
An OCaml-based automated theorem-proving
textbook

John Harrison, Intel Corporation

Portland Functional Programming Study Group

Mon 11th May 2009 (19:00)

0



Book plug

Surveys many parts of automated reasoning, via actual code.

Available online from the usual places. Hopefully will be in Powells in
a couple of weeks...

1



Why I wrote this book

Standard existing books on automated theorem proving mostly fall
into one of these categories:

• Chang and Lee, Symbolic Logic and Mechanical Theorem
Proving. Excellent textbook, but mainly focused on resolution
with nothing on arithmetic decision procedures, and somewhat
dated.

2



Why I wrote this book

Standard existing books on automated theorem proving mostly fall
into one of these categories:

• Chang and Lee, Symbolic Logic and Mechanical Theorem
Proving. Excellent textbook, but mainly focused on resolution
with nothing on arithmetic decision procedures, and somewhat
dated.

• Gordon and Melham, Introduction to HOL: a theorem proving
environment for higher order logic. Fine description and manual
for usage of HOL system, but entirely focused on that one
system and with little explanation of how it works.

3



Why I wrote this book

Standard existing books on automated theorem proving mostly fall
into one of these categories:

• Chang and Lee, Symbolic Logic and Mechanical Theorem
Proving. Excellent textbook, but mainly focused on resolution
with nothing on arithmetic decision procedures, and somewhat
dated.

• Gordon and Melham, Introduction to HOL: a theorem proving
environment for higher order logic. Fine description and manual
for usage of HOL system, but entirely focused on that one
system and with little explanation of how it works.

There are essentially no textbooks on automated theorem proving
covering a wide range of the subject without many prerequisites.

4



Approach of my book

• In principle, assumes almost no prerequisites, but discusses
logic from the very beginning. Does require basic mathematics
and functional programming (but these are summarized in
appendices).

5



Approach of my book

• In principle, assumes almost no prerequisites, but discusses
logic from the very beginning. Does require basic mathematics
and functional programming (but these are summarized in
appendices).

• Logical theory and automated theorem proving are explained in
a closely intertwined manner. Results in logic are developed,
wherever possible, in an explicitly computational way.

6



Approach of my book

• In principle, assumes almost no prerequisites, but discusses
logic from the very beginning. Does require basic mathematics
and functional programming (but these are summarized in
appendices).

• Logical theory and automated theorem proving are explained in
a closely intertwined manner. Results in logic are developed,
wherever possible, in an explicitly computational way.

• Methods are explained with reference to actual concrete
implementations in OCaml, which readers can experiment with if
they have convenient access to a computer.

7



Nice Knuth quote . . .

“For three years I taught a sophomore course in abstract
algebra for mathematics majors at Caltech, and the most
difficult topic was always the study of “Jordan canonical
forms” for matrices. The third year I tried a new approach, by
looking at the subject algorithmically, and suddenly it
became quite clear. The same thing happened with the
discussion of finite groups defined by generators and
relations, and in another course with the reduction theory of
binary quadratic forms. By presenting the subject in terms of
algorithms, the purpose and meaning of the mathematical
theorems became transparent.”

8



. . . Knuth quote continued

“Later, while writing a book on computer arithmetic [...], I
found that virtually every theorem in elementary number
theory arises in a natural, motivated way in connection with
the problem of making computers do high-speed numerical
calculations. Therefore I believe that the traditional courses
in number theory might well be changed to adopt this point
of view, adding a practical motivation to the already beautiful
theory.”

9



More self-justification

Other recent-ish mathematics books take a similar approach:

• Cox, Little and O’Shea, Using algebraic geometry

• Kreuzer, Computational commutative algebra

• Rydeheard and Burstall, Computational category theory

10



More self-justification

Other recent-ish mathematics books take a similar approach:

• Cox, Little and O’Shea, Using algebraic geometry

• Kreuzer, Computational Commutative Algebra

• Rydeheard and Burstall, Computational category theory

If even category theory can be presented computationally, surely
mathematical logic deserves to be:

• Analysis of computation by Turing and others was specifically
designed to address decidability questions in logic

• Problems in formal verification are motivating the development of
automated theorem provers.

• Logic plays increasing role in programming language design.

11



Table of contents

1. Introduction

2. Propositional logic

3. First-order logic

4. Equality

5. Decidable problems

6. Interactive theorem proving

7. Limitations

8. Appendices on mathematical background and basic OCaml

12



Why in a functional language?

Compare another implementation-oriented book, Monty Newborn’s
Automated Theorem Proving: Theory and Practice. What does a
functional language give us?

13



Why in a functional language?

Compare another implementation-oriented book, Monty Newborn’s
Automated Theorem Proving: Theory and Practice. What does a
functional language give us?

• High level of data structures, abstraction from machine features
like memory allocation: as good as pseudocode yet executable.

• Interactive toplevel very convenient for experimentation.

• Purely functional programming allows exploration without
worrying about accidental side-effects.

14



Why in a functional language?

Compare another implementation-oriented book, Monty Newborn’s
Automated Theorem Proving: Theory and Practice. What does a
functional language give us?

• High level of data structures, abstraction from machine features
like memory allocation: as good as pseudocode yet executable.

• Interactive toplevel very convenient for experimentation.

• Purely functional programming allows exploration without
worrying about accidental side-effects.

On the negative side:

• Less familiar to many readers than C, Java, pseudocode . . .

15



Why OCaml?

I started using CAML Light when I rewrote the HOL theorem prover
in it to give ‘HOL Light’. Since then I’ve stayed on the “upgrade path”
via CAML Special Light to OCaml and been quite satisfied.

• I don’t use any exotic features like object orientation, labelled
arguments etc.

• Except for printing status messages, all code is completely
functional, in traditional ML style.

• I do use automatic prettyprinting and (via camlp4/camlp5)
quotation parsing to make interactive exploration convenient.

Only significant complaint about OCaml was the ineptly managed
transition to a new, incompatible and completely undocumented
version of camlp4.

16



Versions in other languages?

I’d love to have versions of the code in multiple functional languages.
Since I use a ‘lowest common denominator’ subset, this shouldn’t be
too bad.

An F# version is almost trivial, because the core language is so close
to OCaml. The only exception is parsing and printing, which would
need to change.

Sean McLaughlin and Roland Zumkeller have worked on a Haskell
port, and have already done a significant portion. Toplevel seems
less efficient, but compiled version works very well.

It would be interesting to try rewriting some of the code in a more
‘thematic’ Haskell style using laziness, list comprehensions etc.

17


