Verifying Algorithms for the Transcendental Functions

Veritying Algorithms
for the
Transcendental Functions

Introduction and motivation

Floating point correctness

Quick summary of HOL Light

Our programming language

Example 1: CORDIC method for logarithm

Example 2: polynomial for exponential

University of Cambridge, 14 Mar 1997

Verifying Algorithms for the Transcendental Functions

Introduction and motivation

Floating point algorithms are fairly small, but
often complicated mathematically.

There have been errors in commercial
systems, e.g. the Pentium FDIV bug in 1994.

In the case of transcendental functions it’s

difficult even to say what correctness means.

Verification using model checkers is difficult
because of the need for mathematical

apparatus.

It can even be difficult using theorem provers
since not many of them have good theories of

real numbers etc.

University of Cambridge, 14 Mar 1997

Verifying Algorithms for the Transcendental Functions

Floating point correctness (1)

We want to specify the correctness according to
the following diagram:

v(a) g ii%%‘?i»

- SIN(G,)

SIN

What relationship between v(SIN(a)) and

sin(v(a)) should we require?

University of Cambridge, 14 Mar 1997

Verifying Algorithms for the Transcendental Functions

Floating point correctness (2)

There are various plausible options, all of which

are easy to express formally in HOL:

The answer is the closest representable

number to the true answer (with round to

even in case of two equally close answers)

The absolute error is small.
The relative error is small.

The error is commensurate with the likely

error in the input.

All of these can be modified ‘probabilistically’,
e.g. one can say that the answer is the closest to

the true answer in 99.9% of cases.

University of Cambridge, 14 Mar 1997

Verifying Algorithms for the Transcendental Functions

Quick summary of HOL Light

LCF-style theorem prover based on classical

higher order logic (simple type theory).

The LCF approach makes it programmable
and reliable, though sometimes a bit slow.

Fairly extensive mathematical infrastructure

including real analysis.

It has evolved via:

Edinburgh LCF (Milner et al.)
Cambridge LCF (Paulson)
HOL (Gordon, Melham)

hol90 (Slind)

Other LCF-style systems include Nuprl, Coq
and Isabelle.

University of Cambridge, 14 Mar 1997

Verifying Algorithms for the Transcendental Functions

The LCF approach

The key ideas are:

e All theorems created by low-level primitive

rules.

e Guaranteed by using an abstract type of

theorems; no need to store proofs.

e ML available for implementing derived rules

by arbitrary programming.

This gives advantages of reliability and
extensibility. The system’s source code can be
completely open. The user controls the means of
production (of theorems). To improve efficiency

one Cartl:

e Encapsulate reasoning in single theorems.

e Separate proof search and proof checking.

University of Cambridge, 14 Mar 1997

Verifying Algorithms for the Transcendental Functions

Some of HOL Light’s derived rules

Simplifier for (conditional, contextual)

rewriting.

Tactic mechanism for mixed forward and

backward proofs.
Tautology checker.

Automated theorem provers for pure logic,

based on tableaux and model elimination.

Tools for definition of (infinitary, mutually)

inductive relations.

Tools for definition of (mutually) recursive
datatypes

Linear arithmetic decision procedures over R,
Z, and N.

Differentiator for real functions.

University of Cambridge, 14 Mar 1997

Verifying Algorithms for the Transcendental Functions

Real analysis theory (1)

Definitional construction of real numbers
Basic topology

General limit operations

Sequences and series

Limits of real functions

Differentiation

Power series and Taylor expansions
Transcendental functions

Gauge integration

University of Cambridge, 14 Mar 1997

Verifying Algorithms for the Transcendental Functions

Real analysis theory (2)

There are lots of concrete theorems, e.g.

|- abs(abs x - abs y) <= abs (x - y)

sin(x + y) =

sin(x) * cos(y) + cos(x) * sin(y)
tan(&n * pi) = &0

&0 < x /\ &0 < y
==> (In(x / y) = 1n(x) - 1n(y))

University of Cambridge, 14 Mar 1997

Verifying Algorithms for the Transcendental Functions

Real analysis theory (3)

and many general ones:

|- £ contl x /\ g contl (f x)
==> (\x. g(f %)) contl x

a <=b /\

(f(a) <=y /\ y <= £(b)) /\

(1x. a<=x /\ x <= b ==> f contl x)

==> (7x. a<=x /\x<=Db /\ (£{x) =7y))

(f diffl 1) (g x) /\ (g diffl m) (x)
==> ((\x. f(g x)) diffl (1 * m)) (x)

a <=b /\
(Ix. a<=x /\x<=D

==> (f diffl £’ (x)) (%))
==> Dint(a,b) f’ (£f(b) - f(a))

University of Cambridge, 14 Mar 1997

Verifying Algorithms for the Transcendental Functions

Our Programming Language (1)

This includes the following constructs:

command = variable := expression
| command ; command
| if expression then command
else command
if expression then command
while expression do command
do command while expression
skip
{ expression}

| [expression]

The language is semantically embedded in HOL
using standard techniques (functional, relational
and weakest precondition semantics are all
available).

University of Cambridge, 14 Mar 1997

Verifying Algorithms for the Transcendental Functions

Our Programming Language (2)

We can verify the total correctness of programs

according to given pre and post-conditions.
|- correct p c q

corresponds to the standard total correctness

assertion [p| ¢ [q], i.e. a command ¢, executed in a

state satisfying p, will terminate in a state
satistying gq.

We can prove correctness assertions by
systematically breaking down the command
according to its structure. In particular, we can
annotate it with ‘verification conditions’, and so
(automatically) reduce the correctness proof to
the problem of verifying some assertions about

the underlying mathematical domains.

University of Cambridge, 14 Mar 1997

Verifying Algorithms for the Transcendental Functions

Example 1: CORDIC for logarithm

begin

var k,x,y,z;

x = X;
y := 0;
k :=1;
while k < N do
(z := srl(n) k x;
if ult(n) z (neg(n) x) then

(x := add(n) x z;
:= add(m) y (logs k));
k : =k +1

where add(n), neg(n), ult(n) and srl(n) k are
n-bit addition, 2s complement negation, unsigned
comparison (<) and right shift by k& places,
respectively.

The array logs contains pre-stored constants.

University of Cambridge, 14 Mar 1997

Verifying Algorithms for the Transcendental Functions

Without the prettyprinter

This shows what the underlying semantic

representation looks like:

Assign (\k, (x,(y,z)). k,(X,(y,z))) Seq
Assign (\k, (x,(y,z)). k,(x,(0,z))) Seq
Assign (\k, (x,(y,z)). 1,(x,(y,z))) Seq
While (\k,(x,(y,z)). k < N)

(Assign (\k, (x,(y,z)).

k,(x,(y,srl n k x))) Seq
If (\k,(x,(y,z)). ult n z (neg n x))
(Assign (\k, (x,(y,2)).

k,(add n x z,(y,z))) Seq
Assign

(\k, (x,(y,2z)).
k,(x,(add m y (logs k),z)))) Seq

Assign (\k,(x,(y,z)). k + 1,(x,(y,z))))

However the user need not normally see this form!

University of Cambridge, 14 Mar 1997

Verifying Algorithms for the Transcendental Functions

The CORDIC program in C

int k;

unsigned long X,y,Z;

x =
y =
k =
while (k < N)
{z=x > k;
if (z < -x)
{x=x+ z;

y =y + logslk];

(Using unsigned longs in place of the particular

word sizes, for the sake of familiarity.)

University of Cambridge, 14 Mar 1997

Verifying Algorithms for the Transcendental Functions

The CORDIC program in Verilog

integer k;

reg [n:0] x,z;

reg [m:0] y;

initial;

begin

John Harrison

x =
y =
k =
while (k
begin
Z = X
if (z
begin

< N)

>> k;
< -x)

X + z;

y + logslk];

+ 1;

University of Cambridge, 14 Mar 1997

Verifying Algorithms for the Transcendental Functions

Annotations for CORDIC program

We can specify intermediate assertions later in

the proof by exploiting metavariables. However it

is simpler to provide annotations. We assert a

loop invariant:
{mval(n) x < &1 /\ ...}
and that N - k decreases with each iteration.

The automatic verification condition generator
(working by inference) can calculate all the other
intermediate assertions for itself. We are left with

four verification conditions:

The loop invariant is true initially.

The loop invariant is preserved if the
condition in the if statement holds.

The loop invariant is preserved if the

condition in the if statement does not hold.

The loop invariant together with &k > N
implies the final postcondition.

University of Cambridge, 14 Mar 1997

Verifying Algorithms for the Transcendental Functions

Correctness result (1)

The four verification conditions are proved in
HOL, with the aid of a few lemmas. This proves
that the annotated program is correct according

to the specification. HOL Light then proves

automatically that the program with the
annotations removed is still correct. The
precondition of the final specification is:

inv(&2) <= mval(n) X /\ mval(n) X < &1 /\
&N + &2 <= &n /\ &N <= &2 pow (PRE n) /\
(1i. &0 < &i /\ &i < &N ==
&2 pow i * &(logs i) <= &2 pow m /\
(abs(&(logs i) -
&2 pow m * 1n(&1 + inv(&2 pow i)))
< &1))

i.e. the input value X is in the range % < X <1,
the stored constants are good enough
approximations to the true logarithms, and a few

conditions on the parameters hold.

University of Cambridge, 14 Mar 1997

Verifying Algorithms for the Transcendental Functions

Correctness result (2)

and the final postcondition guaranteed by our

proof is:

abs(mval(m) y + 1In(mval(n) X))
<= &N * (&6 * inv(&2 pow n) +
inv (&2 pow m)) +

inv(&2 pow N)

That is, the difference between the calculated
logarithm mval(m) y and (the negation of) the

true mathematical result In(mval(n) X) is
bounded by N(6.27" +27™) 42—V,

This can be chosen as small as desired by picking
the parameters appropriately. Moreover the
correct values for the stored table of logarithms
can also be calculated in any particular instant,

by inference (slowly!)

University of Cambridge, 14 Mar 1997

Verifying Algorithms for the Transcendental Functions

Example 2: Polynomial for exp

Many modern algorithms for the transcendental

functions work according to the following scheme.
To calculate f(z):

e We have a pre-stored f(a;) for some a; close
to . Consider the difference 2’ = = — a;.

e Evaluate some similar function g(x’). Since z'
is small, this can be done accurately by a

low-order polynomial approximation p(x').

e Reconstruct f(z) from f(a;) and g(z')

For example, we can calculate e* = e% e | Errors
appear in several places. The hardest to quantity,
in a theorem prover, is simply the difference
between p(z’) and g(z’). We focus on this
problem here.

University of Cambridge, 14 Mar 1997

Verifying Algorithms for the Transcendental Functions

Minimax approximations

Polynomial approximations are normally chosen
to have the best ‘minimax’ behaviour, i.e. to
minimize the maximum value of the absolute

error over the interval [a, b] concerned:

(@) = p(@)|loc = supacacs|f(2) — p(2))]

By a theorem of Chebyshev, such a polynomial
always exists. However there is no (known)
method for obtaining the coefficients

‘analytically’.

Just truncating the Taylor series usually gives a

much worse result.

Instead, the coefficients of p are usually arrived at
via a rather complicated method involving

successive numerical approximations.

It’s quite impractical to do all this inside a

theorem prover.

University of Cambridge, 14 Mar 1997

Verifying Algorithms for the Transcendental Functions

Post-hoc error bounds

Instead, we accept the polynomial chosen, and try

to find the maximum error |e(x)| directly, where

e(z) = f(x) — p(z).

Since the function f(x) is normally well-behaved

over the small interval concerned, we can arrive at
a pessimistic uniform continuity bound B such
that:

Va,z' € [a,b]. le(z) —e(2’)| < Blz — 2’|

Now in principle we can find the upper and lower
bounds to accuracy e just by evaluating e(x) at a
family of points at most €¢/B apart and finding

the maximum and minimum.

In practice, the number of calculations this
involves makes it completely impractical, at least

inside a theorem prover.

University of Cambridge, 14 Mar 1997

Verifying Algorithms for the Transcendental Functions

Using the derivative

A better approach would be to find all the points

where €' (x) = 0.

We already have a theorem in HOL asserting that
if a function is differentiable in an interval, its
extrema must occur either at the endpoints or at

a point of zero derivative.

Thus, all we need to do is locate all the roots of
e’ (x) in the interval to accuracy ¢/B and evaluate
e(x) there.

If a root x is simple, then we can give a < z < (3
such that e’(a) and €'(3) have opposite signs.
The existence of a root in the interval then

follows and can be proved in HOL.

But how do we know that we have located all the
roots? We need this to apply the main theorem.

There seems no easy way of proving that.

University of Cambridge, 14 Mar 1997

Verifying Algorithms for the Transcendental Functions

Using polynomials

Instead, following a suggestion of David Wheeler,

we take the following approach.

Approximate f(x) by a truncated Taylor

expansion t(x).

Make the degree of ¢(x) much higher than the
polynomial we are concerned with, if necessary, in

order to make the error in approximation less
than €/2.

Now if suffices to find the maximum and

minimum of e(z) = t(x) — p(x) to within €/2.

This is a tractable problem. We can decide, using
Sturm’s theorem, how many roots €’(x) has in the
interval, and so prove that we have located all of
them.

Thus we can find the extrema. Moreover, we only

need to do rational arithmetic.

University of Cambridge, 14 Mar 1997

Verifying Algorithms for the Transcendental Functions

Polynomials in HOL

We first develop a theory of polynomials in HOL.

|- (poly [] x = &0) /\
(poly (CONS h t) x = h + x * poly t x)

We can define various operations on the
coefficients. For example, these correspond to
addition and differentiation:

|- ([0 ++ 12 = 12) /\
(CONS h t ++ 12 =
(12 = [1) => CONS h t |
CONS (h + (HD 12) (t ++ (TL 12)))

|- (diff_aux n [] = [1) /\
(diff _aux n (CONS h t) =
CONS (&n * h) (diff_aux (SUC n) t))

|- diff 1
((1 [1) => [] | diff_aux 1 (TL 1))

University of Cambridge, 14 Mar 1997

Verifying Algorithms for the Transcendental Functions

Correctness of operations

These operations do indeed work as intended:

|- !'pl p2 x. poly (pl ++ p2) x =
poly pl x + poly p2 x

'p ¢ x. poly (c ## p) x = ¢ * poly p X

'p x. poly (neg p) x = ——(poly p x)

'x pl p2. poly (pl **x p2) x =
poly pl x * poly p2 x

11 x. ((poly 1) diffl
(poly (diff 1) x)) x

Hence we get various basic properties of the
operations. Note that not all of them hold at the

level of coefficient lists, which are not canonical.

University of Cambridge, 14 Mar 1997

Verifying Algorithms for the Transcendental Functions

Theory of polynomials

Now we define other basic notions and prove

various important theorems, e.g.

e If p(a) = 0 then p(x) is divisible by (z — a)

o If (x — a) divides p(x)q(x) then (z — a)
divides p(z) or (z — a) divides g(z).

e A nontrivial polynomial only has finitely

many roots.

e For a nontrivial polynomial p, every a is
characterized by a unique order such that
(x — a)™ divides p but (z — a)™*! doesn’t.

For example in HOL:

|- !'p. “(poly p = poly [1)
==> FINITE {x | poly p x = &0}

University of Cambridge, 14 Mar 1997

Verifying Algorithms for the Transcendental Functions

Squarefree decomposition (1)

When trying to locate the zeros of a polynomial

p(x), it’s useful to assume that it has no multiple

roots, i.e. every root has order 1.

In that case, we can rely on p(a) and p(8) having
opposite signs for a small enough isolating

interval, and so prove in HOL that the root exists.

Moreover, Sturm’s theorem is easier to prove
assuming that the polynomial concerned has no

multiple (real) roots.

|- !'p. rsquarefree p =
“(poly p = poly [1) /\
(ta. (order a p = 0) \/
(order a p = 1))

This says that a polynomial has only simple real
roots.

University of Cambridge, 14 Mar 1997

Verifying Algorithms for the Transcendental Functions

Squarefree decomposition (2)

We prove that this is equivalent to the polynomial

and its derivative having no common roots:

|- !p. rsquarefree p =
(ta. “((poly p a = &0) /\
(poly (diff p) a = &0)))

From this, it follows that p/gcd(p,p’) gives a
polynomial with the same roots but all of order 1.

This is the squarefree decomposition of p.

Rather than formalize division, gcd etc. we
calculate appropriate polynomials outside the
logic (using Maple) which are sufficient as a
certificate that d is a g.c.d.

The appropriate constants in a Bezout identity

are given by Maple’s gcdex functions.

University of Cambridge, 14 Mar 1997

Verifying Algorithms for the Transcendental Functions

Squarefree decomposition (3)

The final HOL theorem concerning squarefree
decomposition is:

|- lpgder s.
“(poly (diff p) = poly [1) /\
(poly p = poly (q ** d)) /\
(poly (diff p) = poly (e **x d)) /\
(poly d = poly (r ** p ++ s *x diff p))
==> rsquarefree q /\
(ta. (poly q a = &0) =
(poly p a = &0))

Now we only need concern ourselves with counting

and locating the roots of a squarefree polynomial.

University of Cambridge, 14 Mar 1997

Verifying Algorithms for the Transcendental Functions

Sturm’s theorem (1)

In order to count the roots, we use the notion of a

Sturm sequence.

|- (STURM p p’ [] = p’ divides p) /\
(STURM p p’ (CONS g gs) =
p’ divides (p ++ g) /\
degree g < degree p’ /\
STURM p’ g gs)

The standard Sturm sequence starts with p’ the
derivative of the original polynomial p. By
successive division (and negation) we get a Sturm

sequence.

The number of roots of p in an interval can be
found by counting the variations in sign of the
Sturm sequence evaluated at each end of the

interval.

University of Cambridge, 14 Mar 1997

Verifying Algorithms for the Transcendental Functions

Sturm’s theorem (2)

We define the number of variations in sign of a

sequence of real numbers (ignoring zeros) as

follows:

|- (varrec prev [] = 0) /\
(varrec prev (CONS h t) =
(prev * h < &0
=> SUC (varrec h t)
| h = &0 => varrec prev t

| varrec h t))

|- variation 1 = varrec (&0) 1

Sturm’s theorem asserts that if a polynomial p is
nonzero at either end of an interval [a, b], then the
number of roots it has inside the interval is the
difference in the variations of the Sturm sequence

at the end points.

University of Cambridge, 14 Mar 1997

Verifying Algorithms for the Transcendental Functions

Sturm’s theorem (3)

|- !f a b l.
a <=Db /\
“(poly f a = &0) /\
“(poly £ b = &0) /\
rsquarefree f /\

STURM f (diff f) 1
==> {x | a<=x/\ x<=b /\
(poly f x = &0)} HAS_SIZE
(variation
(MAP (\p. poly p a)
(CONS £ (CONS (diff £) 1))) -
variation
(MAP (\p. poly p b)
(CONS £ (CONS (diff £f) 1))))

University of Cambridge, 14 Mar 1997

