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What and why? (1)

There are a number of ‘classical’ results often

proved in a first or second course on logic, all for

classical first order logic:

• The Compactness theorem: if every finite

subset of a set of formulas ∆ has a model,

then so does all of ∆.

• The (downward) Löwenheim-Skolem theorem:

if a set of formulas (in a countable language)

has a model then it has a model whose

domain is a subset of N.

• The Uniformity theorem (often called

Herbrand’s theorem): if the sentence

∃x1, . . . , xn. P [x1, . . . , xn] holds in all models,

then so does some disjunction of instances:

P [t11, . . . , t
1
n] ∨ . . . ∨ P [tk1 , . . . , tkn]
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What and why? (2)

All these results are purely semantic, and make

no mention of provability or formal systems.

However, it’s commonest to prove them using the

completeness theorem and syntactic arguments.

As part of our hobby of writing a textbook on

logic, we wanted to present simple and elegant

proofs that only use semantic notions.

Just such proofs are given by Kreisel and Krivine

in their textbook on model theory (published by

North-Holland, 1967).

We took the K&K proofs as our model, but

wanted to check that we got all the details right,

and see how the proofs could be improved. This is

why we decided to formalize them in HOL.
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Plan of the talk

Some work in formalizing logical notions inside

theorem provers is motivated by ideas of using it

for meta-level theorem proving or reflection.

However, some of it is just for fun or curiosity

about how difficult it is, e.g. Shankar’s NQTHM

proof of Gödel’s First Incompleteness Theorem.

Our work belongs to the second category.

However, we will show that it is certainly possible

to apply it to other areas, by giving a simple

construction of the hyperreals and proof of the

transfer principle used in Nonstandard Analysis.

Since the details of the proofs are a bit much to

get through in half an hour, we’ll just present

some highlights, draw some conclusions about

how well the formalization went, then run

through the hyperreal example. See the paper for

more details of the proofs.
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Kreisel and Krivine’s proof

The idea behind K&K’s proof is to proceed in

three stages:

• Propositional logic (no quantifiers)

• First order logic (no special interpretation of

equality relation)

• First order logic with equality (normal

models only)

Each step builds on the previous one, without

adding too much work. The most subtle part is

the first jump, where we make the link between

quantifier-free formulas of first order logic and

formulas of propositional logic, with the help of

Skolemization.
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Formalization of syntax

We start by defining types of terms:

term = V num

| Fn num (term list)

and formulas:

form = False

| Atom num (term list)

| --> form form

| !! num form

Note that functions with the same tag and

different arities are different. Connectives other

than the primitive ones are defined in a fairly

standard way, e.g.

|- Not p = p --> False

|- p || q = (p --> q) --> q

|- ?? x p = Not(!!x (Not p))
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Syntactic notions

We define various syntactic notions such as the

free variables in a term and in a formula:

|- (FVT (V x) = x INSERT EMPTY) /\

(FVT (Fn f l) = LIST_UNION (MAP FVT l))

|- (FV False = EMPTY) /\

(FV (Atom a l) =

LIST_UNION (MAP FVT l)) /\

(FV (p --> q) = FV p UNION FV q) /\

(FV (!! x p) = FV p DELETE x)

where:

|- (LIST_UNION [] = EMPTY) /\

(LIST_UNION (CONS h t) =

h UNION LIST_UNION t)
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Substitution

Substitution in terms is quite simple:

|- (termsubst v (V x) = v x) /\

(termsubst v (Fn f l) =

Fn f (MAP (termsubst v) l))

As usual, bound variables make the definition of

substitution at the formula level a bit more

complicated:

|- (formsubst v False = False) /\

(formsubst v (Atom p l) =

Atom p (MAP (termsubst v) l)) /\

(formsubst v (q --> r) =

formsubst v q --> formsubst v r) /\

(formsubst v (!! x q) =

let v’ = valmod (x,V x) v in

let z =

if ?y. y IN FV (!!x q) /\ x IN FVT (v’ y)

then VARIANT (FV(formsubst v’ q))

else x in

!!z (formsubst (valmod (x,V z) v) q))

where

|- valmod (x,a) v = (\y. if y = x then a else v y)
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Semantics

This is the key part of the work. We define the

value given to a term by a particular

interpretation and valuation:

|- (termval M v (V x) = v x) /\

(termval M v (Fn f l) =

Fun M f (MAP (termval M v) l))

|- (holds M v False = F) /\

(holds M v (Atom a l) =

Pred M a (MAP (termval M v) l)) /\

(holds M v (p --> q) =

holds M v p ==> holds M v q) /\

(holds M v (!! x p) =

!a. a IN Dom M

==> holds M (valmod(x,a) v) p))
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Useful theorems

The following expected results help to reassure us

that the definitions are correct. First, only the

effect of the valuation on the free variables

matters:

|- (!x. x IN FV p ==> (v’ x = v x))

==> (holds M v’ p = holds M v p)

and the free variables of a substituted formula are:

|- FV (formsubst i p) =

{x | ?y. y IN FV p /\ x IN FVT (i y)}

and the following covers whether a substituted

formula holds:

|- holds M v (formsubst i p) =

holds M (termval M v o i) p
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Propositional logic

The first stage in the proof is to prove

compactness for propositional logic. Here we have

a different notion of a formula holding, under a

‘valuation’ that is now a truth assignment to

atomic formulas:

|- (pholds d False = F) /\

(pholds d (Atom p l) = d (Atom p l)) /\

(pholds d (q --> r) =

pholds d q ==> pholds d r) /\

(pholds d (!!x q) = d (!!x q))

The key theorem, established by a fairly easy

application of Zorn’s Lemma, is compactness:

|- !s. psatisfiable s = ?v. !p. p IN s ==> pholds v p

|- (!p. p IN A ==> qfree p) /\

(!B. FINITE B /\ B SUBSET A ==> psatisfiable B)

==> psatisfiable A

where qfree is a recursively defined predicate

defining the set of quantifier-free formulas.
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Skolemization

We prove that every set of formulas has a Skolem

normal form.

|- qfree(SKOLEM p)

|- (?M. ~(Dom M = EMPTY) /\

interpretation (language s) M /\

M satisfies s) =

(?M. ~(Dom M = EMPTY) /\

interpretation

(language {SKOLEM p | p IN s}) M /\

M satisfies {SKOLEM p | p IN s})

We need to have an actual Skolemizing function

rather than a pure existence assertions because of

troubles with type variables.

The Skolemization is actually the hardest part of

the proof by far because we need to show we can

pick new Skolem functions independently for

different formulas in the set. So although using

Skolemization is intuitive for people, the details

are still there under the surface.
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Propositional vs. first order logic (1)

The relation between propositional and first order

satisfiability of quantifier-free formulas needs a bit

of care. We can switch between first order

interpretation-valuation pairs and propositional

valuations as follows:

|- prop_of_model M v (Atom p l) =

holds M v (Atom p l)

|- canon_of_prop L d =

terms (FST L),

Fn,

(\p l. d (Atom p l))

The model created by canon_of_prop is

canonical, meaning that it is a model over the

terms of the language with functions given their

‘natural’ interpretation as syntax constructors.
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Propositional vs. first order logic (2)

The key relation between the first order and

propositional worlds is:

|- qfree(p)

==> (pholds (prop_of_model M v) p = holds M v p)

|- qfree p ==> (holds (canon_of_prop L d) V p =

pholds d p)

This implies that a quantifier-free formula is a

tautology iff it is valid in all (or just all canonical)

models:

|- qfree(p) /\ (!d. pholds d p)

==> !M v. holds M v p

|- qfree(p) /\

(!C v. canonical(language {p}) C ==> holds C v p)

==> !d. pholds d p
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Propositional vs. first order logic (3)

This is not true for satisfiability. For example

P (x)∧¬P (y) is propositionally satisfiable but not

first order satisfiable. However we do get the

same thing if we insist that all substitution

instances are propositionally satisfiable:

|- (!p. p IN s ==> qfree p) /\

M satisfies s /\

valuation(M) v

==> (prop_of_model M v) psatisfies s

|- (!p. p IN s ==> qfree p) /\

d psatisfies

{formsubst v p | (!x. v x IN terms(FST L)) /\

p IN s}

==> (canon_of_prop L d) satisfies s

This immediately yields the Löwenheim-Skolem

theorem, since a canonical model is countable.
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Main results

With only slightly more effort we get the

Compactness theorem at the same time:

|- (!t. FINITE t /\ t SUBSET s

==> ?M. interpretation(language s) M /\

~(Dom(M):A->bool = EMPTY) /\

M satisfies t)

==> ?C. interpretation (language s) C /\

~(Dom(C):term->bool = EMPTY) /\

C satisfies s

The Uniformity theorem also follows easily. Using

the above result on propositional validity of

substitution instances seems to give more elegant

and unified proofs of these results than those

given by K&K.
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First order logic with equality

It’s straightforward to transform all these

theorems into the world of first order logic with

equality, where we restrict ourselves to normal

models:

|- normal fns M =

!s t v. valuation M v /\

s IN terms fns /\ t IN terms fns

==> (holds M v (s == t) =

termval M v s = termval M v t)

The key lemma is:

|- (?M. interpretation (language s) M /\

~(Dom M = EMPTY) /\

normal (functions s) M /\

M satisfies s) =

(?M. interpretation (language s) M /\

~(Dom M = EMPTY) /\

M satisfies (s UNION Eqaxioms (language s)))

where Eqaxioms defines the set of ‘equality

axioms’ (equivalence and congruence properties).
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The reals as a model

For example, we can set up the HOL theory of
reals as a model for a suitable formal language:

|- RM = (UNIV,

(\f l. if f = 0 then &0

else if f = 1 then &1

else if f = 2 then pi

else if f = 3 then --(EL 0 l)

else if f = 4 then inv(EL 0 l)

else if f = 5 then abs(EL 0 l)

else if f = 6 then exp(EL 0 l)

...

else if f = 13 then acs(EL 0 l)

else if f = 14 then atn(EL 0 l)

else if f = 15 then EL 0 l + EL 1 l

else if f = 16 then EL 0 l * EL 1 l

else if f = 17 then EL 0 l / EL 1 l

else @x. T),

(\p l. if p = 0 then (EL 0 l = EL 1 l)

else if p = 1 then EL 0 l <= EL 1 l

else if p = 2 then EL 0 l < EL 1 l

else if p = 3 then EL 0 l >= EL 1 l

else if p = 4 then EL 0 l > EL 1 l

else @x. T)
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Axioms for the hypperreals

Now we define two sets of ‘axioms’, first, the set

of all assertions in a language not using constant

number 18 that are true for the reals:

|- Real_axioms = { p | ~((18,0) IN functions {p}) /\

!v. holds RM v p }

and a set of assertions that the constant number

18 is bigger than all natural numbers:

|- Infinity_axioms =

{ Atom 4 [Fn 18 []; Real_n n] | T }

where

|- (Real_n 0 = Fn 0 []) /\

(Real_n (SUC n) = Fn 15 [Fn 1 []; Real_n n])

The denotation of Real n n in the standard

model is just &n, the real constant n.
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The hypperreals

It’s now a straightforward application of

compactness to show that we can find a model of

all of these together, and we call this HYPM:

|- interpretation

(language(Real_axioms UNION Infinity_axioms))

HYPM /\

~(Dom HYPM = EMPTY) /\

normal

(functions(Real_axioms UNION Infinity_axioms))

HYPM /\

HYPM satisfies (Real_axioms UNION Infinity_axioms)

Since a statement either holds in a model or it

doesn’t, we can show that the two models behave

exactly the same for closed sentences not

involving the constant 18, e.g.

|- (FV(p) = EMPTY) /\

~((18,0) IN functions {p})

==> ((!v. holds RM v p) =

(!v. valuation(HYPM) v ==> holds HYPM v p))
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Conclusions

• Proofs generally work OK in HOL, but

sometimes the types get in the way and

keeping track of the language of terms is

tedious.

• In some ways we have improved on the

textbook originals, e.g. by isolating the

lemma about all substitution instances

holding propositionally.

• We have shown a simple construction of the

hypperreals that yields the ‘transfer’ principle

immediately. Using this, one could work in

the hypperreals and transfer results back and

forth.
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