
Formalizing Dijkstra 1

Formalizing Dijkstra

John Harrison

Intel Corporation

• A Discipline of Programming

• Mechanizing programming logics

• Relational semantics

• Weakest preconditions

• Guarded commands

• Theorems about loops

• Program variables

• Conclusions and future work

John Harrison Intel Corporation, 28 September 1998



Formalizing Dijkstra 2

A Discipline of Programming

This classic monograph by Dijkstra has several

interesting features.

• Stress on programs as primarily mathematical

formalisms, whose runnability of a machine

is, so to speak, a lucky accident.

• Systematic use of the (then new) method of

weakest preconditions to give semantics to

programs.

• Formal treatment of a number of attractive

algorithms, several of which have

subsequently become classics, e.g. Hamming’s

problem and the Dutch National Flag.

It’s surely Dijkstra’s best book. In fact, the

people who buy books for Cambridge University’s

libraries seem to think it’s his only good book.

John Harrison Intel Corporation, 28 September 1998



Formalizing Dijkstra 3

Why formalize it?

It seemed that it might be fun to formalize

ADOP, for several reasons:

• Formalization tends to inspire a close reading,

which this book probably deserves.

• Dijkstra is very pro-correctness proofs, but

very anti-computer checking. It seemed

interesting to see how his arguments stand up

to formalization.

• This sort of formalization is generally pretty

easy compared with other proofs I do, so it

provides light relief and the feeling of making

rapid progress.

• “None of the programs in this monograph,

needless to say, has been tested on a

machine.” [p. xvi]

John Harrison Intel Corporation, 28 September 1998



Formalizing Dijkstra 4

This isn’t new

Mike Gordon showed in 1988 how to formalize

programming logics in higher order logic theorem

provers. It would also work fine in set theory or

any suitable general mathematical formalism.

He and Tom Melham actually used a tactic to do

verification condition generation, which works

very nicely. (I’ve used this approach in floating

point verification.)

Since then there’s been a slew of work formalizing

programming languages based on the same ideas,

e.g. Agerholm, Grundy, Homeier, Nipkow,

Tredoux and von Wright, to name just a few.

As well as programming languages, there have

been formalizations of hardware description

languages and other CS formalisms, e.g. CCS,

CSP, ELLA, π-calculus, TLA, UNITY, Verilog

and VHDL.

John Harrison Intel Corporation, 28 September 1998



Formalizing Dijkstra 5

Predicates over states

For most of the following theory, we can abstract

away the details of the state, so we just use an

arbitrary polymorphic type :S. We can then use

the same theory however states and program

variables are represented.

Most of Dijsktra’s use of logical operators is

implicitly at the level of predicates over states, so

it’s handy to define various lifted operators, e.g.

|- p And q = \x. p x /\ q x

Sometimes Dijkstra is vague here about where he

implicitly means ‘for all states’. (I believe he

nowadays writes things in square brackets to

indicate quantification over all free variables.) We

have two separate forms of implication, following

von Wright:

|- p Imp q = \x. p x ==> q x

|- p Implies q = !x. p x ==> q x

John Harrison Intel Corporation, 28 September 1998



Formalizing Dijkstra 6

Relational semantics

Dijsktra actually defines commands via their

weakest preconditions. This was also done in

HOL by von Wright et al.

We take the point of view that we know

the possible performance of the

mechanism S sufficiently well, provided

that we can derive for any postcondition

R the corresponding weakest precondition

wp(S, R), because then we have captured

what the mechanism can do for us; and in

the jargon the latter is called “its

semantics”. [p17]

To us it seems more satisfactory to start with a

more intuitive and operational view of programs

and derive weakest preconditions afterwards.

Dijkstra doesn’t manage to escape from

operational thinking completely, however hard he

tries.

John Harrison Intel Corporation, 28 September 1998



Formalizing Dijkstra 7

Nondeterminism

Using relations Σ → Σ → bool or Σ × Σ → bool

has the defect, as noted in Gordon’s original

paper, that we can’t really treat nondeterminism

properly. We want to be able to distinguish

possible and certain termination.

Jim Grundy shows in his thesis (also the

proceedings of a conference in Novosibirsk, LNCS

735) that all ways of interpreting relations of this

form lead to problems treating nondeterminism.

Instead, we use Σ → Σ⊥ → bool, i.e. introduce a

separate type of ‘outcomes’ Σ⊥. In HOL:

(A)outcome = Loops | Terminates A

We basically follow Hesselink’s CUP book on

weakest preconditions; some of the later theorems

are also taken from his book, supplementing those

given by Dijkstra.

John Harrison Intel Corporation, 28 September 1998



Formalizing Dijkstra 8

Weakest preconditions

It’s now straightforward to define weakest

preconditions and weakest liberal preconditions:

|- terminates c s = ~c s Loops

|- wlp c q s =

!s’. c s (Terminates s’) ==> q s’

|- wp c q s = terminates c s /\ wlp c q s

Note that our semantics allows non-total

commands, i.e. ones with no final outcome.

According to the above definition these satisfy

every postcondition!

Hesselink uses them to interpret guards

relationally. Anyway, all the actual commands we

use are total.

John Harrison Intel Corporation, 28 September 1998



Formalizing Dijkstra 9

Healthiness conditions

Dijkstra gives some healthiness conditions that

predicate transformers of the form wp c should

obey. With a proviso about total commands,

these are all trivial to prove in HOL (call

MESON TAC with some relevant facts).

|- (wp c False = False) = total c

|- q Implies r ==> wp c q Implies wp c r

|- wp c q And wp c r = wp c (q And r)

|- wp c q Or wp c r Implies wp c (q Or r)

|- deterministic c

==> (wp c p Or wp c q = wp c (p Or q))

where:

|- deterministic c =

!s t1 t2. c s t1 /\ c s t2

==> (t1 = t2)

|- !c. total c = !s. ?t. c s t

John Harrison Intel Corporation, 28 September 1998



Formalizing Dijkstra 10

Other theorems

We also prove various other assertions by Dijkstra

in the same chapter, and some more from

Hesselink, e.g.

|- wp c r = wlp c r And wp c True

|- total c =

!p. wp c p Implies Not(wlp c (Not p))

|- deterministic c =

!p. Not(wlp c (Not p)) Implies wp c p

They’re all pretty easy, except for the case where

Dijkstra gets it wrong. Once MESON TAC had

taken 10 seconds I knew either Dijkstra or I must

have made a mistake.

Dijkstra [pp. 21-2] enumerates the 7 ‘mutually

exclusive’ possibilities when a nondeterministic

command c is started in a given state with a

postcondition r in mind:

John Harrison Intel Corporation, 28 September 1998



Formalizing Dijkstra 11

Dijkstra’s error (1)

(a) c will terminate and establish r

(b) c will terminate and establish r

(c) c will not terminate

(ab) c will terminate and may or may not satisfy r

(ac) c may or may not terminate, but if it does

will satisfy r

(bc) c may or may not terminate, but if it does

will satisfy r

(abc) c may or may not terminate, and if it does

may or may not satisfy r

This is quite right. But his rendering of these in

terms of weakest preconditions is wrong.

John Harrison Intel Corporation, 28 September 1998



Formalizing Dijkstra 12

Dijkstra’s error (2)

In the precise terms of Dijkstra’s description, far

from all being mutually exclusive, area (c) is

contained in areas (ac) and (bc).

Dijkstra uses Not (wp c True) to indicate

possible nontermination, but this wrongly

includes the third case of certain nontermination.

We replace this with Not (wp c True Or wlp c

False), and with this change all the cases are

indeed distinct.

His error is basically a confusion of two different

notions of doubt or certainty. Perhaps there’s

something unintuitive about nondeterministic

machines, despite his confident pronouncements:

Once the mathematical equipment

needed for the design of nondeterministic

mechanisms achieving a purpose has been

developed, the nondeterministic machine

is no longer frightening. On the contrary!

John Harrison Intel Corporation, 28 September 1998



Formalizing Dijkstra 13

Guarded commands

Dijkstra’s actual commands are a bit eccentric,

making up the ‘guarded command language’.

Essentially:

command −→ skip

−→ abort

−→ x1, . . . , xn:= E1, . . . , En

−→ command; command

−→ if gc 2 · · · 2 gc fi

−→ do gc 2 · · · 2 gc od

gc −→ expression → command

John Harrison Intel Corporation, 28 September 1998



Formalizing Dijkstra 14

Semantics of loops

It’s trivial to derive the weakest preconditions for

most of the commands. The more interesting ones

are for loops.

Dijkstra gives a definition of a semantics for loops

on pp. 35-6. But this sneaks in the assumption

that a loop will terminate iff there is an upper

bound on the number of iterations.

This requires an assumption of bounded

nondeterminacy (and an appeal to König’s

lemma). Dijkstra eventually discusses this in

chapter 9.

We define the semantics of loops at a relational

level in a fairly obvious way, sticking to the spirit

of Dijkstra’s definition, i.e. talking about some

number of iterations. Dijkstra prefers this to

inductive or recursive definitions.

John Harrison Intel Corporation, 28 September 1998



Formalizing Dijkstra 15

Theorems for loops

Dijkstra gives several theorems for loops, which

we can prove relatively easily in HOL. His most

‘basic’ theorem is:

|- p And Exists (\(g,c). g) gcs Implies wp(If gcs) p

==> p And wp (Do gcs) True

Implies wp (Do gcs)

(p And Not(Exists (\(g,c). g) gcs))

This has just wp (Do gcs) True as the

hypothesis that the loop terminates. Of course in

practice, one wants to show this using some

reduction in the state w.r.t. a wellfounded

ordering round each iteration of the loop. So we

also derive:

|- WF(<<) /\

(!X. p And Exists (\(g,c). g) gcs And (\s. s = X)

Implies wp (If gcs) (p And (\s:S. s << X)))

==> p Implies wp (Do gcs)

(p And Not(Exists (\(g,c). g) gcs))

We get from this the exact theorems Dijkstra

gives.

John Harrison Intel Corporation, 28 September 1998



Formalizing Dijkstra 16

Reflections on loops

One can derive the ‘less basic’ theorem that is

actually used in practice purely from a fixpoint

assertion about the weakest precondition:

|- wp (Do gcs) (q:S->bool) =

q And Not (Exists (\(g,c). g) gcs) Or

wp (If gcs) (wp (Do gcs) q)

For the more basic theorem with wp (Do gcs)

True as the hypothesis this isn’t true — we need

leastness. For example this loop has x := 0 as a

fixpoint:

do x /= 0 -> x := x + 1 od

We think this point is worth mentioning. Even if,

like Dijkstra, you hate recursion and induction,

that kind of loop unrolling is intuitive.

It’s nice that we don’t need any more precise

fixing of the semantics of loops if we are merely

interested in proving total correctness of

programs in the usual way.

John Harrison Intel Corporation, 28 September 1998



Formalizing Dijkstra 17

Program variables

All the above theory is based on an abstract state

:S. However, it’s nice to use program variables to

stand for components of the state. This is another

well-known issue in the field, and several solutions

are possible. We have experimented with two:

• All expressions are implicitly abstracted over

a tuple of ‘program variables’

λ(x1, . . . , xn). · · ·. All standard HOL

operators can be used in the normal way.

• All program variables are regarded as

mappings from states to values, where values

are a recursive type including arrays etc.

Operator overloading is used to have “lifted”

versions of useful operators like addition.

Both have their pros and cons; one could

probably only decide by trying some reasonably

big examples.

John Harrison Intel Corporation, 28 September 1998



Formalizing Dijkstra 18

Conclusions and future work

We have formalized Dijkstra’s language, and the

concepts of weakest preconditions, program

correctness etc.

The formalizations turned out to be fairly

straightforward. Indeed, the simplicity and

elegance that characterizes the book is preserved

in the HOL formalizations, and many of the

proofs are automatic or routine. The main

difficulties involve the subtle semantics of loops.

The eventual goal is to use these tools to

formalize the proofs Dijkstra gives later in the

book for some example programs. However, this

is still something for the future.

John Harrison Intel Corporation, 28 September 1998


