
The LCF Approach to Theorem Proving 1

The LCF Approach

to Theorem Proving

John Harrison

Intel Corporation

• Ideas and historical context

• Key ideas of LCF

• Equational logic example

• More about HOL Light

• Programming example

John Harrison Intel Corporation, 12 September 2001



The LCF Approach to Theorem Proving 2

Key ideas

Despite decades of steady progress in automated

theorem proving, there are still difficulties in

tackling many real-world problems in

mathematics and verification. There’s a need to:

• Organize and use large body of knowledge

• Make use both of pure logical deduction and

special decision methods

• Have a reasonable level of assurance that

proofs are indeed correct

LCF is an approach to the design of theorem

proving programs that attempts to satisfy these

needs.

John Harrison Intel Corporation, 12 September 2001



The LCF Approach to Theorem Proving 3

Historical context

Most early theorem provers were fully automatic,

even though there were several different

approaches:

• Pure logical deduction (Gilmore, Wang,

Prawitz)

• Special decision methods (Davis)

• Human-oriented AI style approaches

(Newell-Simon, Gelerntner)

John Harrison Intel Corporation, 12 September 2001



The LCF Approach to Theorem Proving 4

Interactive theorem proving

The idea of a more ‘interactive’ approach was

already anticipated by pioneers, e.g. Wang (1960):

[...] the writer believes that perhaps

machines may more quickly become of

practical use in mathematical research,

not by proving new theorems, but by

formalizing and checking outlines of

proofs, say, from textbooks to detailed

formalizations more rigorous that

Principia [Mathematica], from technical

papers to textbooks, or from abstracts to

technical papers.

John Harrison Intel Corporation, 12 September 2001



The LCF Approach to Theorem Proving 5

Early interactive systems

Some ‘interactive’ systems were really

batch-oriented proof checkers, e.g.

• AUTOMATH (de Bruijn et al.)

• Mizar (Trybulec et al.)

• Stanford LCF (Milner)

Others like the SAM series (Guard et al.) were

truly interactive:

Semi-automated mathematics [...] seeks

to combine automatic logic routines

[with] human intervention in the form of

control and guidance.

John Harrison Intel Corporation, 12 September 2001



The LCF Approach to Theorem Proving 6

Edinburgh LCF

The LCF approach started in the mid/late 1970s

with Edinburgh LCF (Milner et al.)

The name LCF comes from the logic implemented

in that project, namely Scott’s “Logic of

Computable Functions”

However, the key LCF approach is applicable to

any logic. There are now various LCF

descendants, e.g.

• Nuprl (Constable et al., Martin-Löf type

theory)

• HOL (Gordon et al., classical higher order

logic)

• Coq (Coquand, Huet et al., the Calculus of

Constructions)

John Harrison Intel Corporation, 12 September 2001



The LCF Approach to Theorem Proving 7

Basic LCF ideas

The key ideas behind the LCF approach are as

follows:

• Have a special abstract type thm of ‘theorems’

• Make the constructors of the abstract type

the inference rules of the logical system

• Implement the system in a strongly-typed

high-level language

The ML family of programming languages

(CAML, Objective CAML, Standard ML) are all

descended from the programming language

designed in the LCF project.

John Harrison Intel Corporation, 12 September 2001



The LCF Approach to Theorem Proving 8

The advantages of LCF

The abstract type supported by strong typing in

the implementation language enforces logical

correctness: everything of type thm has really

been proved. Yet proofs do not need to be

explicitly generated, still less stored.

The embedding in a full programming language

allows the user to implement more sophisticated

derived rules that decompose to the primitives,

without compromising soundness. Thus, proof

can be conducted at a much higher level than in a

simple proof checker.

John Harrison Intel Corporation, 12 September 2001



The LCF Approach to Theorem Proving 9

Fully-expansive decision procedures

How can we code sophisticated derived rules that

decompose to primitives? At first sight this might

seem hopelessly inefficient.

• Represent inference steps as object-level

theorems

• Separate search from inference

Many useful decision procedures can be coded in

this manner, without unacceptable slowness.

For example, HOL has linear arithmetic,

tautology checking and model elimination.

Other things, like explicit arithmetic with very

large numbers, or the BDD-based fixpoint

calculations in model checking, seem more

challenging.

John Harrison Intel Corporation, 12 September 2001



The LCF Approach to Theorem Proving 10

LCF-style prover for equational logic

We start with an abstract type signature:

module type Birkhoff =

sig type thm

val axiom : formula -> thm

val inst : (string, term) func -> thm -> thm

val refl : term -> thm

val sym : thm -> thm

val trans : thm -> thm -> thm

val cong : string -> thm list -> thm

val dest_thm : thm -> formula list * formula

end;;

This identifies the basic inference rules of

equational logic as the only type constructors.

John Harrison Intel Corporation, 12 September 2001



The LCF Approach to Theorem Proving 11

Implementation of primitive rules

The following is the core’s implementation:

module Proven : Birkhoff =

struct

type thm = formula list * formula

let axiom p =

match p with

Atom("=",[s;t]) -> ([p],p)

| _ -> failwith "axiom: not an equation"

let inst i (asm,p) = (asm,formsubst i p)

let refl t = ([],Atom("=",[t;t]))

let sym (asm,Atom("=",[s;t])) =

(asm,Atom("=",[t;s]))

let trans (asm1,Atom("=",[s;t]))

(asm2,Atom("=",[t’;u])) =

if t’ = t then (union asm1 asm2,Atom("=",[s;u]))

else failwith "trans: theorems don’t match up"

let cong f ths =

let asms,eqs =

unzip(map (fun (asm,Atom("=",[s;t]))

-> asm,(s,t)) ths) in

let ls,rs = unzip eqs in

(unions asms,Atom("=",[Fn(f,ls);Fn(f,rs)]))

let dest_thm th = th

end;;

John Harrison Intel Corporation, 12 September 2001



The LCF Approach to Theorem Proving 12

A simple derived rule

We can implement repeated rewriting at depth:

let conclusion th = snd(dest_thm th);;

let rewrite1 eq t =

match conclusion eq with

Atom("=",[l;r]) -> inst (term_match l t) eq

| _ -> failwith "rewrite1";;

let thenc conv1 conv2 t =

let th1 = conv1 t in

let th2 = conv2 (rhs(conclusion th1)) in

trans th1 th2;;

let rec depth fn tm =

try (thenc fn (depth fn)) tm with Failure _ ->

match tm with

Var x -> refl tm

| Fn(f,args) ->

let th = cong f (map (depth fn) args) in

if rhs(conclusion th) = tm then th

else trans th (depth fn (rhs(conclusion th)));;

Similarly, Knuth-Bendix completion etc...

John Harrison Intel Corporation, 12 September 2001



The LCF Approach to Theorem Proving 13

More about HOL Light

HOL Light is a member of the family of provers

descended from Mike Gordon’s HOL system.

An LCF-style implementation of classical

higher-order logic with object-logic

polymorphism.

HOL Light is written in CAML Light and is

intended to be a cleaner, more rational

implementation.

The system includes a number of derived rules for

automated theorem proving of various kinds and

a reasonable body of pre-proved mathematics.

Used at Intel to formally verify floating-point

algorithms.

John Harrison Intel Corporation, 12 September 2001



The LCF Approach to Theorem Proving 14

HOL Light primitive rules (1)

⊢ t = t
REFL

Γ ⊢ s = t ∆ ⊢ t = u

Γ ∪ ∆ ⊢ s = u
TRANS

Γ ⊢ s = t ∆ ⊢ u = v

Γ ∪ ∆ ⊢ s(u) = t(v)
MK COMB

Γ ⊢ s = t

Γ ⊢ (λx. s) = (λx. t)
ABS

⊢ (λx. t)x = t
BETA

John Harrison Intel Corporation, 12 September 2001



The LCF Approach to Theorem Proving 15

HOL Light primitive rules (2)

{p} ⊢ p
ASSUME

Γ ⊢ p = q ∆ ⊢ p

Γ ∪ ∆ ⊢ q
EQ MP

Γ ⊢ p ∆ ⊢ q

(Γ − {q}) ∪ (∆ − {p}) ⊢ p = q
DEDUCT ANTISYM RULE

Γ[x1, . . . , xn] ⊢ p[x1, . . . , xn]

Γ[t1, . . . , tn] ⊢ p[t1, . . . , tn]
INST

Γ[α1, . . . , αn] ⊢ p[α1, . . . , αn]

Γ[γ1, . . . , γn] ⊢ p[γ1, . . . , γn]
INST TYPE

John Harrison Intel Corporation, 12 September 2001



The LCF Approach to Theorem Proving 16

Example of programming

In verifying certain floating-point square root

algorithms for the Intel ItaniumTM processor, we

have the following situation:

• We can analytically verify correctness for the

vast majority of input numbers

• Certain ‘difficult cases’ are hard to deal with

using the same methods

• The difficult cases can be enumerated as the

solution of certain diophantine equations.

Specifically, the equations are all of the form

2pm = k2 + d for small integers d and fixed p,

giving the floating-point mantissa m.

John Harrison Intel Corporation, 12 September 2001



The LCF Approach to Theorem Proving 17

Solving the equations

It’s quite easy to program HOL to enumerate all

the solutions of such diophantine equations,

returning a disjunctive theorem of the form:

(2pm = k2 + d) =⇒ (m = n1) ∨ . . . ∨ (m = ni)

The procedure simply uses even-odd reasoning

and recursion on the power of two (effectively

so-called ‘Hensel lifting’). For example, if

225m = k2 − 7

then we know k must be odd; we can write

k = 2k′ + 1 and get the derived equation:

224m = 2k′2 + 2k′ − 3

And so on by recursion. We can then explicitly

verify the algorithm on the solutions, all by proof.

John Harrison Intel Corporation, 12 September 2001



The LCF Approach to Theorem Proving 18

Conclusions

• The LCF approach to theorem proving is a

promising way of organizing an interactive

theorem prover to combine soundness and

programmability.

• The basic approach is applicable to any logic

and there are currently several such provers

including HOL for classical higher order logic.

• The programmability is often important in

verification applications; it would be very

difficult to perform these proofs in other

kinds of prover.

John Harrison Intel Corporation, 12 September 2001


