
Verifying Algorithms for the Transcendental Functions 1
Verifying Algorithmsfor theTranscendental Functions

John Harrison
University of Cambridge

� Introduction and motivation� Floating point correctness� Quick summary of HOL Light� Our programming language� Example 1: CORDIC method for logarithm� Example 2: polynomial for exponential
John Harrison University of Cambridge, 14 Mar 1997

Verifying Algorithms for the Transcendental Functions 2
Introduction and motivation

� Floating point algorithms are fairly small, butoften complicated mathematically.� There have been errors in commercialsystems, e.g. the Pentium FDIV bug in 1994.� In the case of transcendental functions it'sdi�cult even to say what correctness means.� Veri�cation using model checkers is di�cultbecause of the need for mathematicalapparatus.� It can even be di�cult using theorem proverssince not many of them have good theories ofreal numbers etc.

John Harrison University of Cambridge, 14 Mar 1997

Verifying Algorithms for the Transcendental Functions 3
Floating point correctness (1)

We want to specify the correctness according tothe following diagram:

a

v(a)

SIN(a)

sin(v(a))v(SIN(a))

-

-6 6

SIN

sin
v v

What relationship between v(SIN(a)) andsin(v(a)) should we require?
John Harrison University of Cambridge, 14 Mar 1997

Verifying Algorithms for the Transcendental Functions 4
Floating point correctness (2)

There are various plausible options, all of whichare easy to express formally in HOL:� The answer is the closest representablenumber to the true answer (with round toeven in case of two equally close answers)� The absolute error is small.� The relative error is small.� The error is commensurate with the likelyerror in the input.All of these can be modi�ed `probabilistically',e.g. one can say that the answer is the closest tothe true answer in 99.9% of cases.
John Harrison University of Cambridge, 14 Mar 1997

Verifying Algorithms for the Transcendental Functions 5
Quick summary of HOL Light

� LCF-style theorem prover based on classicalhigher order logic (simple type theory).� The LCF approach makes it programmableand reliable, though sometimes a bit slow.� Fairly extensive mathematical infrastructureincluding real analysis.� It has evolved via:{ Edinburgh LCF (Milner et al.){ Cambridge LCF (Paulson){ HOL (Gordon, Melham){ hol90 (Slind)Other LCF-style systems include Nuprl, Coqand Isabelle.
John Harrison University of Cambridge, 14 Mar 1997

Verifying Algorithms for the Transcendental Functions 6
The LCF approachThe key ideas are:� All theorems created by low-level primitiverules.� Guaranteed by using an abstract type oftheorems; no need to store proofs.� ML available for implementing derived rulesby arbitrary programming.This gives advantages of reliability andextensibility. The system's source code can becompletely open. The user controls the means ofproduction (of theorems). To improve e�ciencyone can:� Encapsulate reasoning in single theorems.� Separate proof search and proof checking.

John Harrison University of Cambridge, 14 Mar 1997

Verifying Algorithms for the Transcendental Functions 7
Some of HOL Light's derived rules
� Simpli�er for (conditional, contextual)rewriting.� Tactic mechanism for mixed forward andbackward proofs.� Tautology checker.� Automated theorem provers for pure logic,based on tableaux and model elimination.� Tools for de�nition of (in�nitary, mutually)inductive relations.� Tools for de�nition of (mutually) recursivedatatypes� Linear arithmetic decision procedures over R ,Z and N .� Di�erentiator for real functions.

John Harrison University of Cambridge, 14 Mar 1997

Verifying Algorithms for the Transcendental Functions 8
Real analysis theory (1)

� De�nitional construction of real numbers� Basic topology� General limit operations� Sequences and series� Limits of real functions� Di�erentiation� Power series and Taylor expansions� Transcendental functions� Gauge integration

John Harrison University of Cambridge, 14 Mar 1997

Verifying Algorithms for the Transcendental Functions 9
Real analysis theory (2)

There are lots of concrete theorems, e.g.|- abs(abs x - abs y) <= abs (x - y)|- sin(x + y) =sin(x) * cos(y) + cos(x) * sin(y)|- tan(&n * pi) = &0|- &0 < x /\ &0 < y==> (ln(x / y) = ln(x) - ln(y))

John Harrison University of Cambridge, 14 Mar 1997

Verifying Algorithms for the Transcendental Functions 10
Real analysis theory (3)

and many general ones:|- f contl x /\ g contl (f x)==> (\x. g(f x)) contl x|- a <= b /\(f(a) <= y /\ y <= f(b)) /\(!x. a <= x /\ x <= b ==> f contl x)==> (?x. a <= x /\ x <= b /\ (f(x) = y))|- (f diffl l)(g x) /\ (g diffl m)(x)==> ((\x. f(g x)) diffl (l * m))(x)|- a <= b /\(!x. a <= x /\ x <= b==> (f diffl f'(x))(x))==> Dint(a,b) f' (f(b) - f(a))
John Harrison University of Cambridge, 14 Mar 1997

Verifying Algorithms for the Transcendental Functions 11
Our Programming Language (1)

This includes the following constructs:command = variable := expression| command ; command| if expression then commandelse command| if expression then command| while expression do command| do command while expression| skip| f expressiong| [expression]The language is semantically embedded in HOLusing standard techniques (functional, relationaland weakest precondition semantics are allavailable).
John Harrison University of Cambridge, 14 Mar 1997

Verifying Algorithms for the Transcendental Functions 12
Our Programming Language (2)

We can verify the total correctness of programsaccording to given pre and post-conditions.|- correct p c qcorresponds to the standard total correctnessassertion [p] c [q], i.e. a command c, executed in astate satisfying p, will terminate in a statesatisfying q.We can prove correctness assertions bysystematically breaking down the commandaccording to its structure. In particular, we canannotate it with `veri�cation conditions', and so(automatically) reduce the correctness proof tothe problem of verifying some assertions aboutthe underlying mathematical domains.
John Harrison University of Cambridge, 14 Mar 1997

Verifying Algorithms for the Transcendental Functions 13
Example 1: CORDIC for logarithmbeginvar k,x,y,z;x := X;y := 0;k := 1;while k < N do(z := srl(n) k x;if ult(n) z (neg(n) x) then(x := add(n) x z;y := add(m) y (logs k));k := k + 1)endwhere add(n), neg(n), ult(n) and srl(n) k aren-bit addition, 2s complement negation, unsignedcomparison (<) and right shift by k places,respectively.The array logs contains pre-stored constants.

John Harrison University of Cambridge, 14 Mar 1997

Verifying Algorithms for the Transcendental Functions 14
Without the prettyprinterThis shows what the underlying semanticrepresentation looks like:Assign (\k,(x,(y,z)). k,(X,(y,z))) SeqAssign (\k,(x,(y,z)). k,(x,(0,z))) SeqAssign (\k,(x,(y,z)). 1,(x,(y,z))) SeqWhile (\k,(x,(y,z)). k < N)(Assign (\k,(x,(y,z)).k,(x,(y,srl n k x))) SeqIf (\k,(x,(y,z)). ult n z (neg n x))(Assign (\k,(x,(y,z)).k,(add n x z,(y,z))) SeqAssign(\k,(x,(y,z)).k,(x,(add m y (logs k),z)))) SeqAssign (\k,(x,(y,z)). k + 1,(x,(y,z))))However the user need not normally see this form!

John Harrison University of Cambridge, 14 Mar 1997

Verifying Algorithms for the Transcendental Functions 15
The CORDIC program in C
int k;unsigned long x,y,z;x = X;y = 0;k = 1;while (k < N){ z = x >> k;if (z < -x){ x = x + z;y = y + logs[k];}k = k + 1;}(Using unsigned longs in place of the particularword sizes, for the sake of familiarity.)

John Harrison University of Cambridge, 14 Mar 1997

Verifying Algorithms for the Transcendental Functions 16
The CORDIC program in Veriloginteger k;reg [n:0] x,z;reg [m:0] y;initial;beginx = X;y = 0;k = 1;while (k < N)beginz = x >> k;if (z < -x)beginx = x + z;y = y + logs[k];endk = k + 1;endendJohn Harrison University of Cambridge, 14 Mar 1997

Verifying Algorithms for the Transcendental Functions 17
Annotations for CORDIC programWe can specify intermediate assertions later inthe proof by exploiting metavariables. However itis simpler to provide annotations. We assert aloop invariant:{mval(n) x < &1 /\ ...}and that N - k decreases with each iteration.The automatic veri�cation condition generator(working by inference) can calculate all the otherintermediate assertions for itself. We are left withfour veri�cation conditions:� The loop invariant is true initially.� The loop invariant is preserved if thecondition in the if statement holds.� The loop invariant is preserved if thecondition in the if statement does not hold.� The loop invariant together with k � Nimplies the �nal postcondition.John Harrison University of Cambridge, 14 Mar 1997

Verifying Algorithms for the Transcendental Functions 18
Correctness result (1)The four veri�cation conditions are proved inHOL, with the aid of a few lemmas. This provesthat the annotated program is correct accordingto the speci�cation. HOL Light then provesautomatically that the program with theannotations removed is still correct. Theprecondition of the �nal speci�cation is:inv(&2) <= mval(n) X /\ mval(n) X < &1 /\&N + &2 <= &n /\ &N <= &2 pow (PRE n) /\(!i. &0 < &i /\ &i < &N ==>&2 pow i * &(logs i) <= &2 pow m /\(abs(&(logs i) -&2 pow m * ln(&1 + inv(&2 pow i)))< &1))i.e. the input value X is in the range 12 � X < 1,the stored constants are good enoughapproximations to the true logarithms, and a fewconditions on the parameters hold.

John Harrison University of Cambridge, 14 Mar 1997

Verifying Algorithms for the Transcendental Functions 19
Correctness result (2)and the �nal postcondition guaranteed by ourproof is:abs(mval(m) y + ln(mval(n) X))<= &N * (&6 * inv(&2 pow n) +inv(&2 pow m)) +inv(&2 pow N)That is, the di�erence between the calculatedlogarithm mval(m) y and (the negation of) thetrue mathematical result ln(mval(n) X) isbounded by N(6:2�n + 2�m) + 2�N .This can be chosen as small as desired by pickingthe parameters appropriately. Moreover thecorrect values for the stored table of logarithmscan also be calculated in any particular instant,by inference (slowly!)

John Harrison University of Cambridge, 14 Mar 1997

Verifying Algorithms for the Transcendental Functions 20
Example 2: Polynomial for exp

Many modern algorithms for the transcendentalfunctions work according to the following scheme.To calculate f(x):� We have a pre-stored f(ai) for some ai closeto x. Consider the di�erence x0 = x� ai.� Evaluate some similar function g(x0). Since x0is small, this can be done accurately by alow-order polynomial approximation p(x0).� Reconstruct f(x) from f(ai) and g(x0)For example, we can calculate ex = eaiex0 . Errorsappear in several places. The hardest to quantify,in a theorem prover, is simply the di�erencebetween p(x0) and g(x0). We focus on thisproblem here.
John Harrison University of Cambridge, 14 Mar 1997

Verifying Algorithms for the Transcendental Functions 21
Minimax approximations

Polynomial approximations are normally chosento have the best `minimax' behaviour, i.e. tominimize the maximum value of the absoluteerror over the interval [a; b] concerned:jjf(x)� p(x)jj1 = supa�x�bjf(x)� p(x)jBy a theorem of Chebyshev, such a polynomialalways exists. However there is no (known)method for obtaining the coe�cients`analytically'.Just truncating the Taylor series usually gives amuch worse result.Instead, the coe�cients of p are usually arrived atvia a rather complicated method involvingsuccessive numerical approximations.It's quite impractical to do all this inside atheorem prover.John Harrison University of Cambridge, 14 Mar 1997

Verifying Algorithms for the Transcendental Functions 22
Post-hoc error bounds

Instead, we accept the polynomial chosen, and tryto �nd the maximum error je(x)j directly, wheree(x) = f(x)� p(x).Since the function f(x) is normally well-behavedover the small interval concerned, we can arrive ata pessimistic uniform continuity bound B suchthat:
8x; x0 2 [a; b]: je(x)� e(x0)j � Bjx� x0jNow in principle we can �nd the upper and lowerbounds to accuracy � just by evaluating e(x) at afamily of points at most �=B apart and �ndingthe maximum and minimum.In practice, the number of calculations thisinvolves makes it completely impractical, at leastinside a theorem prover.

John Harrison University of Cambridge, 14 Mar 1997

Verifying Algorithms for the Transcendental Functions 23
Using the derivative

A better approach would be to �nd all the pointswhere e0(x) = 0.We already have a theorem in HOL asserting thatif a function is di�erentiable in an interval, itsextrema must occur either at the endpoints or ata point of zero derivative.Thus, all we need to do is locate all the roots ofe0(x) in the interval to accuracy �=B and evaluatee(x) there.If a root x is simple, then we can give � < x < �such that e0(�) and e0(�) have opposite signs.The existence of a root in the interval thenfollows and can be proved in HOL.But how do we know that we have located all theroots? We need this to apply the main theorem.There seems no easy way of proving that.
John Harrison University of Cambridge, 14 Mar 1997

Verifying Algorithms for the Transcendental Functions 24
Using polynomials

Instead, following a suggestion of David Wheeler,we take the following approach.Approximate f(x) by a truncated Taylorexpansion t(x).Make the degree of t(x) much higher than thepolynomial we are concerned with, if necessary, inorder to make the error in approximation lessthan �=2.Now if su�ces to �nd the maximum andminimum of e(x) = t(x)� p(x) to within �=2.This is a tractable problem. We can decide, usingSturm's theorem, how many roots e0(x) has in theinterval, and so prove that we have located all ofthem.Thus we can �nd the extrema. Moreover, we onlyneed to do rational arithmetic.
John Harrison University of Cambridge, 14 Mar 1997

Verifying Algorithms for the Transcendental Functions 25
Polynomials in HOLWe �rst develop a theory of polynomials in HOL.|- (poly [] x = &0) /\(poly (CONS h t) x = h + x * poly t x)We can de�ne various operations on thecoe�cients. For example, these correspond toaddition and di�erentiation:|- ([] ++ l2 = l2) /\(CONS h t ++ l2 =(l2 = []) => CONS h t |CONS (h + (HD l2) (t ++ (TL l2)))|- (diff_aux n [] = []) /\(diff_aux n (CONS h t) =CONS (&n * h) (diff_aux (SUC n) t))|- diff l =((l = []) => [] | diff_aux 1 (TL l))

John Harrison University of Cambridge, 14 Mar 1997

Verifying Algorithms for the Transcendental Functions 26
Correctness of operations

These operations do indeed work as intended:|- !p1 p2 x. poly (p1 ++ p2) x =poly p1 x + poly p2 x|- !p c x. poly (c ## p) x = c * poly p x|- !p x. poly (neg p) x = --(poly p x)|- !x p1 p2. poly (p1 ** p2) x =poly p1 x * poly p2 x|- !l x. ((poly l) diffl(poly (diff l) x)) xHence we get various basic properties of theoperations. Note that not all of them hold at thelevel of coe�cient lists, which are not canonical.
John Harrison University of Cambridge, 14 Mar 1997

Verifying Algorithms for the Transcendental Functions 27
Theory of polynomials

Now we de�ne other basic notions and provevarious important theorems, e.g.� If p(a) = 0 then p(x) is divisible by (x� a)� If (x� a) divides p(x)q(x) then (x� a)divides p(x) or (x� a) divides q(x).� A nontrivial polynomial only has �nitelymany roots.� For a nontrivial polynomial p, every a ischaracterized by a unique order such that(x� a)n divides p but (x� a)n+1 doesn't.For example in HOL:|- !p. ~(poly p = poly [])==> FINITE {x | poly p x = &0}
John Harrison University of Cambridge, 14 Mar 1997

Verifying Algorithms for the Transcendental Functions 28
Squarefree decomposition (1)

When trying to locate the zeros of a polynomialp(x), it's useful to assume that it has no multipleroots, i.e. every root has order 1.In that case, we can rely on p(�) and p(�) havingopposite signs for a small enough isolatinginterval, and so prove in HOL that the root exists.Moreover, Sturm's theorem is easier to proveassuming that the polynomial concerned has nomultiple (real) roots.|- !p. rsquarefree p =~(poly p = poly []) /\(!a. (order a p = 0) \/(order a p = 1))This says that a polynomial has only simple realroots.
John Harrison University of Cambridge, 14 Mar 1997

Verifying Algorithms for the Transcendental Functions 29
Squarefree decomposition (2)

We prove that this is equivalent to the polynomialand its derivative having no common roots:|- !p. rsquarefree p =(!a. ~((poly p a = &0) /\(poly (diff p) a = &0)))From this, it follows that p=gcd(p; p0) gives apolynomial with the same roots but all of order 1.This is the squarefree decomposition of p.Rather than formalize division, gcd etc. wecalculate appropriate polynomials outside thelogic (using Maple) which are su�cient as acerti�cate that d is a g.c.d.The appropriate constants in a Bezout identityare given by Maple's gcdex functions.
John Harrison University of Cambridge, 14 Mar 1997

Verifying Algorithms for the Transcendental Functions 30
Squarefree decomposition (3)

The �nal HOL theorem concerning squarefreedecomposition is:|- !p q d e r s.~(poly (diff p) = poly []) /\(poly p = poly (q ** d)) /\(poly (diff p) = poly (e ** d)) /\(poly d = poly (r ** p ++ s ** diff p))==> rsquarefree q /\(!a. (poly q a = &0) =(poly p a = &0))Now we only need concern ourselves with countingand locating the roots of a squarefree polynomial.

John Harrison University of Cambridge, 14 Mar 1997

Verifying Algorithms for the Transcendental Functions 31
Sturm's theorem (1)

In order to count the roots, we use the notion of aSturm sequence.|- (STURM p p' [] = p' divides p) /\(STURM p p' (CONS g gs) =p' divides (p ++ g) /\degree g < degree p' /\STURM p' g gs)The standard Sturm sequence starts with p0 thederivative of the original polynomial p. Bysuccessive division (and negation) we get a Sturmsequence.The number of roots of p in an interval can befound by counting the variations in sign of theSturm sequence evaluated at each end of theinterval.
John Harrison University of Cambridge, 14 Mar 1997

Verifying Algorithms for the Transcendental Functions 32
Sturm's theorem (2)

We de�ne the number of variations in sign of asequence of real numbers (ignoring zeros) asfollows:|- (varrec prev [] = 0) /\(varrec prev (CONS h t) =(prev * h < &0=> SUC (varrec h t)| h = &0 => varrec prev t| varrec h t))|- variation l = varrec (&0) lSturm's theorem asserts that if a polynomial p isnonzero at either end of an interval [a; b], then thenumber of roots it has inside the interval is thedi�erence in the variations of the Sturm sequenceat the end points.
John Harrison University of Cambridge, 14 Mar 1997

Verifying Algorithms for the Transcendental Functions 33
Sturm's theorem (3)

|- !f a b l.a <= b /\~(poly f a = &0) /\~(poly f b = &0) /\rsquarefree f /\STURM f (diff f) l==> {x | a <= x /\ x <= b /\(poly f x = &0)} HAS_SIZE(variation(MAP (\p. poly p a)(CONS f (CONS (diff f) l))) -variation(MAP (\p. poly p b)(CONS f (CONS (diff f) l))))

John Harrison University of Cambridge, 14 Mar 1997

