
A Prolog Technology Theorem Prover | Mark Stickel (JAR 1988) 1
Mark E. StickelA Prolog TechnologyTheorem Prover:Implementation by an ExtendedProlog CompilerJournal of Automated Reasoningvol. 4, pp. 353-380, 1988Discussion led by John HarrisonUniversity of Cambridge

� PTTP: history and its place in ATP� Horn clauses and Prolog� From Prolog to PTTP� Re�nements
John Harrison University of Cambridge, 26 June 1997

A Prolog Technology Theorem Prover | Mark Stickel (JAR 1988) 2
Model elimination

The deductive procedure underlying PTTP isDonald Loveland's MESON model eliminationmethod, which was invented in the sixties.Model elimination is described by Loveland inJACM vol. 15 (1968), pp. 236-251 and MESON isdescribed in his 1978 book: `Automated TheoremProving: A Logical Basis' (North-Holland).ME was developed before Loveland had heard ofresolution. Loveland's later development of linearresolution was quite separate.ME is a general proof method for �rst order logic,and does not (directly) support equalityreasoning, arithmetic etc.

John Harrison University of Cambridge, 26 June 1997

A Prolog Technology Theorem Prover | Mark Stickel (JAR 1988) 3
PTTPThe idea underlying Stickel's PTTP was toimplement the MESON procedure using `PrologTechnology'.That is, he made just a few small modi�cations toa standard Prolog system (details later) andobtained a system complete for �rst order logic.It's probably thanks to PTTP that modelelimination didn't disappear completely againstthe background of the intense interest inresolution.SETHEO (from Munich), winner of the 1996CADE theorem proving competition, is basicallya well-engineered version of PTTP.The second-placed system, Otter, is the currentresolution
agship.There are implementations of similar algorithmsin Isabelle (meson_tac) and in HOL (MESON_TAC),though here clauses are interpreted not compiled.John Harrison University of Cambridge, 26 June 1997

A Prolog Technology Theorem Prover | Mark Stickel (JAR 1988) 4
Where ME belongs

We can divide the standard �rst order theoremproving methods into two main groups:� The bottom-up, `local' methods, e.g.resolution (Robinson, JACM 1965) and theinverse method (Maslov, Dok. Akad. Nauk1964).� The top-down, `global' methods, e.g. modelelimination and tableaux.In some sense, all these can be seen as search fora proof in cut-free sequent calculus, usinguni�cation to discover instantiations forquanti�ers.The bottom-up methods start at the assumptionsand deduce an ever-increasing set of facts till theyreach the conclusion. Top-down method workbackwards from the conclusion, breaking it downto subproblems until the assumptions are reached.John Harrison University of Cambridge, 26 June 1997

A Prolog Technology Theorem Prover | Mark Stickel (JAR 1988) 5
Top-down vs. bottom-up

The bottom-up methods have several advantages.E�ectively they perform proof at the meta-level:we can regard free variables as implicitlyuniversally quanti�ed.Therefore it is possible to apply subsumption tothe current set of facts, and avoid proving thesame lemma twice. By contrast, in top-down(`global') methods, the free variables in di�erentsubgoals need to be correlated.However, top-down methods are moregoal-directed: we don't just grow a big set of factsand hope we reach the conclusion.Moreover, they are much more economical toimplement, since we only need to store the currentsubgoals. In fact, they are all very Prolog-like:apart from the PTTP implementation ofMESON, there is a complete tableau prover calledleanTAP that requires only 5 lines of Prolog.John Harrison University of Cambridge, 26 June 1997

A Prolog Technology Theorem Prover | Mark Stickel (JAR 1988) 6
leanTAPThis is due to Beckert and Posegga; see theJournal of Automated Reasoning, vol. 15, pp.339-358, 1995.

prove((E,F),A,B,C,D) :- !,prove(E,[F|A],B,C,D).prove((E;F),A,B,C,D) :- !,prove(E,A,B,C,D),prove(F,A,B,C,D).prove(all(I,J),A,B,C,D) :- !,\+length(C,D),copy_term((I,J,C),(G,F,C)),append(A,[all(I,J)],E),prove(F,E,B,[G|C],D).prove(A,_,[C|D],_,_) :-((A= -(B);-(A)=B) ->(unify(B,C);prove(A,[],D,_,_))).prove(A,[E|F],B,C,D) :- prove(E,F,[A|B],C,D).This sort of naive tableau prover is the core ofIsabelle's fast_tac and HOL's TAB_TAC.

John Harrison University of Cambridge, 26 June 1997

A Prolog Technology Theorem Prover | Mark Stickel (JAR 1988) 7
Horn clauses and PrologA clause is a disjunction of literals, where a literalis either an atomic formula or its negation:L1 _ � � � _ LnWe say it is a Horn clause if it has at most oneunnegated literal. In this case we can write it as�L1 ^ � � � ^ �Lk�1 ^ �Lk+1 ^ � � � ^ �Ln =) Lkor simply `L1' if n = 1. These are the clausesthat are allowed in a Prolog database. The Prologsyntax for the prototypical Horn clause is:Lk:-� L1; : : : ;�Lk�1;�Lk+1; : : : ;�LnProlog allows us to deduce an atomic formulafrom such a database by backchaining throughthe rules, using uni�cation to instantiate variables(written in upper case in Prolog).

John Harrison University of Cambridge, 26 June 1997

A Prolog Technology Theorem Prover | Mark Stickel (JAR 1988) 8
Why is Prolog inadequate?

Prolog certainly has a limited ability to provetheorems. However it is inadequate as a general�rst order prover for three reasons:� Most Prolog implementations have unsounduni�cation� Prolog is limited to Horn clauses� Prolog's depth-�rst search strategy isincomplete.We arrive at PTTP by �xing each of theseproblems. We will consider them in turn.

John Harrison University of Cambridge, 26 June 1997

A Prolog Technology Theorem Prover | Mark Stickel (JAR 1988) 9
Unsound uni�cation

It has long been usual for Prolog implementationsto omit the so-called `occurs check', e.g. allowingX and f(X) to be uni�ed.This is either for (probably bogus) e�ciencyreasons, or because circular data structures aresometimes considered useful.However it's disastrous for theorem proving, e.g.it would allow us to deduce SUC(Y) < Y fromX < SUC(X).The �x is easy: just do uni�cation properly.

John Harrison University of Cambridge, 26 June 1997

A Prolog Technology Theorem Prover | Mark Stickel (JAR 1988) 10
Limitation to Horn clauses

It is not always possible to reduce theoremproving problems to Horn clause sets acceptableto Prolog.For example, we might want to use the factsA _B and A =) B to deduce B. However thereis no equivalent in terms of Horn clauses.The solution adopted in PTTP is to extend thenotion of `Horn clause':A1 ^ � � �An =) Bto allow any or all of the literals involved to benegated.Now we can take any problem and reduce it tosomething based on these pseudo-Horn clauses.
John Harrison University of Cambridge, 26 June 1997

A Prolog Technology Theorem Prover | Mark Stickel (JAR 1988) 11
Contrapositives

We take the fact we want to prove (maybe animplication under a set of assumptions), negate it,Skolemize it and reduce it to clausal form. Wewant to derive ?. For each clause:P1 _ : : : _ Pnwe form n contrapositives of the form:�P1 ^ � � � ^ �Pi�1 ^ �Pi+1 ^ � � � ^ �Pn =) Piand one more of the form:�P1 ^ : : : ^ �Pn =) ?Now we try to solve the goal ? �a la Prolog.

John Harrison University of Cambridge, 26 June 1997

A Prolog Technology Theorem Prover | Mark Stickel (JAR 1988) 12
Incompleteness

Unfortunately, while Prolog-style backchaining iscomplete for true Horn clauses, this is not so forpseudo-Horn clauses. Consider the intendedexample of deducing B from A _B and A =) B.The contrapositives are:B =) ?:A =) B:B =) A:A ^ :B =) ?A =) B:B =) :AA ^ :B =) ?
It is immediate that no Prolog-style search canterminate in success because there are no unitclauses.John Harrison University of Cambridge, 26 June 1997

A Prolog Technology Theorem Prover | Mark Stickel (JAR 1988) 13
Ancestor uni�cation

We can restore completeness by an extra rule: aswell as uni�cation with the conclusion of a rule,we allow uni�cation with the negation of anancestor.This is treated as a unit clause and can solve agoal; note that the variables, if any, arecorrelated. For example? B A :BNow we can unify :B and the negation of B.The logical justi�cation is simple: if we are tryingto prove a goal, here B, we may assume itsnegation :B, since if that is false we areimmediately �nished.
John Harrison University of Cambridge, 26 June 1997

A Prolog Technology Theorem Prover | Mark Stickel (JAR 1988) 14
Search strategy

Although this is now complete as a calculus, theusual Prolog depth-�rst search with rules tried inorder is trivially incomplete.For example, the rules P (f(X)) =) P (X) andP (f(a)) cannot solve the goal P (a) becauseProlog will keep applying the �rst rule adin�nitum:P (a) P (f(a)) P (f(f(a))) P (f(f(f(a)))) � � �We need to use a search strategy that will allowall possible proofs to be found.The most obvious is breadth-�rst search. But thisblows up the storage requirement: the minimalstorage usage is one of PTTP's strong points.Instead, most implementations use depth �rstiterative deepening: search for proofs of depth 1,then if that fails, depth 2, then if that fails, depth3, and so on.John Harrison University of Cambridge, 26 June 1997

A Prolog Technology Theorem Prover | Mark Stickel (JAR 1988) 15
Search alternatives

Various search modes have been experimentedwith� Loveland originally used iterative deepeningwhere `depth' is maximum height of prooftree.� Stickel then used depth = size of proof tree(number of nodes).� Paulson uses best-�rst search (not iterativedeepening).� SETHEO allows height or size bounds; theformer is better on average.� Harrison uses an optimized version of sizebounds, which seems better still.
John Harrison University of Cambridge, 26 June 1997

A Prolog Technology Theorem Prover | Mark Stickel (JAR 1988) 16
Implementation re�nements� Making larger DFID incrementsautomatically (e.g. if all the clauses are unitsor have 3 assumptions, we can increment by 3each time).� Avoiding repetitions down a branch of theproof tree. (Though these may only appearafter later instantiation, so there aretrade-o�s to be made.)� Performing `intelligent backtracking', e.g. if agoal is solved using a unit clause or ancestorwithout instantiation of the goal, no othersolutions need be tried. More advancedoptimizations can interact badly withiterative deepening.� Extending the system to nonclausalassertions, �a la Prolog, e.g. P ^ (Q_R) =) Sinstead of two separate clauses. This avoidsrepeating the solution of P .John Harrison University of Cambridge, 26 June 1997

A Prolog Technology Theorem Prover | Mark Stickel (JAR 1988) 17
Re�nements to the calculus

It su�ces to generate rules with conclusion ?only if all the literals in the clause are negated.Often this is just the original goal. Also, there isPlaisted's `positive re�nement'.There are alternative versions of ME that onlyuse `natural' contrapositives, e.g. Loveland'sNear-Horn Prolog, Plaisted's Modi�ed ProblemReduction Format and Baumgartner & Furbach'sRestart Model Elimination.There are also various techniques for caching andlemmatizing. These were originally used byLoveland, and fell out of favour, but are nowattracting attention again. For example,SETHEO uses several quite sophisticatedtechniques.
John Harrison University of Cambridge, 26 June 1997

