
Verifying floating-point algorithms using
formalized mathematics

John Harrison
Intel Corporation

Seminar, University of Tsukuba

17 September 2010

0

The human cost of bugs

Computers are often used in safety-critical systems where a failure
could cause loss of life.

• Heart pacemakers

• Aircraft

• Nuclear reactor controllers

• Car engine management systems

• Radiation therapy machines

• Telephone exchanges (!)

• ...

1

Financial cost of bugs

Even when not a matter of life and death, bugs can be financially
serious if a faulty product has to be recalled or replaced.

• 1994 FDIV bug in the IntelPentium processor: US $500
million.

• Today, new products are ramped much faster...

So Intel is especially interested in all techniques to reduce errors.

2

Complexity of designs

At the same time, market pressures are leading to more and more
complex designs where bugs are more likely.

• A 4-fold increase in bugs in Intel processor designs per
generation.

• Approximately 8000 bugs introduced during design of the
Pentium 4.

Fortunately, pre-silicon detection rates are now very close to 100%.

Just enough to tread water...

3

Limits of testing

Bugs are usually detected by extensive testing, including pre-silicon
simulation.

• Slow — especially pre-silicon

• Too many possibilities to test them all

For example:

• 2160 possible pairs of floating point numbers (possible inputs to
an adder).

• Vastly higher number of possible states of a complex
microarchitecture.

4

Formal verification

Formal verification: mathematically prove the correctness of a design
with respect to a mathematical formal specification.

Actual system

Design model

Formal specification

Actual requirements

6

6

6

5

Verification vs. testing

Verification has some advantages over testing:

• Exhaustive.

• Improves our intellectual grasp of the system.

However:

• Difficult and time-consuming.

• Only as reliable as the formal models used.

• How can we be sure the proof is right?

6

Analogy with mathematics

Sometimes even a huge weight of empirical evidence can be
misleading.

• π(n) = number of primes ≤ n

• li(n) =
∫

n

0
du/ln(u)

Littlewood proved in 1914 that π(n) − li(n) changes sign infinitely
often.

No change of sign at all had ever been found despite testing up to
n = 1010 (in the days before computers).

Similarly, extensive testing of hardware or software may still miss
errors that would be revealed by a formal proof.

7

Formal verification is hard

Writing out a completely formal proof of correctness for real-world
hardware and software is difficult.

• Must specify intended behaviour formally

• Need to make many hidden assumptions explicit

• Requires long detailed proofs, difficult to review

The state of the art is quite limited.

Software verification has been around since the 60s, but there have
been few major successes.

8

Faulty hand proofs

“Synchronizing clocks in the presence of faults” (Lamport &
Melliar-Smith, JACM 1985)

This introduced the Interactive Convergence Algorithm for clock
synchronization, and presented a ‘proof’ of it.

• Presented five supporting lemmas and one main correctness
theorem.

• Lemmas 1, 2, and 3 were all false.

• The proof of the main induction in the final theorem was wrong.

• The main result, however, was correct!

9

Machine-checked proof

A more promising approach is to have the proof checked (or even
generated) by a computer program.

• It can reduce the risk of mistakes.

• The computer can automate some parts of the proofs.

There are limits on the power of automation, so detailed human
guidance is often necessary.

10

Formal verification in industry

Formal verification is increasingly becoming standard practice in the
hardware industry. It is much less used in the software industry
outside safety-critical niches.

Why the difference?

• Hardware is designed in a more modular way than most
software.

• There is more scope for complete automation

• The potential consequences of a hardware error are greater

11

Formal verification methods

Many different methods are used in formal verification, mostly trading
efficiency and automation against generality.

• Propositional tautology checking

• Symbolic simulation

• Symbolic trajectory evaluation

• Temporal logic model checking

• Decidable subsets of first order logic

• First order automated theorem proving

• Interactive theorem proving

12

Interactive versus automatic

From interactive proof checkers to fully automatic theorem provers.

AUTOMATH (de Bruijn)

Mizar (Trybulec)

. . .
PVS (Owre, Rushby, Shankar)

. . .
ACL2 (Boyer, Kaufmann, Moore)

Vampire (Voronkov)

13

Mathematical versus industrial

Some provers are intended to formalize pure mathematics, others to
tackle industrial-scale verification

AUTOMATH (de Bruijn)

Mizar (Trybulec)

. . .

. . .
PVS (Owre, Rushby, Shankar)

ACL2 (Boyer, Kaufmann, Moore)

14

Our work

Here we will focus on general interactive theorem proving.

We have formally verified correctness of various floating-point
algorithms for functions including:

• Division

• Square root

• Transcendental functions (log, sin etc.)

The verifications are conducted using the HOL Light theorem prover.

15

HOL Light overview

HOL Light is a member of the HOL family of provers, descended
from Mike Gordon’s original HOL system developed in the 80s.

An LCF-style proof checker for classical higher-order logic built on
top of (polymorphic) simply-typed λ-calculus.

HOL Light is designed to have a simple and clean logical foundation.

Versions written in CAML Light and Objective CAML.

16

Pushing the LCF approach to its limits

The main features of the LCF approach to theorem proving are:

• Reduce all proofs to a small number of relatively simple primitive
rules

• Use the programmability of the implementation/interaction
language to make this practical

Our work may represent the most “extreme” application of this
philosophy.

• HOL Light’s primitive rules are very simple.

• Some of the proofs expand to about 100 million primitive
inferences and can take many hours to check.

It is interesting to consider the scope of the LCF approach.

17

Floating point verification

We’ve used HOL Light to verify the accuracy of floating point
algorithms (used in hardware and software) for:

• Division and square root

• Transcendental function such as sin, exp, atan.

This involves background work in formalizing:

• Real analysis

• Basic floating point arithmetic

18

Existing real analysis theory

• Definitional construction of real numbers

• Basic topology

• General limit operations

• Sequences and series

• Limits of real functions

• Differentiation

• Power series and Taylor expansions

• Transcendental functions

• Gauge integration

19

Examples of useful theorems

|- sin(x + y) = sin(x) * cos(y) + cos(x) * sin(y)

|- tan(&n * pi) = &0

|- &0 < x /\ &0 < y ==> (ln(x / y) = ln(x) - ln(y))

|- f contl x /\ g contl (f x) ==> (g o f) contl x

|- (!x. a <= x /\ x <= b ==> (f diffl (f’ x)) x) /\

f(a) <= K /\ f(b) <= K /\

(!x. a <= x /\ x <= b /\ (f’(x) = &0) ==> f(x) <= K)

==> !x. a <= x /\ x <= b ==> f(x) <= K

20

HOL floating point theory (1)

We have formalized a floating point theory in HOL with the precision
as a parameter.

A floating point format is identified by a triple of natural numbers fmt.

The corresponding set of real numbers is format(fmt), or ignoring
the upper limit on the exponent, iformat(fmt).

Floating point rounding returns a floating point approximation to a
real number, ignoring upper exponent limits. More precisely

round fmt rc x

returns the appropriate member of iformat(fmt) for an exact value
x, depending on the rounding mode rc, which may be one of
Nearest, Down, Up and Zero.

21

HOL floating point theory (2)

For example, the definition of rounding down is:

|- (round fmt Down x = closest

{a | a IN iformat fmt ∧ a <= x} x)

We prove a large number of results about rounding, e.g.

|- ¬(precision fmt = 0) ∧ x IN iformat fmt

⇒ (round fmt rc x = x)

that rounding is monotonic:

|- ¬(precision fmt = 0) ∧ x <= y

⇒ round fmt rc x <= round fmt rc y

and that subtraction of nearby floating point numbers is exact:

|- a IN iformat fmt ∧ b IN iformat fmt ∧

a / &2 <= b ∧ b <= &2 * a ⇒ (b - a) IN iformat fmt

22

The (1 + ǫ) property

Designers often rely on clever “cancellation” tricks to avoid or
compensate for rounding errors.

But many routine parts of the proof can be dealt with by a simple
conservative bound on rounding error:

|- normalizes fmt x ∧

¬(precision fmt = 0)

⇒ ∃e. abs(e) <= mu rc / &2 pow (precision fmt - 1) ∧

(round fmt rc x = x * (&1 + e))

Derived rules apply this result to computations in a floating point
algorithm automatically, discharging the conditions as they go.

23

Example: tangent algorithm

• The input number X is first reduced to r with approximately
|r| ≤ π/4 such that X = r + Nπ/2 for some integer N . We now
need to calculate ±tan(r) or ±cot(r) depending on N modulo 4.

• If the reduced argument r is still not small enough, it is separated
into its leading few bits B and the trailing part x = r − B, and the
overall result computed from tan(x) and pre-stored functions of
B, e.g.

tan(B + x) = tan(B) +

1
sin(B)cos(B) tan(x)

cot(B) − tan(x)

• Now a power series approximation is used for tan(r), cot(r) or
tan(x) as appropriate.

24

Overview of the verification

To verify this algorithm, we need to prove:

• The range reduction to obtain r is done accurately.

• The mathematical facts used to reconstruct the result from
components are applicable.

• Stored constants such as tan(B) are sufficiently accurate.

• The power series approximation does not introduce too much
error in approximation.

• The rounding errors involved in computing with floating point
arithmetic are within bounds.

Most of these parts are non-trivial. Moreover, some of them require
more pure mathematics than might be expected.

25

Why mathematics?

Controlling the error in range reduction becomes difficult when the
reduced argument X − Nπ/2 is small.

To check that the computation is accurate enough, we need to know:

How close can a floating point number be to an integer
multiple of π/2?

Even deriving the power series (for 0 < |x| < π):

cot(x) = 1/x −
1

3
x −

1

45
x3 −

2

945
x5 − . . .

is much harder than you might expect.

26

Polynomial approximation errors

Many transcendental functions are ultimately approximated by
polynomials in this way.

This usually follows some initial reduction step to ensure that the
argument is in a small range, say x ∈ [a, b].

The minimax polynomials used have coefficients found numerically
to minimize the maximum error over the interval.

In the formal proof, we need to prove that this is indeed the maximum
error, say ∀x ∈ [a, b]. |sin(x) − p(x)| ≤ 10−62|x|.

By using a Taylor series with much higher degree, we can reduce the
problem to bounding a pure polynomial with rational coefficients over
an interval.

27

Bounding functions

If a function f differentiable for a ≤ x ≤ b has the property that
f(x) ≤ K at all points of zero derivative, as well as at x = a and
x = b, then f(x) ≤ K everywhere.

|- (∀x. a <= x ∧ x <= b ⇒ (f diffl (f’ x)) x) ∧

f(a) <= K ∧ f(b) <= K ∧

(∀x. a <= x ∧ x <= b ∧ (f’(x) = &0)

⇒ f(x) <= K)

⇒ (∀x. a <= x ∧ x <= b ⇒ f(x) <= K)

Hence we want to be able to isolate zeros of the derivative (which is
just another polynomial).

28

Isolating derivatives

For any differentiable function f , f(x) can be zero only at one point
between zeros of the derivative f ′(x).

More precisely, if f ′(x) 6= 0 for a < x < b then if f(a)f(b) ≥ 0 there
are no points of a < x < b with f(x) = 0:

|- (∀x. a <= x ∧ x <= b ⇒ (f diffl f’(x))(x)) ∧

(∀x. a < x ∧ x < b ⇒ ¬(f’(x) = &0)) ∧

f(a) * f(b) >= &0

⇒ ∀x. a < x ∧ x < b ⇒ ¬(f(x) = &0)

29

Bounding and root isolation

This gives rise to a recursive procedure for bounding a polynomial
and isolating its zeros, by successive differentiation.

|- (∀x. a <= x ∧ x <= b ⇒ (f diffl (f’ x)) x) ∧

(∀x. a <= x ∧ x <= b ⇒ (f’ diffl (f’’ x)) x) ∧

(∀x. a <= x ∧ x <= b ⇒ abs(f’’(x)) <= K) ∧

a <= c ∧ c <= x ∧ x <= d ∧ d <= b ∧ (f’(x) = &0)

⇒ abs(f(x)) <= abs(f(d)) + (K / &2) * (d - c) pow 2

At each stage we actually produce HOL theorems asserting bounds
and the enclosure properties of the isolating intervals.

30

Conclusions

• Formal verification is industrially important, and can be attacked
with current theorem proving technology.

• A large part of our work involves building up general theories
about both pure mathematics and special properties of floating
point numbers.

• It is easy to underestimate the amount of pure mathematics
needed for obtaining very practical results.

• The mathematics required is often the sort that is not found in
current textbooks: very concrete results but with a proof!

• Using HOL Light, we can confidently integrate all the different
aspects of the proof, using programmability to automate tedious
parts.

31

