
Real numbers in Real Applications 1

Real Numbers

in

Real Applications

John Harrison

Intel Corporation

• Real numbers for fun and profit

• The phenomenon of transcendence

• Floating-point verification

• Context of the work

• HOL Light’s real and floating-point theories

• Verifying a tangent algorithm

• Conclusions

John Harrison Intel Corporation, 19 August 2002

Real numbers in Real Applications 2

Mathematics for verification

It’s often thought that formal verification requires

only “trivial” mathematics.

Much research in the 1970s was focused on

automating as much as possible of this trivial

mathematics.

However, some important verification applications

require non-trivial mathematics.

This might once have been considered surprising,

but is no longer particularly controversial.

We’ll focus particularly on the role of real

analysis in floating-point verifications. But there

are other good examples.

John Harrison Intel Corporation, 19 August 2002

Real numbers in Real Applications 3

Reals for fun

The earliest machine-checked developments of real

analysis were not done with practical applications

in mind.

• Jutting’s formalization of Landau’s

“Grundlagen” in AUTOMATH

• Articles in the Mizar library by various

authors

See also work by Bledsoe on automated proofs in

nonstandard analysis.

John Harrison Intel Corporation, 19 August 2002

Real numbers in Real Applications 4

From Volume 1 of the JFM

Basic Properties of Real Numbers

Real Sequences and Basic Operations on Them

Vectors in Real Linear Space

Subspaces and Cosets of Subspaces in Real Linear Arithmetic

Operations on Subspaces in Real Linear Space

Some Properties of Real Numbers

Monotone Real Sequences. Subsequences

Convergent Real Sequences. Upper and Lower Bound of Sets of Reals

Real Function Spaces

Linear Combinations in Real Linear Space

The Sum and Product of Finite Sequences of Real Numbers

The Lattice of Real Numbers. The Lattice of Real Functions.

Partial Functions from a Domain to the Set of Real Numbers

Topological Properties of Subsets in Real Numbers

Properties of Real Functions

Real Function Continuity

Real Function Uniform Continuity

Real Function Differentiability

Average Value Theorems for Real Functions of One Variable

Basis of Real Linear Space

John Harrison Intel Corporation, 19 August 2002

Real numbers in Real Applications 5

Reals for verification

Now, the importance of real analysis in

verification is widely accepted.

There are good developments of real analysis in

at least the following provers:

• HOL

• PVS

• Coq

• ACL2r

• Isabelle

Most of these were developed, in the last decade,

with applications in mind.

Indeed, reals were considered so important that

ACL2’s basic logic was extended to accommodate

them.

John Harrison Intel Corporation, 19 August 2002

Real numbers in Real Applications 6

The phenomenon of transcendence

In general, some applications may need

mathematics going well beyond the obvious

domain.

Consider an example from mathematics, the

prime number theorem, stating that π(n), the

number of primes ≤ n, has the limiting property

π(x)/(
x

ln(x)
) → 1

All known proofs of this result use analysis.

Even finding a proof using just real analysis was a

major accomplishment!

By the way, some deep results about the

distribution of primes are used in the recent

polynomial-time primality-testing algorithm . . .

John Harrison Intel Corporation, 19 August 2002

Real numbers in Real Applications 7

Floating-point verification

Floating-point arithmetic seems a particularly

good target for formal verification:

• It’s difficult to find efficient software/compiler

workarounds for errors.

• Some of the algorithms are quite intricate and

not feasible to verify by traditional

simulation.

• Intel has already had a traumatic and

expensive ($475M) experience with a

floating-point division bug.

• There is a fairly clear and unambiguous

specification, e.g. the IEEE 754-1985

Standard for the basic arithmetic operations.

John Harrison Intel Corporation, 19 August 2002

Real numbers in Real Applications 8

Real reals?

All floating-point numbers are in fact rational. So

it might seem that we only need a theory of

rationals.

Indeed, there has been some work on formal

verification of basic arithmetic operations in some

AMD processors using the original ACL2 system,

without real numbers.

However, even to specify square root, one of the

basic IEEE operations, we’re stretching things.

It seems hopeless in practice to specify, let alone

verify, transcendental functions like sin, exp and

log without real reals.

John Harrison Intel Corporation, 19 August 2002

Real numbers in Real Applications 9

Context of this work

• We have applied formal verification to a

number of algorithms used in the Intel
Itanium processor family.

• The algorithms are used in hardware

(microcode), firmware and software (math

libraries and compiler inlining).

• Whatever the underlying implementation, the

basic algorithms and the mathematical details

involved are the same, and it makes sense to

consider them at the algorithmic level.

• Verification covers division, square root and

some major transcendental functions

• Division and square root are proved to obey

the IEEE specification. Transcendental

functions are proved to have an error within a

fixed bound (e.g. 0.6ulp).

John Harrison Intel Corporation, 19 August 2002

Real numbers in Real Applications 10

Quick introduction to HOL Light

The verifications are conducted using HOL Light,

one of the family of theorem provers based on

Mike Gordon’s original HOL system.

• An LCF-style programmable proof checker

written in CAML Light, which also serves as

the interaction language.

• Supports classical higher order logic based on

polymorphic simply typed lambda-calculus.

• Extremely simple logical core: 10 basic logical

inference rules plus 2 definition mechanisms.

• More powerful proof procedures programmed

on top, inheriting their reliability from the

logical core. Fully programmable by the user.

• Well-developed mathematical theories

including basic real analysis.

HOL Light is available for download from:
http://www.cl.cam.ac.uk/users/jrh/hol-light

John Harrison Intel Corporation, 19 August 2002

Real numbers in Real Applications 11

HOL real analysis theory

• Definitional construction of real numbers

• Basic topology

• General limit operations

• Sequences and series

• Limits of real functions

• Differentiation

• Power series and Taylor expansions

• Transcendental functions

• Gauge integration

John Harrison Intel Corporation, 19 August 2002

Real numbers in Real Applications 12

Examples of useful theorems

|- sin(x + y) =

sin(x) * cos(y) + cos(x) * sin(y)

|- tan(&n * pi) = &0

|- &0 < x /\ &0 < y

==> (ln(x / y) = ln(x) - ln(y))

|- f contl x /\ g contl (f x)

==> (\x. g(f x)) contl x

|- (!x. a <= x /\ x <= b

==> (f diffl (f’ x)) x) /\

f(a) <= K /\ f(b) <= K /\

(!x. a <= x /\ x <= b /\ (f’(x) = &0)

==> f(x) <= K)

==> !x. a <= x /\ x <= b ==> f(x) <= K

John Harrison Intel Corporation, 19 August 2002

Real numbers in Real Applications 13

HOL floating point theory

We have formalized a generic floating point

theory in HOL, which can be applied to all the

required formats, and others supported in

software such as quad precision.

A floating point format is identified by a triple of

natural numbers fmt.

The corresponding set of real numbers is

format(fmt), or ignoring the upper limit on the

exponent, iformat(fmt).

Floating point rounding returns a floating point

approximation to a real number, ignoring upper

exponent limits. More precisely

round fmt rc x

returns the appropriate member of iformat(fmt)

for an exact value x, depending on the rounding

mode rc, which may be one of Nearest, Down, Up

and Zero.

John Harrison Intel Corporation, 19 August 2002

Real numbers in Real Applications 14

The (1 + ǫ) property

Most of the routine parts of floating point proofs

rely on either an absolute or relative bound on the

effect of floating point rounding. The key theorem

underlying relative error analysis is the following:

|- normalizes fmt x /\

~(precision fmt = 0)

==> ?e. abs(e) <= mu rc /

&2 pow (precision fmt - 1) /\

(round fmt rc x = x * (&1 + e))

This says that given that the value being rounded

is in the range of normalized floating point

numbers, then rounding perturbs the exact result

by at most a relative error bound depending only

on the floating point precision and rounding

control.

Derived rules apply this result to computations in

a floating point algorithm automatically,

discharging the conditions as they go.

John Harrison Intel Corporation, 19 August 2002

Real numbers in Real Applications 15

Cancellation theorems

Low-level mathematical algorithms often rely on

special tricks to avoid rounding error, or

compensate for it. Rounding is trivial when the

value being rounded is already representable

exactly:

|- a IN iformat fmt ==> (round fmt rc a = a)

Some special situations where this happens are as

follows:

|- a IN iformat fmt /\ b IN iformat fmt /\

a / &2 <= b /\ b <= &2 * a

==> (b - a) IN iformat fmt

|- x IN iformat fmt /\

y IN iformat fmt /\

abs(x) <= abs(y)

==> (round fmt Nearest (x + y) - y)

IN iformat fmt /\

(round fmt Nearest (x + y) - (x + y))

IN iformat fmt

John Harrison Intel Corporation, 19 August 2002

Real numbers in Real Applications 16

A tangent algorithm

An algorithm to calculate tangents works

essentially as follows.

• The input number X is first reduced to r

with approximately |r| ≤ π/4 such that

X = r + Nπ/2 for some integer N . We now

need to calculate ±tan(r) or ±cot(r)

depending on N modulo 4.

• If the reduced argument r is still not small

enough, it is separated into its leading few

bits B and the trailing part x = r − B, and

the overall result computed from tan(x) and

pre-stored functions of B, e.g.

tan(B + x) = tan(B) +

1
sin(B)cos(B) tan(x)

cot(B) − tan(x)

• Now a power series approximation is used for

tan(r), cot(r) or tan(x) as appropriate.

John Harrison Intel Corporation, 19 August 2002

Real numbers in Real Applications 17

Overview of the verification

In order to verify this algorithm, we need to

prove:

• The range reduction to obtain r is done

accurately.

• The mathematical facts used to reconstruct

the result from components are applicable.

• The pre-stored constants such as tan(B) are

sufficiently accurate.

• The power series approximation does not

introduce too much error in approximation.

• The rounding errors involved in computing

with floating point arithmetic are within

bounds.

Most of these parts are non-trivial. Moreover,

some of them require more pure mathematics

than might be expected.

John Harrison Intel Corporation, 19 August 2002

Real numbers in Real Applications 18

Range reduction (1)

Range reduction involves a fairly complicated

computation, using various tricks to avoid

rounding error. This can mostly be dealt with

using the general lemmas given above. However,

controlling the errors is harder the smaller the

reduced argument is, so we need to answer the

key mathematical question:

How close can a floating point number be

to an integer multiple of π/2?

To answer this question, we need to formalize in

HOL some theorems about rational

approximations. First of all, we have formalized

some results allowing us to (provably) find

arbitrarily good rational approximations to π, e.g.

the series:

π = Σ∞

m=0

1

16m
(

4

8m + 1
−

2

8m + 4
−

1

8m + 5
−

1

8m + 6
)

John Harrison Intel Corporation, 19 August 2002

Real numbers in Real Applications 19

Range reduction (2)

We then formalize the proof that convergents to a

real number x (rationals p1/q1 < x < p2/q2 with

p2q1 = p1q2 + 1) are the best possible

approximation with limited denominator.

|- (p2 * q1 = p1 * q2 + 1) /\

(&p1 / &q1 < x /\ x < &p2 / &q2)

==> !b. ~(b = 0) /\ b < q1 /\ b < q2

==> abs(&a / &b - x)

> &1 / &(q1 * q2)

We find such convergents (outside the logic) using

the Stern-Brocot tree, and by inserting the values

into the approximation theorems, and can answer

the above question for input numbers in the

specified range:

|- integer(N) /\ ~(N = &0) /\

a IN iformat (rformat Register) /\

abs(a) < &2 pow 64

==> abs (a - N * pi / &2)

>= &113 / &2 pow 76

John Harrison Intel Corporation, 19 August 2002

Real numbers in Real Applications 20

Deriving the cotangent series (1)

The power series for tangent and cotangent are

found in many mathematical handbooks. For

example (for 0 < |x| < π):

cot(x) = 1/x −
1

3
x −

1

45
x3 −

2

945
x5 − . . .

However, such handbooks typically don’t give any

proof, while more rigorous works don’t usually

discuss such concrete results at all.

It’s no accident that the proof we eventually

found and formalized is in an older book:

Knopp’s “Infinite Series”. By a rather

complicated limit argument we can prove:

πx cot(πx) = 1 + 2x2Σ∞

k=1

1

x2 − k2

John Harrison Intel Corporation, 19 August 2002

Real numbers in Real Applications 21

Deriving the cotangent series (2)

We can then expand the individual terms of the

power series:

−x2

x2 − k2
= Σ∞

n=1(x
2/k2)

n

Since all terms have the same sign, it’s fairly easy

to show that we can reverse the order of the

summations. This gives us a power series with

coefficients expressed in terms of the harmonic

sums like 1 + 1/24 + 1/34 + 1/44 + · · ·. By using

the fact that cot(x) − 2cot(2x) = tan(x) (for

0 < |x| < π/2), we can compare the coefficients

against the derivatives of tan and hence get them

as rational numbers. As a byproduct, we derive

various well-known theorems like:

1 + 1/22 + 1/32 + 1/42 + · · · = π2/6

1 + 1/24 + 1/34 + 1/44 + · · · = π4/90

John Harrison Intel Corporation, 19 August 2002

Real numbers in Real Applications 22

A Proof from the Book?

The latest edition of “Proofs from the Book”

presents an allegedly simple proof of the

cotangent expansion based on a trick due to

Herglotz.

The key insight is indeed very easy to formalize:

|- !h. (!x. h contl x) /\

(!x. h(x + &1) = h(x)) /\

(!x. h(--x) = --h(x)) /\

(!x. h(x / &2) + h((x + &1) / &2) =

&2 * h(x))

==> !x. h(x) = &0‘,

However, the application to the cotangent series

uses some additional tricks, in particular

extension by continuity over isolated singularities.

By the time these were made precise, the HOL

proof script was almost exactly the same size as

the Knopp version!

John Harrison Intel Corporation, 19 August 2002

Real numbers in Real Applications 23

Error in the actual power series

In fact, the power series for tan and cot used in

the algorithm are not quite the standard

Taylor/Laurent expansions.

This would not be possible anyway since the

coefficients are not all representable exactly as

floating-point numbers.

A minimax approximation is used, whose

coefficients are derived numerically using Remez’s

algorithm.

This means we need to bound tan(x) − p(x) for

an “arbitrary” polynomial p(x).

We start by finding a standard Taylor series t(x)

with several more terms, so the difference

tan(x) − t(x) is negligible.

This reduces the problem to bounding a

polynomial q(x) = p(x) − t(x) over the

appropriate interval.

John Harrison Intel Corporation, 19 August 2002

Real numbers in Real Applications 24

Bounding functions

We have a theorem in HOL that a function

attains its extrema either at endpoints of the

interval concerned, or at a point of zero derivative:

|- (!x. a <= x /\ x <= b ==> (f diffl (f’ x)) x) /\

f(a) <= K /\

f(b) <= K /\

(!x. a <= x /\ x <= b /\ (f’(x) = &0) ==> f(x) <= K)

==> (!x. a <= x /\ x <= b ==> f(x) <= K)

So it suffices to isolate the points of zero

derivative quite closely, evaluate the function

there and add on an error term to compensate for

the fact that we don’t generally know the exact

point of zero derivative:

|- (!x. a <= x /\ x <= b ==> (f diffl (f’ x)) x) /\

(!x. a <= x /\ x <= b ==> (f’ diffl (f’’ x)) x) /\

(!x. a <= x /\ x <= b ==> abs(f’’(x)) <= K) /\

a <= c /\ c <= x /\ x <= d /\ d <= b /\ (f’(x) = &0)

==> abs(f(x)) <= abs(f(d)) + (K / &2) * (d - c) pow 2

John Harrison Intel Corporation, 19 August 2002

Real numbers in Real Applications 25

Root isolation of polynomials

We just need to isolate the zeros of the derivative.

We can accept conservativeness, so we don’t need

to spend energy eliminating multiple roots etc.

The key theorem is that between zeros of f ′(x),

there can be at most one root of f(x), and there

can be none at all if the function doesn’t change

sign:

|- (!x. a <= x /\ x <= b ==> (f diffl f’(x))(x)) /\

(!x. a < x /\ x < b ==> ~(f’(x) = &0)) /\

f(a) * f(b) >= &0

==> !x. a < x /\ x < b ==> ~(f(x) = &0)

|- (!x. a <= x /\ x <= b ==> (f diffl f’(x))(x)) /\

(!x. a < x /\ x < b ==> ~(f’(x) = &0))

==> !c d. a <= c /\ c <= d /\ d <= b /\

f(c) * f(d) <= &0

==> !x. a < x /\ x < b /\ (f(x) = &0)

==> c <= x /\ x <= d‘

So we can recursively bound and isolate all the

derivatives, starting at the trivial nth derivative.

We program a derived rule in HOL that does this

automatically.

John Harrison Intel Corporation, 19 August 2002

Real numbers in Real Applications 26

Conclusions

• Traditionally, real analysis was formalized for

general intellectual interest, but now can be

used in real applications.

• Quite abstractly, we might expect to observe

a phenomenon of “transcendence” in some

applications, just as we do in mathematics.

• Concretely, floating-point verification is one

important application domain where quite a

lot of real analysis is used.

• No doubt future applications will generate

the need for more formalized mathematics.

• Or conversely, more formalized mathematics

will make possible new applications!

John Harrison Intel Corporation, 19 August 2002

