A Prolog Technology Theorem Prover — Mark Stickel (JAR 1988)

Mark E. Stickel

A Prolog Technology
Theorem Prover:

Implementation by an Extended

Prolog Compiler

PTTP: history and its place in ATP
Horn clauses and Prolog
From Prolog to PTTP

Refinements

University of Cambridge, 26 June 1997

A Prolog Technology Theorem Prover — Mark Stickel (JAR 1988)

Model elimination

The deductive procedure underlying PTTP is
Donald Loveland’s MESON model elimination
method, which was invented in the sixties.

Model elimination is described by Loveland in
JACM vol. 15 (1968), pp. 236-251 and MESON is
described in his 1978 book: ‘Automated Theorem
Proving: A Logical Basis’ (North-Holland).

ME was developed before Loveland had heard of
resolution. Loveland’s later development of linear

resolution was quite separate.

ME is a general proof method for first order logic,
and does not (directly) support equality

reasoning, arithmetic etc.

University of Cambridge, 26 June 1997

A Prolog Technology Theorem Prover — Mark Stickel (JAR 1988)

The idea underlying Stickel’s PTTP was to
implement the MESON procedure using ‘Prolog
Technology’.

That is, he made just a few small modifications to

a standard Prolog system (details later) and

obtained a system complete for first order logic.

It’s probably thanks to PTTP that model
elimination didn’t disappear completely against
the background of the intense interest in

resolution.

SETHEO (from Munich), winner of the 1996
CADE theorem proving competition, is basically

a well-engineered version of PTTP.

The second-placed system, Otter, is the current

resolution flagship.

There are implementations of similar algorithms
in Isabelle (meson_tac) and in HOL (MESON_TAC),

though here clauses are interpreted not compiled.

University of Cambridge, 26 June 1997

A Prolog Technology Theorem Prover — Mark Stickel (JAR 1988)

Where ME belongs

We can divide the standard first order theorem

proving methods into two main groups:

e The bottom-up, ‘local’ methods, e.g.
resolution (Robinson, JACM 1965) and the
inverse method (Maslov, Dok. Akad. Nauk
1964).

e The top-down, ‘global’ methods, e.g. model

elimination and tableaux.

In some sense, all these can be seen as search for
a proof in cut-free sequent calculus, using
unification to discover instantiations for

quantifiers.

The bottom-up methods start at the assumptions
and deduce an ever-increasing set of facts till they
reach the conclusion. Top-down method work
backwards from the conclusion, breaking it down

to subproblems until the assumptions are reached.

University of Cambridge, 26 June 1997

A Prolog Technology Theorem Prover — Mark Stickel (JAR 1988)

Top-down vs. bottom-up

The bottom-up methods have several advantages.
Effectively they perform proof at the meta-level:
we can regard free variables as implicitly
universally quantified.

Therefore it is possible to apply subsumption to

the current set of facts, and avoid proving the

same lemma twice. By contrast, in top-down
(‘global’) methods, the free variables in different
subgoals need to be correlated.

However, top-down methods are more
goal-directed: we don’t just grow a big set of facts

and hope we reach the conclusion.

Moreover, they are much more economical to
implement, since we only need to store the current
subgoals. In fact, they are all very Prolog-like:
apart from the PTTP implementation of
MESON, there is a complete tableau prover called
leanT?P that requires only 5 lines of Prolog.

University of Cambridge, 26 June 1997

A Prolog Technology Theorem Prover — Mark Stickel (JAR 1988)

This is due to Beckert and Posegga; see the

Journal of Automated Reasoning, vol. 15, pp.
339-358, 1995.

prove((E,F),A,B,C,D) :- !,prove(E,[F|A],B,C,D).
prove((E;F),A,B,C,D) :- !,prove(E,A,B,C,D),
prove(F,A,B,C,D).
prove(all(I,J),A,B,C,D) :- !,
\+length(C,D),copy_term((I,J,C),(G,F,C)),
append (A, [al1(I,J)],E) ,prove(F,E,B, [G|C],D).
prove(A,_,[CID],_,_) :-
((A= -(B);-(A)=B) ->
(unify(B,C) ;prove(A,[]1,D,_,_))).
prove(A, [E|F],B,C,D) :- prove(E,F,[A|B],C,D).

This sort of naive tableau prover is the core of
Isabelle’s fast_tac and HOL’s TAB_TAC.

University of Cambridge, 26 June 1997

A Prolog Technology Theorem Prover — Mark Stickel (JAR 1988)

Horn clauses and Prolog

A clause is a disjunction of literals, where a literal

is either an atomic formula or its negation:
LyvV---V L,

We say it is a Horn clause if it has at most one

unnegated literal. In this case we can write it as

—LiA--A—=Lj_1AN—Lgi1 A+ A—L, = Ly

or simply ‘L’ if n = 1. These are the clauses
that are allowed in a Prolog database. The Prolog

syntax for the prototypical Horn clause is:
Lk:— — Ll, Ceay _Lk—la _Lk—|—17 Ceay —Ln

Prolog allows us to deduce an atomic formula
from such a database by backchaining through
the rules, using unification to instantiate variables

(written in upper case in Prolog).

University of Cambridge, 26 June 1997

A Prolog Technology Theorem Prover — Mark Stickel (JAR 1988)

hy is Prolog inadequate?

Prolog certainly has a limited ability to prove

theorems. However it is inadequate as a general

first order prover for three reasons:

e Most Prolog implementations have unsound

unification
e Prolog is limited to Horn clauses

e Prolog’s depth-first search strategy is

incomplete.

We arrive at PTTP by fixing each of these
problems. We will consider them in turn.

University of Cambridge, 26 June 1997

A Prolog Technology Theorem Prover — Mark Stickel (JAR 1988)

Unsound unification

It has long been usual for Prolog implementations

to omit the so-called ‘occurs check’, e.g. allowing
X and f(X) to be unified.

This is either for (probably bogus) efficiency
reasons, or because circular data structures are

sometimes considered useful.

However it’s disastrous for theorem proving, e.g.
it would allow us to deduce SUC(Y) < Y from
X < SUC(X).

The fix is easy: just do unification properly.

University of Cambridge, 26 June 1997

A Prolog Technology Theorem Prover — Mark Stickel (JAR 1988)

Limitation to Horn clauses

It is not always possible to reduce theorem

proving problems to Horn clause sets acceptable

to Prolog.

For example, we might want to use the facts
AV B and A — B to deduce B. However there

is no equivalent in terms of Horn clauses.

The solution adopted in PTTP is to extend the

notion of ‘Horn clause’:
AiN---A, — B

to allow any or all of the literals involved to be
negated.

Now we can take any problem and reduce it to

something based on these pseudo-Horn clauses.

University of Cambridge, 26 June 1997

A Prolog Technology Theorem Prover — Mark Stickel (JAR 1988)

Contrapositives

We take the fact we want to prove (maybe an

implication under a set of assumptions), negate it,
Skolemize it and reduce it to clausal form. We
want to derive | . For each clause:

Piv...VP,
we form n contrapositives of the form:
—PAAA=P,_y A=Pi i A-+-AN—P, = P,
and one more of the form:
—PIN..N—-FP,— L

Now we try to solve the goal | a la Prolog.

University of Cambridge, 26 June 1997

A Prolog Technology Theorem Prover — Mark Stickel (JAR 1988)

Incompleteness

Unfortunately, while Prolog-style backchaining is

complete for true Horn clauses, this is not so for

pseudo-Horn clauses. Consider the intended
example of deducing B from AV B and A — B.

The contrapositives are:

B
—-A
-B

Fere bl

It is immediate that no Prolog-style search can
terminate 1in success because there are no unit

clauses.

University of Cambridge, 26 June 1997

A Prolog Technology Theorem Prover — Mark Stickel (JAR 1988)

Ancestor unification

We can restore completeness by an extra rule: as
well as unification with the conclusion of a rule,
we allow unification with the negation of an

ancestor.

This is treated as a unit clause and can solve a

goal; note that the variables, if any, are

correlated. For example
1L+ B+ A+ —-B

Now we can unify =B and the negation of B.

The logical justification is simple: if we are trying
to prove a goal, here B, we may assume its
negation — B, since if that is false we are

immediately finished.

University of Cambridge, 26 June 1997

A Prolog Technology Theorem Prover — Mark Stickel (JAR 1988)

Search strategy

Although this is now complete as a calculus, the

usual Prolog depth-first search with rules tried in

order is trivially incomplete.

For example, the rules P(f(X)) = P(X) and
P(f(a)) cannot solve the goal P(a) because
Prolog will keep applying the first rule ad

infinitum:

P(a) + P(f(a) < P(f(f(@)) « P(f(f(f(a)))) -

We need to use a search strategy that will allow

all possible proofs to be found.
The most obvious is breadth-first search. But this

blows up the storage requirement: the minimal

storage usage is one of PTTP’s strong points.

Instead, most implementations use depth first
iterative deepening: search for proofs of depth 1,
then if that fails, depth 2, then if that fails, depth

3, and so on.

University of Cambridge, 26 June 1997

A Prolog Technology Theorem Prover — Mark Stickel (JAR 1988)

Search alternatives

Various search modes have been experimented
with

Loveland originally used iterative deepening

where ‘depth’ is maximum height of proof

tree.

Stickel then used depth = size of proof tree

(number of nodes).

Paulson uses best-first search (not iterative

deepening).

SETHEO allows height or size bounds; the

former is better on average.

Harrison uses an optimized version of size

bounds, which seems better still.

University of Cambridge, 26 June 1997

A Prolog Technology Theorem Prover — Mark Stickel (JAR 1988)

Implementation refinements

Making larger DFID increments
automatically (e.g. if all the clauses are units
or have 3 assumptions, we can increment by 3

each time).

Avoiding repetitions down a branch of the

proof tree. (Though these may only appear

after later instantiation, so there are
trade-offs to be made.)

Performing ‘intelligent backtracking’, e.g. if a
goal is solved using a unit clause or ancestor
without instantiation of the goal, no other
solutions need be tried. More advanced
optimizations can interact badly with
iterative deepening.

Extending the system to nonclausal
assertions, a la Prolog, e.g. PA(QV R) = S
instead of two separate clauses. This avoids
repeating the solution of P.

University of Cambridge, 26 June 1997

A Prolog Technology Theorem Prover — Mark Stickel (JAR 1988)

Refinements to the calculus

It suffices to generate rules with conclusion L

only if all the literals in the clause are negated.

Often this is just the original goal. Also, there is

Plaisted’s ‘positive refinement’.

There are alternative versions of ME that only
use ‘natural’ contrapositives, e.g. Loveland’s
Near-Horn Prolog, Plaisted’s Modified Problem
Reduction Format and Baumgartner & Furbach’s
Restart Model Elimination.

There are also various techniques for caching and
lemmatizing. These were originally used by
Loveland, and fell out of favour, but are now
attracting attention again. For example,
SETHEOQO uses several quite sophisticated
techniques.

University of Cambridge, 26 June 1997

