterexamples. However they have important

limitations.

First, despite clever tricks like BDDs, one

inevitably hits feasibility problems for large

circuits, especially those involving wide

datapaths. The problem is particularly acute in

temporal logic model checking, because one needs

a more or less explicit representation of all the

states of the system.

Second, even CTL is quite a limited logic, and

cannot express many important properties. In

particular, none of the methods considered can

deal with numbers. This means that arithmetic

hardware is merely being verified against a

bit-level specification, leaving room for doubt over

John Harrison Intel Corporation, 4 September 1999



Formal Verification In Industry (I) 18

whether this correctly specifies arithmetic.

For even higher-level specification, e.g. as in

floating point operations, the situation is still

worse.

John Harrison Intel Corporation, 4 September 1999



Formal Verification In Industry (I) 19

Theorem proving

One can meet these objections by using a general

theorem prover.

This can deal with all the high-level mathematics

required, and the specification can therefore be

written in a more natural way. In fact, the

verification can be modularized and structured

into layers, with increasingly general levels of

specification.

Verification can also be performed generically, e.g.

proving n-bit adders correct for arbitrary n rather

than some particular value.

However, there is the serious disadvantage that

once one goes much further than CTL, validity is

no longer decidable in theory and certainly not

feasible in practice. Instead, proving theorems

needs expert interaction. Moreover, one no longer

gets the automatic counterexamples when proofs

fail.

John Harrison Intel Corporation, 4 September 1999



Formal Verification In Industry (I) 20

The best of both worlds?

Perhaps the ideal is to combine theorem proving

and model checking together in a single system:

• The model checker to perform low-level parts

of the proof, generate feedback in the form of

counterexamples, and raise the level of

automation.

• The theorem prover to link to higher-level

specifications, perform inductive or generic

reasoning and verify the underlying

mathematics

Intel has been successfully using a combination of

theorem proving and STE for a number of years.

Recently, this has been increasingly tightly

coupled to achieve a productive environment. The

combined system has been applied to verifying

the basic floating point operations in the P6.

It is likely that this kind of research will be

increasingly important in the future.

John Harrison Intel Corporation, 4 September 1999


