
1 Complex quantifier elimination

There is a general procedure for transforming every for-

mula involving complex addition and multiplication into

a quantifier-free equivalent, e.g.

(∃x y. ax2 + bx + c = 0 ∧ ay2 + by + c = 0 ∧ ¬(x = y))

≡ a = 0 ∧ b = 0 ∧ c = 0 ∨ ¬(a = 0) ∧ ¬(b2 = 4ac)

Although there are similar procedures for the reals,

they are sufficiently inefficient that they’re not useful for

many practical cases.

There are procedures for naturals and integers, but

only for the linear case — no non-trivial use of multipli-

cation.
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2 Constructing the complex numbers

We construct C as isomorphic to R×R. The type bijections

are complex : R× R → C and coords : C → R× R. Using

the auxiliary functions:

|- Re(z) = FST(coords(z))

|- Im(z) = SND(coords(z))

we define the operations on complex numbers in terms of

the real operations, e.g.

|- w + z = complex(Re(w) + Re(z),Im(w) + Im(z))

|- w * z = complex(Re(w) * Re(z) - Im(w) * Im(z),
Re(w) * Im(z) + Im(w) * Re(z))

It’s easy to prove all the basic properties of the opera-

tions. We also define the ‘modulus’ function mod : C → R

and the square root function csqrt : C → C and prove

basic properties.
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3 Fundamental theorem of algebra

The basic theorem underlying quantifier elimination is

the Fundamental Theorem of Algebra: every nonconstant

polynomial has a root. Our proof is a formalization of a

fairly standard one:

• For any nonconstant polynomial p and bound M ,

there’s a radius R outside which the modulus of the

polynomial exceeds M , i.e. |z| > R =⇒ |p(z)| >

M .

• Within any closed disc |z| ≤ R, a polynomial attains

its minimum modulus somewhere

• If the modulus |p(z)| = m is nonzero at any point,

it is possible to find arbitrarily close points z′ with

|p(z′)| < m.

Putting these pieces together, we get the final result.
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4 Quantifier elimination

Because of the Fundamental Theorem of Algebra

∀x. p(x) = 0 =⇒ q(x) = 0

is equivalent to p | q∂(p) where ∂(p) denotes the degree of

p and ‘|’ the divisibility relation on polynomials. For if

we imagine the two polynomials split into linear factors,

the assertion becomes:

∀x.(x−a1) · · · (x−an) = 0 =⇒ (x−b1) · · · (x−bm) = 0

That is, each ai must also be among the bj and hence

each x − ai must occur among the x − bj. However it

may occur up to n times.

It’s sufficient to consider only this special case, because

we can transform formulas in various ways including using

p(x) = 0 ∨ q(x) = 0 ≡ p(x)q(x) = 0 and cancelling

between multiple equations.
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5 Examples

Note that this implies that over the reals x2+
√

2x+1 6= 0.

|- !x a.
(a pow 2 = Cx (&2)) /\ (x pow 2 + a * x + Cx (&1) = Cx (&0))
==> (x pow 4 + Cx (&1) = Cx (&0))

A simple existential assertion:

|- !a b. ~(a = b)
==> ?x y. (y * x pow 2 = a) /\ (y * x pow 2 + x = b)

The following can be considered as asserting that two

non-parallel lines have an intersection.

|- !a1 b1 c1 a2 b2 c2.
~(a1 * b2 = a2 * b1)
==> ?x y. (a1 * x + b1 * y = c1) /\ (a2 * x + b2 * y = c2)
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6 Gröbner bases

For proving purely universal assumptions, we can use

a more efficient procedure based on Gröbner bases. By

negating and transforming to DNF, it suffices to prove

that certain polynomial families have no common solu-

tion:

¬(∃x1, . . . , xn. p1(x1, . . . , xn) = 0 ∧ · · · ∧
pk(x1, . . . , xn) = 0)

If this is indeed true, the Gröbner basis algorithm can

be “logged” to give us polynomials qi such that (as a

polynomial identity):

q1(x1, . . . , xn) · p1(x1, . . . , xn) + · · ·+
qn(x1, . . . , xn) · pn(x1, . . . , xn) = 1

We can easily use this in HOL to refute the existential

assertion and hence verify universal assumptions. For the

limited subset, generally much faster, e.g. the following

in 1.8 seconds instead of 203.2:

|- !a b c x y.
(a * x pow 2 + b * x + c = Cx(&0)) /\
(a * y pow 2 + b * y + c = Cx(&0)) /\
~(x = y)
==> (a * (x + y) + b = Cx(&0))
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7 Geometry theorem proving

We can encode geometric assertions using coordinate trans-

lations over the reals, e.g.

|- collinear a b c =
((FST a - FST b) * (SND b - SND c) =
(SND a - SND b) * (FST b - FST c))

|- is_midpoint b (a,c) =
(&2 * FST b = FST a + FST c) /\
(&2 * SND b = SND a + SND c)

|- is_intersection p (a,b) (c,d) =
collinear a p b /\ collinear c p d

Many theorems that are universal assertions remain

true if we generalize the “coordinates” to complex num-

bers, when we can use our relatively efficient decision

procedures. For example Gauss’s theorem is proved in

17.01 seconds:

|- collinear x a0 a3 /\
collinear x a1 a2 /\
collinear y a2 a3 /\
collinear y a1 a0 /\
is_midpoint m1 (a1,a3) /\
is_midpoint m2 (a0,a2) /\
is_midpoint m3 (x,y)
==> collinear m1 m2 m3
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