
Formal Verification of Floating-Point Arithmetic 1

Formal Verification of

Floating-Point Arithmetic

John Harrison

Intel Corporation

• Formal verification

• Machine-checked proof

• Automatic and interactive approaches

• HOL Light

• Floating point verification

• Specification example

• Lemma examples

• Verification example

John Harrison Intel Corporation, 1 December 1999

Formal Verification of Floating-Point Arithmetic 2

Formal Verification

Traditionally, errors in hardware and software

have been discovered empirically, by testing them

in many possible situations.

However, the number of possible situations is

usually so large that we can only exercise a tiny

proportion of them.

For example, there are about 280 double extended

precision floating point numbers. Testing an

operation on all of them will probably never be

feasible, even if it’s only unary.

Pre-silicon testing of microprocessor designs is

especially limited, since everything is run on

simulators orders of magnitude slower than real

hardware.

Formal verification is an alternative that involves

trying to prove mathematically that a computer

system will function as intended.

John Harrison Intel Corporation, 1 December 1999

Formal Verification of Floating-Point Arithmetic 3

Formal models

Formal verification aims to prove the correctness

of a design with respect to a mathematical formal

specification. This still leaves two gaps:

Actual system

Design model

Formal specification

Actual requirements

6

6

6

Note that the same criticisms can be levelled at

certain kinds of testing. A simulator is not the

same as a real chip. Checking against a ‘reference

implementation’ doesn’t prove that the reference

is correct.

John Harrison Intel Corporation, 1 December 1999

Formal Verification of Floating-Point Arithmetic 4

Formal verification is hard

Writing out a completely formal proof of

correctness for real-world hardware and software

is difficult.

One needs to make explicit lots of assumptions

and special cases that one often forgets about

informally. Moreover, one has to avoid making

any mistakes or oversights. This is a major

undertaking, even for a small system.

It’s not easy to get such long and detailed proofs

right, nor for others to read them and be assured

of their correctness.

The state of the art, at least in the software

world, is quite limited. Software verification has

been around since the 60s, but there have been

few major successes.

John Harrison Intel Corporation, 1 December 1999

Formal Verification of Floating-Point Arithmetic 5

Faulty hand proofs

The paper “Synchronizing clocks in the presence

of faults” (Lamport & Melliar-Smith, JACM

1985) introduced the Interactive Convergence

Algorithm for clock synchronization, and

presented a ‘proof’ of it.

A later attempt to reproduce this by Rushby and

von Henke in a mechanical theorem prover

(EHDM) discovered serious flaws.

The paper presented five supporting lemmas and

one main correctness theorem.

Lemmas 1, 2, and 3 were all false. Lemma 4 was

false too, but only because of a minor

typographical error. The proof of the main

induction in the final theorem was wrong. The

main result, however, was correct!

John Harrison Intel Corporation, 1 December 1999

Formal Verification of Floating-Point Arithmetic 6

Machine-checked proof

A more promising approach is to have the proof

checked (or even generated) by a computer

program. This offers two potential advantages

over doing proofs by hand:

• It can reduce the risk of mistakes. The

computer can check that the user only proves

results in ways known to be sound.

• The computer can make (some parts of) the

proof easier than they would be by hand,

even automating large parts of it.

In the hardware world the latter has proven to be

especially important, and has led to a recent

upsurge of interest in formal hardware

verification.

John Harrison Intel Corporation, 1 December 1999

Formal Verification of Floating-Point Arithmetic 7

Decidable systems

There are well-known fields of logic and

mathematics where validity is decidable, e.g:

• Propositional logic, e.g. ¬(p ∨ q) ⇒ ¬p ∧ ¬q.

• AE fragment of first order logic, e.g.

∀x. ∃y. P [x] ⇒ P [y].

• Linear arithmetic over N, e.g.

x < y ⇒ 2x + 1 < 2y.

• Nonlinear arithmetic over R, e.g.

∃x. x2 − 3x + 1 = 0.

This only covers small fragments of mathematics.

However, it is often enough to solve significant

real-world verification problems.

For example, checking that an optimized

combinational circuit has the same behavior as an

unoptimized one amounts to proving a formula in

propositional logic. Symbolic trajectory

evaluation and temporal logical model checking

can even verify properties of sequential systems.

John Harrison Intel Corporation, 1 December 1999

Formal Verification of Floating-Point Arithmetic 8

Theoretical limits

Full automation has strong theoretical limits, by

virtue of the following (related) theorems:

• Tarski’s theorem on the undefinability of

truth

• Gödel’s first incompleteness theorem.

• The Church-Turing theorem.

Even if a theory is decidable in principle, the time

or space usage of the decision procedure may

make it ineffective in practice.

Combinational comparison, STE and temporal

logic model checking, for example, are widely

used for hardware verification, but rapidly run

into practical capacity limits when verifying many

real-world systems.

Besides, they oblige us to express both the system

model and (which is worse) the specification using

only a limited fragment of mathematics.

John Harrison Intel Corporation, 1 December 1999

Formal Verification of Floating-Point Arithmetic 9

General theorem proving

One can meet these objections by using a general

theorem prover.

This can deal with all the high-level mathematics

required, and the specification can therefore be

written in a more natural way. In fact, the

verification can be modularized and structured

into layers, with increasingly general levels of

specification.

Verification can also be performed generically, e.g.

proving n-bit adders correct for arbitrary n rather

than some particular value.

However, validity is no longer decidable in theory

and certainly not feasible in practice. Instead,

theorem proving programs require a skilled user

to communicate in a formal way the outline of a

mathematical proof, though they can usually fill

in simple gaps for themselves.

John Harrison Intel Corporation, 1 December 1999

Formal Verification of Floating-Point Arithmetic 10

HOL Light

The prover we use, HOL Light, is based on the

approach to theorem proving pioneered in

Edinburgh LCF in the 70s. The key ideas are:

• All theorems created by low-level primitive

rules.

• Guaranteed by using an abstract type of

theorems; no need to store proofs.

• ML available for implementing derived rules

by arbitrary programming.

This gives advantages of reliability and

extensibility. The system’s source code can be

completely open. The user controls the means of

production (of theorems).

HOL Light includes, built on top of this logical

core, a variety of automated proof tools and

formalized mathematical theories that can be

applied in proofs. Real analysis is particularly

useful for floating point verification.

John Harrison Intel Corporation, 1 December 1999

Formal Verification of Floating-Point Arithmetic 11

Floating point verification

Nowadays, most floating point implementations

are intended to conform to the IEEE Standard for

binary floating point arithmetic. This gives rules

that fix most aspects of floating point behavior.

A key initial part of our work is to formalize in

HOL what IEEE-correct behavior is, as well as

IA-64 specific choices where the IEEE standard

does not fix behavior. In software verification:

• We are entitled to assume that the basic

operations we use (mainly the

fused-multiply-add) behave according to

specification.

• Based on that assumption, we need to show

that certain higher-level algorithms also obey

such a specification or an appropriate variant.

If we were verifying the low-level hardware, our

starting assumptions would be, e.g. logical or

electrical properties of gates.

John Harrison Intel Corporation, 1 December 1999

Formal Verification of Floating-Point Arithmetic 12

Key aspects of the IEEE Standard

• Defines a variety of floating point formats

such as ‘single’ and ‘double’. Numbers in a

given format obey restrictions on precision

(p) and exponent range (Emin ≤ e ≤ Emax):

x = (−1)s × d1.d2d3 · · · dp × 2e

• The rounding operation is taken as basic,

with the default mode being

round-to-nearest, where a number is mapped

to the closest floating point number to it.

• All arithmetic operations normally proceed as

if they generated an exact mathematical

result and then rounded it.

• Appropriate flags are set or exceptions

generated in special situations like overflow,

underflow or invalid operations.

John Harrison Intel Corporation, 1 December 1999

Formal Verification of Floating-Point Arithmetic 13

Specification example: ulps

The IEEE Standard does not specify that the

transcendental function like exp and sin give

correctly rounded results, since no algorithm with

guaranteed good performance is known. Instead,

it’s customary to measure their error in terms of

‘units in the last place’ (ulps).

While ulps are a standard way of measuring error,

there’s a remarkable lack of unanimity in

published definitions of the term. One of the

merits of a formal treatment is to clear up such

ambiguities.

-
6

2k

Roughly, a unit in the last place is the gap

between adjacent floating point numbers. But at

the boundary 2k between ‘binades’, this distance

changes.

John Harrison Intel Corporation, 1 December 1999

Formal Verification of Floating-Point Arithmetic 14

Two definitions

Definitions in two common reference works

disagree. An error of 0.5 ulp according to

Goldberg, but intuitively 1 ulp.

-
?

exact

6

2k

?
computed

An error of 0.4 ulp according to Muller, but

intuitively 0.2 ulp. Rounding up is worse...

-
?

exact

6

2k

?

computed

Our definition: ulp(x) is the distance between the

closest pair of floating point numbers a and b

with a ≤ x ≤ b.

John Harrison Intel Corporation, 1 December 1999

Formal Verification of Floating-Point Arithmetic 15

Lemma examples

There are many results used informally by

floating point algorithm designers that need to be

formally proved in HOL as lemmas. A simple

example is that rounding is monotonic:

|- ¬(precision fmt = 0) ∧ x <= y

⇒ round fmt rc x <= round fmt rc y

Particularly interesting, and tricky to prove, are

results that guarantee certain quantities can be

calculated exactly. For example this is a classic

result:

|- a IN iformat fmt ∧ b IN iformat fmt ∧
a / &2 <= b ∧ b <= &2 * a

⇒ (b - a) IN iformat fmt

while the following says that we can always get a

sum of floating point numbers exactly as a ‘large’

and ‘small’ part by adding them as usual and

then getting a correction by subtracting the

addends from the result, the larger one first:

|- x IN iformat fmt ∧ y IN iformat fmt ∧ abs(x) <= abs(y)

⇒ (round fmt Nearest (x + y) - y) IN iformat fmt ∧
(round fmt Nearest (x + y) - (x + y)) IN iformat fmt

John Harrison Intel Corporation, 1 December 1999

Formal Verification of Floating-Point Arithmetic 16

Verification example

We take as given the correct behavior of the IA-64

frsqrta (reciprocal square root approximation)

instruction and the fma operations that calculate

x y + z with one rounding error. We put these

together into the following algorithm:

1. y0 = 1√
a
(1 + ǫ) b = 1

2
a

2. z0 = y2
0 S0 = ay0

3. d = 1
2
− bz0 k = ay0 − S0 H0 = 1

2
y0

4. e = 1 + 3
2
d T0 = dS0 + k

5. S1 = S0 + eT0 c = 1 + de

6. d1 = a − S1S1 H1 = cH0

7. S = S1 + d1H1

The claim is that this (subject to some range

assumptions) calculates the correctly rounded

square root in IEEE single precision, and sets all

the flags and exceptions correctly.

John Harrison Intel Corporation, 1 December 1999

Formal Verification of Floating-Point Arithmetic 17

Condition for perfect rounding

Let S∗ be the exact value S1 + d1H1 before the

final rounding.

A sufficient condition for perfect rounding is that

the closest floating point number to
√

a is also the

closest to S∗. That is, the two real numbers
√

a

and S∗ never fall on opposite sides of a midpoint

between two floating point numbers.

In the following diagram this is not true;
√

a

would round to the number below it, but S∗ to

the number above it.

-
66√

a
S∗

How can we prove that this situation never arises

for our algorithm?

John Harrison Intel Corporation, 1 December 1999

Formal Verification of Floating-Point Arithmetic 18

Exclusion zones

It would suffice if we knew for any midpoint m

that:

|
√

a − S∗| < |
√

a − m|
In that case

√
a and S∗ cannot lie on opposite

sides of m. Here is the formal theorem in HOL:

|- ¬(precision fmt = 0) ∧
(∀m. m IN midpoints fmt

⇒ abs(x - y) < abs(x - m))

⇒ (round fmt Nearest x =

round fmt Nearest y)

And this is possible to prove, because in fact

every midpoint m is surrounded by an ‘exclusion

zone’ of width δm > 0 within which the square

root of a floating point number cannot occur.

However, this δ can be quite small, considered as

a relative error. If the floating point format has

precision p, then we can have δm ≈ |m|/22p+2.

John Harrison Intel Corporation, 1 December 1999

Formal Verification of Floating-Point Arithmetic 19

Difficult cases

Because the fma does two operations before

rounding, we can come close to the required error

in S∗, but not quite attain it. We therefore adopt

a 2-part proof. This methodology is due to

Marius Cornea at Intel:

• Use number theory to find the inputs that

might have square roots dangerously close to

midpoints between floating point numbers.

• Show by a straightforward relative error

analysis that all other inputs are guaranteed

to work, by the above exclusion zone

reasoning.

• Prove casewise that the exceptional values all

give the correct result anyway.

All of these parts can be automated so that HOL

performs much of the tedious reasoning behind

the scenes. We then just need to plug together

the results afterwards.

John Harrison Intel Corporation, 1 December 1999

