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Milner on automation and interaction

I wrote an automatic theorem prover in Swansea for
myself and became shattered with the difficulty of doing
anything interesting in that direction and I still am. I
greatly admired Robinson’s resolution principle, a
wonderful breakthrough; but in fact the amount of stuff
you can prove with fully automatic theorem proving is still
very small. So I was always more interested in amplifying
human intelligence than I am in artificial intelligence.
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Automated theorem proving

The 1970s and 1980s saw intense interest in purely automated
theorem proving techniques:

I Robinson’s resolution method and other techniques for
first-order logic

I Knuth-Bendix completion for equational logic

I Boyer-Moore style automation of inductive proof

I Shostak and Nelson-Oppen work on cooperating decision
procedures, congruence closure

However, when the power of such methods began to plateau, it was
hard to make further progress and the field stagnated somewhat.
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Interactive theorem proving

Robin Milner was instrumental in emphasizing interactive
techniques.

I Milner’s original research on Edinburgh LCF spurred an
explosion of LCF-stype theorem provers.

I Such systems could be extended by programming without
compromising reliability.

I With the development of HOL, the system presented a
conservatively constructed mathematical world into which
other formalisms could be soundly embedded.

This led to a renaissance of formalization of all kinds, in pure
mathematics and verification.
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Further research on automated techniques

However, many important improvements have been made in
automation too:

I Powerful new decision procedures in algebra and geometry
(Gröbner bases, Wu’s method).

I Efficient model checking algorithms for tempoeral logic.

I Dazzling efficiency improvements in SAT (and now SMT)
solvers makes them surprisingly useful in practice.

We are actively trying to combine the power of automated
techniques with the generality and reliablity of interactive ones to
produce the smoothest and most effective synthesis.
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Sound integration of multiple tools

Current applications in both formal verification and the
formalization of mathematics most naturally draw on a wide
variety of tools.

I Formal verification uses a wide range of tools including SAT
and SMT solvers, model checkers and theorem provers

I Some proofs in mathematics use linear programming,
nonlinear optimization, computer algebra systems and other
more ad hoc algorithms

I May want to combine work done in different theorem provers,
e.g. ACL2, Coq, HOL, Isabelle.

Ideally, we want to be able to retain the soundness guarantees we
have grown used to from LCF.
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Intel’s diverse activities

Intel is best known as a hardware company, and hardware is still the
core of the company’s business. However this entails much more:

I Microcode

I Firmware

I Protocols

I Software

If the Intel Software and Services Group (SSG) were split off as a
separate company, it would be in the top 10 software companies
worldwide.
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Intel’s diverse verification problems

This gives rise to a corresponding diversity of verification problems,
and of verification solutions.

I Propositional tautology/equivalence checking (FEV)

I Symbolic simulation

I Symbolic trajectory evaluation (STE)

I Temporal logic model checking

I Combined decision procedures (SMT)

I First order automated theorem proving

I Interactive theorem proving

Integrating all these is a challenge!
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The Flyspeck project

Hales’s Flyspeck project to formally verify his proof of the Kepler
conjecture gives rise to similar problems, since it involves many
components:

I A large amoung of ordinary mathematical formalization
(formalized in HOL Light)

I Nonlinear optimization (using interval arithmetic and
subdivision)

I Linear programming (using standard LP tools)

I Graph enumeration (proved using Isabelle/HOL and run in
ML)

This presents a similar integration challenge, since ultimately we
would like a unifed and completely formal proof.

9



The Flyspeck project

Hales’s Flyspeck project to formally verify his proof of the Kepler
conjecture gives rise to similar problems, since it involves many
components:

I A large amoung of ordinary mathematical formalization
(formalized in HOL Light)

I Nonlinear optimization (using interval arithmetic and
subdivision)

I Linear programming (using standard LP tools)

I Graph enumeration (proved using Isabelle/HOL and run in
ML)

This presents a similar integration challenge, since ultimately we
would like a unifed and completely formal proof.

9



The Flyspeck project

Hales’s Flyspeck project to formally verify his proof of the Kepler
conjecture gives rise to similar problems, since it involves many
components:

I A large amoung of ordinary mathematical formalization
(formalized in HOL Light)

I Nonlinear optimization (using interval arithmetic and
subdivision)

I Linear programming (using standard LP tools)

I Graph enumeration (proved using Isabelle/HOL and run in
ML)

This presents a similar integration challenge, since ultimately we
would like a unifed and completely formal proof.

9



The Flyspeck project

Hales’s Flyspeck project to formally verify his proof of the Kepler
conjecture gives rise to similar problems, since it involves many
components:

I A large amoung of ordinary mathematical formalization
(formalized in HOL Light)

I Nonlinear optimization (using interval arithmetic and
subdivision)

I Linear programming (using standard LP tools)

I Graph enumeration (proved using Isabelle/HOL and run in
ML)

This presents a similar integration challenge, since ultimately we
would like a unifed and completely formal proof.

9



The Flyspeck project

Hales’s Flyspeck project to formally verify his proof of the Kepler
conjecture gives rise to similar problems, since it involves many
components:

I A large amoung of ordinary mathematical formalization
(formalized in HOL Light)

I Nonlinear optimization (using interval arithmetic and
subdivision)

I Linear programming (using standard LP tools)

I Graph enumeration (proved using Isabelle/HOL and run in
ML)

This presents a similar integration challenge, since ultimately we
would like a unifed and completely formal proof.

9



The Flyspeck project

Hales’s Flyspeck project to formally verify his proof of the Kepler
conjecture gives rise to similar problems, since it involves many
components:

I A large amoung of ordinary mathematical formalization
(formalized in HOL Light)

I Nonlinear optimization (using interval arithmetic and
subdivision)

I Linear programming (using standard LP tools)

I Graph enumeration (proved using Isabelle/HOL and run in
ML)

This presents a similar integration challenge, since ultimately we
would like a unifed and completely formal proof.

9



Sharing results or sharing proofs?

A key dichotomy is whether we want to simply:

I Transfer results, effectively assuming the soundness of tools

I Transfer proofs or other ‘certificates’ and actually check them
in a systematic way.

The first is general speaking easier and still useful. The latter is
more ultimately satisfying and allows us to retain ‘LCF-quality’
results.
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Interfaces between interactive provers

Transferring results:

I hol90 → Nuprl: Howe and Felty 1997

I ACL2 → HOL4: Gordon, Hunt, Kaufmann & Reynolds 2006

Transferring proofs:

I HOL4 → Isabelle/HOL: Skalberg 2006

I HOL Light → Isabelle/HOL: Obua 2006

I Isabelle/HOL → HOL Light: McLaughlin 2006

I HOL Light → Coq: Keller 2009

More comprehensive solutions for exchange between HOL-like
provers include work by Hurd et al. (OpenTheory) and Adams
(importing into HOL Zero).
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Pure logic: SAT

SAT is particularly important nowadays given the power of modern
SAT solvers

I For satisfiable problems it’s generally easy to get a satisfying
valuation out of a SAT solver and check it relatively efficiently.

I For unsatisfiable problems, some SAT checkers are capable of
emitting a resolution proof, and this can be checked.

Several reasonably fast solutions, e.g. Weber and Amjad,
Efficiently Checking Propositional Refutations in HOL Theorem
Provers
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Pure logic: FOL

In principle, relatively easy: often much faster to check a proof
even in a slow prover than to perform the extensive search that led
to it. Off-the-shelf provers do create some difficulties:

I Getting a sufficiently explicit proof out of certain provers in
the first place.

I Reducing the higher-order polymorphically typed logic to the
monomorphic first-order logic supported by most ATPs.

Such integrations are currently an active theme, e.g. Isabelle’s
“Sledgehammer”.
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Pure logic: QBF

Quantified Boolean formulas are a useful representation for some
classes of problem. There have been successful projects to check
traces from QBF provers:

I Invalid QBF formulas: Weber 2010

I Valid QBF formulas: Kuncar 2011, Kumar and Weber 2011

While these work, the process of checking incurs a sometimes
dramatic slowdown, and are sensitive to implementation details of
the target prover.
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Arithmetical theories: linear arithmetic

Generally works quite well for universal formulas over R or Q.

Farkas’s Lemma, implies that any unsatisfiable set of inequalities
has a linear combination that’s ‘obviously false’ like 1 < 0.
Obua’s initial work and Solovyev’s highly optimized refinement is
essential for Flyspeck.
More challenging if we have (i) quantifier alternations, or (ii)
non-trivial use of a discrete structures like Z or N.
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Arithmetical theories: algebraically closed fields

Again, the universal theory is easiest, and this coincides with the
universal theory of fields or integral domains (when the
characteristic is fixed).

Using the Rabinowitsch trick p 6= 0 → ∃y . py − 1 = 0, we just
need to refute a conjunction of equations.
Hilbert Nullstellensatz: The polynomial equations p1(x) = 0, . . . ,
pk(x) = 0 in an algebraically closed field have no common solution
iff there are polynomials q1(x), . . . , qk(x) such that the following
polynomial identity holds:

q1(x) · p1(x) + · · ·+ qk(x) · pk(x) = 1

Thus we can reduce equation-solving to ideal membership,
solvable using Gröbner bases.
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Arithmetical theories: universal theory of reals (1)

There is an analogous way of certifying universal formulas over R
using the Real Nullstellensatz, which involves sums of squares
(SOS):

The polynomial equations p1(x) = 0, . . . , pk(x) = 0 in a real
closed closed field have no common solution iff there are
polynomials q1(x), . . . , qk(x), s1(x), . . . , sm(x) such that

q1(x) · p1(x) + · · ·+ qk(x) · pk(x) + s1(x)2 + · · ·+ sm(x)2 = −1

The similar but more intricate Positivstellensatz generalizes this to
inequalities of all kinds.
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Arithmetical theories: universal theory of reals (2)

The appropriate certificates can be found in practice via
semidefinite programming (SDP). For example

23x2 + 6xy + 3y2 − 20x + 5 = 5 · (2x − 1)2 + 3 · (x + y)2 ≥ 0

∀a b c x . ax2 + bx + c = 0⇒ b2 − 4ac ≥ 0

because

b2 − 4ac = (2ax + b)2 − 4a(ax2 + bx + c)

However, most standard nonlinear solvers do not return such
certificates, and this approach does not obviously generalize to
formulas with richer quantifier structure.
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Other examples

There has been some research on at least the following:

I SMT: seems feasible to combine and generalize methods for
SAT and theories.

I Explicit-state or BDD-based symbolic model checking: seems
hard to separately certify and emulation is slow.

I Computer algebra: some easy case like factorization, indefinite
integrals. Others like definite integrals are much harder.

Major research challenge: which algorithms lend themselves to this
kind of efficient checking? Which ones seem essentially not to?
Some analogies with the class NP.
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Fully integrated automation?

Suppose we have many efficient decision procedures implemented
by external tools. How can we put them together?

Effectively combination methods like Nelson-Oppen and Shostak
solve this problem for quantifier-free theories.
Even mild extensions with quantifiers rapidly become undecidable,
such as linear integer arithmetic with one function symbol, when
we can characterize squaring:

(∀n.f (−n) = f (n))∧f (0) = 0∧(∀n.0 ≤ n⇒ f (n+1) = f (n)+n+n+1)

and then multiplication by m = n · p ⇔ (n + p)2 = n2 + p2 + 2m
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Quantifiers + theories

At present, we still seem to need human-driven interactive proof to
formulate lemmas that can be solved by automated tools and tie
them together.

One of the primary research problems in automated theorem
proving is to find a practically effective combination of quantifier
and theory reasoning.

I First-order provers are adding theory reasoning (SPASS+T)

I SMT solvers are improving their ability to instantiate
quantifiers

Can sometimes exploit types to instantiate quantifiers
systematically, and other heuristics often seem to work well in
practice.
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Conclusions

I There is a real need for combining different proof tools, for
applications both in formal verification and pure mathematics

I Effective exchange and checking of proofs between tools
seems to be the best way of maintaining the ‘LCF advantage’.

I Several significant problems still seem hard to treat effectively
via a certification, including model checking state
enumeration and full quantifier elimination or general
nonlinear optimization.

I The final challenge will probably lie in the effective
combination of a variety of certified techniques, which broadly
involves the combination of quantifier and theory reasoning.
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