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Yes, current applications in both formal verification and the
formalization of mathematics most naturally draw on a wide
variety of tools.

◮ Formal verification uses a wide range of tools including SAT
and SMT solvers, model checkers and theorem provers

◮ The Kepler proof uses linear programming, nonlinear
optimization, and other more ad hoc algorithms

◮ Many powerful facilities in computer algebra systems that
we’d like to exploit

◮ May want to combine work done in different theorem provers,
e.g. ACL2, Coq, HOL, Isabelle.
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Diversity at Intel

Intel is best known as a hardware company, and hardware is still the
core of the company’s business. However this entails much more:

◮ Microcode

◮ Firmware

◮ Protocols

◮ Software

If the Intel Software and Services Group (SSG) were split off as a
separate company, it would be in the top 10 software companies
worldwide.



A diversity of verification problems

This gives rise to a corresponding diversity of verification problems,
and of verification solutions.

◮ Propositional tautology/equivalence checking (FEV)

◮ Symbolic simulation

◮ Symbolic trajectory evaluation (STE)

◮ Temporal logic model checking

◮ Combined decision procedures (SMT)

◮ First order automated theorem proving

◮ Interactive theorem proving

Integrating all these is a challenge!



Layers of verification

If we want to verify from the level of software down to the
transistors, then it’s useful to identify and specify intermediate
layers.

◮ Implement high-level floating-point algorithm assuming
addition works correctly.

◮ Implement a cache coherence protocol assuming that the
abstract protocol ensures coherence.

Many similar ideas all over computing: protocol stack, virtual
machines etc.
If this clean separation starts to break down, we may face much
worse verification problems. . .
Very often, different tools are better suited to different layers.



Example 1: floating-point algorithms

gate-level description

fma correct

sin correct
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Example 1: floating-point algorithms

Formal proof of sin function assuming fma is correct:

Harrison, Formal verification of floating point
trigonometric functions, FMCAD 2000.

Formal proof of fma correctness at the gate level:

Slobodova, Challenges for Formal Verification in
Industrial Setting, FMCAD 2007.

Yet these verifications were done in different proof systems and do
not even share a common fma specification.



Example 2: protocol verification

Many successes with Chou-Mannava-Park method for parametrized
systems:

Chou, Mannava and Park: A simple method for
parameterized verification of cache coherence protocols,
FMCAD 2004.
Krstic, Parametrized System Verification with Guard
Strengthening and Parameter Abstraction, AVIS 2005.
Talupur, Krstic, O’Leary and Tuttle, Parametric
Verification of Industrial Strength Cache Coherence
Protocols, DCC 2008.
Bingham, Automatic non-interference lemmas for
parameterized model checking, FMCAD 2008.
Talupur and Tuttle, Going with the Flow: Parameterized
Verification Using Message Flows, FMCAD 2008.



Example 2: protocol verification

The CMP method applies to parametrized systems with N
equivalent replicated components, so the state space involves some
Cartesian product

Σ = Σ0 ×

N times
︷ ︸︸ ︷

Σ1 × · · · ×Σ1

The method abstracts the system to a finite-state one and then
uses a conventional model checker to prove the abstraction.
Currently, the abstraction is done by ad hoc programs, even though
it would be desirable to encompass it all in a formal proof system.



Pure mathematics: the Kepler conjecture

The Kepler conjecture states that no arrangement of identical balls
in ordinary 3-dimensional space has a higher packing density than
the obvious ‘cannonball’ arrangement.
Hales, working with Ferguson, arrived at a proof in 1998:

◮ 300 pages of mathematics: geometry, measure, graph theory
and related combinatorics, . . .

◮ 40,000 lines of supporting computer code: graph enumeration,
nonlinear optimization and linear programming.

Hales submitted his proof to Annals of Mathematics . . .



The response of the reviewers

After a full four years of deliberation, the reviewers returned:

“The news from the referees is bad, from my perspective.
They have not been able to certify the correctness of the
proof, and will not be able to certify it in the future,
because they have run out of energy to devote to the
problem. This is not what I had hoped for.
Fejes Toth thinks that this situation will occur more and
more often in mathematics. He says it is similar to the
situation in experimental science — other scientists
acting as referees can’t certify the correctness of an
experiment, they can only subject the paper to
consistency checks. He thinks that the mathematical
community will have to get used to this state of affairs.”



The birth of Flyspeck

Hales’s proof was eventually published, and no significant error has
been found in it. Nevertheless, the verdict is disappointingly
lacking in clarity and finality.
As a result of this experience, the journal changed its editorial
policy on computer proof so that it will no longer even try to check
the correctness of computer code.
Dissatisfied with this state of affairs, Hales initiated a project
called Flyspeck to completely formalize the proof.



Flyspeck

Flyspeck = ‘Formal Proof of the Kepler Conjecture’.

“In truth, my motivations for the project are far more
complex than a simple hope of removing residual doubt
from the minds of few referees. Indeed, I see formal
methods as fundamental to the long-term growth of
mathematics. (Hales, The Kepler Conjecture)

The formalization effort has been running for a few years now with
a significant group of people involved, some doing their PhD on
Flyspeck-related formalization.
In parallel, Hales has simplified the non-formal proof using ideas
from Marchal, significantly cutting down on the formalization work.



Flyspeck: a diversity of methods

The Flyspeck proof combines large amounts of pure mathematics,
optimization programs and special-purpose programs:

◮ Standard mathematics including Euclidean geometry and
measure theory

◮ More specialized theoretical results on hypermaps, fans and
packing.

◮ Enumeration procedure for ‘tame’ graphs

◮ Many linear programming problems.

◮ Many nonlinear programming problems.



1: Combining tools and
certifying results



Sharing results or sharing proofs?

A key dichotomy is whether we want to simply:

◮ Transfer results, effectively assuming the soundness of tools

◮ Transfer proofs or other ‘certificates’ and actually check them
in a systematic way.

The first is general speaking easier and still useful. The latter gives
better assurance and is the approach I, and probably most people
here, are interested in.



Matching semantics

Even for the relatively easy case of transferring results, we need a
precise match between the semantics of the tools.
In the case of importing a tool in some specific mathematical
domain (e.g. an integer programming package) into a general
theorem prover, this is usually pretty easy, though there can be
subtle corners.
It becomes much more complex and difficult if we want to transfer
results between general mathematical frameworks with significantly
different foundations.



Interfaces between interactive provers

Transferring results:

◮ hol90 → Nuprl: Howe and Felty 1997

◮ ACL2 → HOL4: Gordon, Hunt, Kaufmann & Reynolds 2006

Transferring proofs:

◮ HOL4 → Isabelle/HOL: Skalberg 2006

◮ HOL Light → Isabelle/HOL: Obua 2006

◮ Isabelle/HOL → HOL Light: McLaughlin 2006

◮ HOL Light → Coq: Keller 2009

More comprehensive solutions for exchange between HOL-like
provers include work by Hurd, Arthan et al. (OpenTheory) and
Adams (importing into HOL Zero).
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Certificates

We really want the various tools to be able to produce some kind
of certificate that can be relatively easily checked in the prover.

◮ We don’t need to bring all the complicated and possibly
buggy code in the various external tools into our formal world
— we just check their work afterwards!

◮ Example: suppose we want to prove formally that 232 + 1 is
not prime.

◮ Factorize it using external tools, giving the certificate (in this
case just the answer) 232 + 1 = 641× 6700417

◮ Factoring large numbers uses highly complex algorithms and
optimized code, but to check the answer we just need to do
simple integer arithmetic.
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Proving primality

What about the dual problem of proving that a large number is
prime? It’s not so obvious how to certify this.

◮ There are suitable certificates that p is prime, based on a
factorization of p − 1, using Lucas’s theorem from number
theory.

◮ Pratt, “Every prime has a succinct certificate”, SIAM J.
Computing 1975. This was the first proof that primality is NP
(we now know it’s in P).

◮ A somewhat more efficient refinement using Pocklington’s
theorem was implemented in Coq by Caprotti and Oostdijk,
“Formal and efficient primality proofs by computer algebra
oracles”



Pocklington’s thoerem

In HOL Light, we also generate a ‘certificate of primality’ based on
Pocklington’s theorem:

2 ≤ n ∧

(n - 1 = q * r) ∧

n ≤ q EXP 2 ∧

(a EXP (n - 1) == 1) (mod n) ∧

(∀p. prime(p) ∧ p divides q ⇒ coprime(a EXP ((n - 1) DIV p) - 1,n))

⇒ prime(n)

The certificate is generated ‘extra-logically’, using the
factorizations produced by PARI/GP.
The certificate is then checked by formal proof, using the above
theorem.



2: Survey of result certification



Pure logic: SAT

SAT is particularly important nowadays given the power of modern
SAT solvers and the fact that they get used as components in
other systems (QBF solvers, bounded model checkers, . . . )
For satisfiable problems it’s generally easy to get a satisfying
valuation out of a SAT solver and check it relatively efficiently.
For unsatisfiable problems, some SAT checkers are capable of
emitting a resolution proof, and this can be checked.

Weber and Amjad, Efficiently Checking Propositional
Refutations in HOL Theorem Provers

This is feasible, though depending on the problem it can still take
rather more time to check the solution than the SAT solver took to
find it. Usually not too much longer, though.



Pure logic: FOL

In principle, relatively easy: often much faster to check a proof
even in a slow prover than to perform the extensive search that led
to it.
Even ‘internal’ automated provers like MESON in HOL Light and
blast in Isabelle have long used a separate search phase.
Main difficulties of interfacing to mainstream ATP systems are:

◮ Getting a sufficiently explicit proof out of certain provers in
the first place. For example, Vampire is generally more
powerful than prover9, but it’s much easier to get proofs from
the latter.

◮ When formulating a problem in a higher-order polymorphically
typed setting, making a suitable reduction to the
monomorphic first-order logic supported by most ATPs.

Much more detail in Jasmin Blanchette’s talk . . .



Pure logic: QBF

Quantified Boolean formulas are a useful representation for some
classes of problem. There have been successful projects to check
traces from QBF provers:

◮ Invalid QBF formulas: Weber 2010

◮ Valid QBF formulas: Kuncar 2011, Kumar and Weber 2011

While these work, the process of checking incurs a sometimes
dramatic slowdown, often several orders of magnitude.
These setups also seem very sensitive to the implementation details
of the target prover (e.g. name carrying versus de Bruijn terms).



Arithmetical theories: linear arithmetic

Generally works quite well for universal formulas over R or Q.
The key is Farkas’s Lemma, which implies that for any
unsatisfiable set of inequalities, there’s a linear combination of
them that’s ‘obviously false’ like 1 < 0.
Alexey Solovyev’s highly optimized implementation of this is
essential for Flyspeck.
More challenging if we have (i) quantifier alternations, or (ii)
non-trivial use of a discrete structures like Z or N. (Simple tricks
like x < y → x + 1 ≤ y go some way.)
For example, there are implementations of Cooper’s algorithm
inside theorem provers, but none that can efficiently check traces
from any external tool.



Arithmetical theories: algebraically closed fields

Again, the universal theory is easiest, and this coincides with the
universal theory of fields or integral domains (when the
characteristic is fixed).
Using the Rabinowitsch trick p 6= 0 → ∃y . py − 1 = 0, we just
need to refute a conjunction of equations. Then we can appeal to
the Hilbert Nullstellensatz:
The polynomial equations p1(x) = 0, . . . , pk(x) = 0 in an
algebraically closed field have no common solution iff there are
polynomials q1(x), . . . , qk(x) such that the following polynomial
identity holds:

q1(x) · p1(x) + · · ·+ qk(x) · pk(x) = 1

Thus we can reduce equation-solving to ideal membership.



Arithmetical theories: ideal membership

One can solve ideal membership problems using various methods,
e.g. linear algebra. But the most standard method is Gröbner
bases, which are implemented by many computer algebra systems.
Given polynomials p1(x), . . . , pk(x) and r(x), these can return
explicit cofactor polynomials qk(x) when they exist such that

q1(x) · p1(x) + · · ·+ qk(x) · pk(x) = r(x)

However, in contrast to Farkas’s Lemma, the cofactors are not
just numbers and can be huge expressions.
Often more efficient to use HOL Light’s simple internal
implementation of Gröbner bases than appeal to external tools.
However, can return the cofactors in more efficient forms using
shared subterms.



Arithmetical theories: universal theory of reals (1)

There is an analogous way of certifying universal formulas over R
using the Real Nullstellensatz, which involves sums of squares
(SOS):
The polynomial equations p1(x) = 0, . . . , pk(x) = 0 in a real
closed closed field have no common solution iff there are
polynomials q1(x), . . . , qk(x), s1(x), . . . , sm(x) such that

q1(x) · p1(x) + · · ·+ qk(x) · pk(x) + s1(x)
2 + · · ·+ sm(x)

2 = −1

The similar but more intricate Positivstellensatz generalizes this to
inequalities of all kinds.



Arithmetical theories: universal theory of reals (2)

The appropriate certificates can be found in practice via
semidefinite programming (SDP). For example
23x2 + 6xy + 3y2 − 20x + 5 = 5 · (2x − 1)2 + 3 · (x + y)2 ≥ 0 or

∀a b c x . ax2 + bx + c = 0 ⇒ b2 − 4ac ≥ 0

because

b2 − 4ac = (2ax + b)2 − 4a(ax2 + bx + c)

However, most standard nonlinear solvers do not return such
certificates, and this approach does not obviously generalize to
formulas with richer quantifier structure.



Other examples

There has been some research on at least the following:

◮ SMT: seems feasible to combine and generalize methods for
SAT and theories. Much current research, some reported at
this workshop.

◮ Explicit-state or BDD-based symbolic model checking: seems
hard to separately certify and emulation is slow.

◮ Computer algebra: some easy case like factorization, indefinite
integrals. Others like definite integrals are much harder.

Major research challenge: which algorithms lend themselves to this
kind of efficient checking? Which ones seem essentially not to?
Some analogies with the class NP.



3: Examples



Results on reciprocal algorithm
We use prime factor certification to derive critical values that need
to be checked for the correctness of a reciprocal algorithm:
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0xDEE256F712B7B894 0xDEE24908EDB7B894 0xDE86505A77F81B25 0xDE03D5F96C8A976C 0xDDFF059997C451E5

0xDB73060F0C3B6170 0xDB6DB6DB6DB6DB6C 0xDB6DA92492B6DB6C 0xDA92B6A4ADA92B6C 0xD9986492DD18DB7C

0xD72F32D1C0CC4094 0xD6329033D6329033 0xD5A004AE261AB3DC 0xD4D43A30F2645D7C 0xD33131D2408C6084
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0xB9B501C68DD6D90C 0xB880B72F050B57FC 0xB85C824924643204 0xB7C8928A28749804 0xB7A481C71C43DDFC

0xB7938C6947D97303 0xB38A7755BB835F24 0xB152958A94AC54A4 0xAFF5757FABABFD5C 0xAF4D99ADFEFCAAFC

0xAF2B32F270835F04 0xAE235074CF5BAE64 0xAE0866F90799F954 0xADCC548E46756E64 0xAD5AB56AD5AB56AC

0xAD5AAA952AAB56AC 0xAB55AAD56AB55AAC 0xAAAAB55555AAAAAC 0xAAAAAAAAAAAAAAAC 0xAAAAA00000555554

0xA93CFF3E629F347D 0xA80555402AAA0154 0xA8054ABFD5AA0154 0xA7F94913CA4893D4 0xA62E84F95819C3BC

0xA5889F09A0152C44 0xA4E75446CA6A1A44 0xA442B4F8DCDEF5BC 0xA27E096B503396EE 0x9E9B8FFFFFD8591C

0x9E9B8B0B23A7A6E4 0x9E7C6B0C1CA79F1C 0x9DFC78A4EEEE4DCB 0x9C15954988E121AB 0x9A585968B4F4D2C4

0x99D0C486A0FAD481 0x99B831EEE01FB16C 0x990C8B8926172254 0x990825E0CD75297C 0x989E556CADAC2D7F

0x97DAD92107E19484 0x9756156041DBBA94 0x95C4C0A72F501BDC 0x94E1AE991B4B4EB4 0x949DE0B0664FD224

0x942755353AA9A094 0x9349AE0703CB65B4 0x92B6A4ADA92B6A4C 0x9101187A01C04E4C 0x907056B6E018E1B4
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0x84BDA12F684BDA14 0x83AB6A090756D410 0x83AB6A06F8A92BF0 0x83A7B5D13DAE81B4 0x8365F2672F9341B4

0x8331C0CFE9341614 0x82A5F5692FAB4154 0x8140A05028140A04 0x8042251A9D6EF7FC



Results on a Flyspeck inequality

Some simple Flyspeck inequalities, after being expressed
componentwise, can be proved efficiently by SOS certification, e.g.
this one in HOL Light syntax:

!u v w:real^3.dist(u,v) >= &2 /\

dist(u,w) >= &2 /\

dist(v,w) >= &2 /\

norm(u - v) < sqrt(&8)

==> norm(w - &1 / &2 % (u + v))

> norm(u - v) / &2



Results on a Flyspeck inequality

Some simple Flyspeck inequalities, after being expressed
componentwise, can be proved efficiently by SOS certification, e.g.
this one in HOL Light syntax:

!u v w:real^3.dist(u,v) >= &2 /\

dist(u,w) >= &2 /\

dist(v,w) >= &2 /\

norm(u - v) < sqrt(&8)

==> norm(w - &1 / &2 % (u + v))

> norm(u - v) / &2

However, some of the more complex ones seem to be out of reach
of current SOS implementations.
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Conclusions

◮ There is a real need for combining different proof tools, for
applications both in formal verification and pure mathematics

◮ Effective exchange and checking of proofs between tools
seems to be the best way of ensuring soundness and
intellectual manageability of such connections.

◮ Several significant problems still seem hard to treat effectively
via a certification, including model checking state
enumeration and full quantifier elimination or general
nonlinear optimization.


