
Formal verification of floating point algorithms 1

Formal verification of

Floating Point Algorithms

John Harrison

Intel Corporation

• The cost of bugs

• Formal verification

• Machine-checked proof

• Automatic and interactive approaches

• HOL Light

• Formalized real analysis

• Formalized floating point arithmetic

• Algebraic example: square root

• Transcendental example: tangent

• Conclusions

John Harrison Intel Corporation, 15 November 2000

Formal verification of floating point algorithms 2

The human cost of bugs

Computers are often used in safety-critical

systems where a failure could cause loss of life.

• Heart pacemakers

• Aircraft

• Nuclear reactor controllers

• Car engine management systems

• Radiation therapy machines

• Telephone exchanges (!)

• ...

John Harrison Intel Corporation, 15 November 2000

Formal verification of floating point algorithms 3

Financial cost of bugs

Even when not a matter of life and death, bugs

can be financially serious if a faulty product has

to be recalled or replaced.

• 1994 FDIV bug in the IntelPentium
processor: US $500 million.

• Today, new products are ramped much

faster...

So Intel is especially interested in all techniques

to reduce errors.

John Harrison Intel Corporation, 15 November 2000

Formal verification of floating point algorithms 4

Complexity of designs

At the same time, market pressures are leading to

more and more complex designs where bugs are

more likely.

• A 4-fold increase in bugs in Intel processor

designs per generation.

• Approximately 8000 bugs designed into the

Pentium 4 (‘Willamette’) processor.

Fortunately, pre-silicon detection rates are now at

least 99.7%.

Just enough to tread water...

John Harrison Intel Corporation, 15 November 2000

Formal verification of floating point algorithms 5

Limits of testing

Bugs are usually detected by extensive testing,

including pre-silicon simulation.

• Slow — especially pre-silicon

• Too many possibilities to test them all

For example:

• 2160 possible pairs of floating point numbers

(possible inputs to an adder).

• Vastly higher number of possible states of a

complex microarchitecture.

John Harrison Intel Corporation, 15 November 2000

Formal verification of floating point algorithms 6

Formal verification

Formal verification: mathematically prove the

correctness of a design with respect to a

mathematical formal specification.

Actual system

Design model

Formal specification

Actual requirements

6

6

6

John Harrison Intel Corporation, 15 November 2000

Formal verification of floating point algorithms 7

Verification vs. testing

Verification has some advantages over testing:

• Exhaustive.

• Improves our intellectual grasp of the system.

However:

• Difficult and time-consuming.

• Only as reliable as the formal models used.

• How can we be sure the proof is right?

John Harrison Intel Corporation, 15 November 2000

Formal verification of floating point algorithms 8

Faulty hand proofs

“Synchronizing clocks in the presence of faults”

(Lamport & Melliar-Smith, JACM 1985)

This introduced the Interactive Convergence

Algorithm for clock synchronization, and

presented a ‘proof’ of it.

• Presented five supporting lemmas and one

main correctness theorem.

• Lemmas 1, 2, and 3 were all false.

• The proof of the main induction in the final

theorem was wrong.

• The main result, however, was correct!

John Harrison Intel Corporation, 15 November 2000

Formal verification of floating point algorithms 9

Machine-checked proof

A more promising approach is to have the proof

checked (or even generated) by a computer

program.

• It can reduce the risk of mistakes.

• The computer can automate some parts of

the proofs.

There are limits on the power of automation, so

detailed human guidance is usually necessary.

John Harrison Intel Corporation, 15 November 2000

Formal verification of floating point algorithms 10

The spectrum of theorem provers

From interactive proof checkers to fully automatic

theorem provers.

AUTOMATH (de Bruijn)

Stanford LCF (Milner)

Mizar (Trybulec)

. . .

. . .
PVS (Owre, Rushby, Shankar)

. . .

. . .
ACL2 (Boyer, Kaufmann, Moore)

Otter (McCune)

John Harrison Intel Corporation, 15 November 2000

Formal verification of floating point algorithms 11

HOL Light

HOL Light is a member of the family of HOL

theorem provers.

• An LCF-style programmable proof checker

written in CAML Light, which also serves as

the interaction language.

• Supports classical higher order logic based on

polymorphic simply typed lambda-calculus.

• Extremely simple logical core: 10 basic logical

inference rules plus 2 definition mechanisms

and 3 axioms.

• More powerful proof procedures programmed

on top, inheriting their reliability from the

logical core. Fully programmable by the user.

• Well-developed mathematical theories

including basic real analysis.

HOL Light is available for download from:
http://www.cl.cam.ac.uk/users/jrh/hol-light

John Harrison Intel Corporation, 15 November 2000

Formal verification of floating point algorithms 12

Floating point verification

We’ve used HOL Light to verify the accuracy of

floating point algorithms (used in hardware and

software) for:

• Division and square root

• Transcendental function such as sin, exp,

atan.

This involves background work in formalizing:

• Real analysis

• Basic floating point arithmetic

John Harrison Intel Corporation, 15 November 2000

Formal verification of floating point algorithms 13

Context

Specific work reported here is for the Intel
ItaniumTM processor.

Similar work is underway on software libraries for

the Intel Pentium 4 processor.

Floating point algorithms for transcendental

functions are used for:

• Software libraries (C libm etc.)

• Implementing x86 hardware intrinsics

The level at which the algorithms are modelled is

similar in each case.

John Harrison Intel Corporation, 15 November 2000

Formal verification of floating point algorithms 14

Formalized real analysis

• Definitional construction of real numbers

• Basic topology

• General limit operations

• Sequences and series

• Limits of real functions

• Differentiation

• Power series and Taylor expansions

• Transcendental functions

• Gauge integration

John Harrison Intel Corporation, 15 November 2000

Formal verification of floating point algorithms 15

Examples of useful theorems

|- sin(x + y) =

sin(x) * cos(y) + cos(x) * sin(y)

|- tan(&n * pi) = &0

|- &0 < x /\ &0 < y

==> (ln(x / y) = ln(x) - ln(y))

|- f contl x /\ g contl (f x)

==> (g o f) contl x

|- (!x. a <= x /\ x <= b

==> (f diffl (f’ x)) x) /\

f(a) <= K /\ f(b) <= K /\

(!x. a <= x /\ x <= b /\ (f’(x) = &0)

==> f(x) <= K)

==> !x. a <= x /\ x <= b ==> f(x) <= K

John Harrison Intel Corporation, 15 November 2000

Formal verification of floating point algorithms 16

HOL floating point theory

Generic theory, applicable to all required formats

(hardware-supported or not).

A floating point format is identified by a triple of

natural numbers fmt.

The corresponding set of real numbers is

format(fmt), or ignoring the upper limit on the

exponent, iformat(fmt).

Floating point rounding returns a floating point

approximation to a real number, ignoring upper

exponent limits. More precisely

round fmt rc x

returns the appropriate member of iformat(fmt)

for an exact value x, depending on the rounding

mode rc, which may be one of Nearest, Down, Up

and Zero.

John Harrison Intel Corporation, 15 November 2000

Formal verification of floating point algorithms 17

The (1 + ǫ) property

Most routine floating point proofs just use results

like the following:

|- normalizes fmt x /\

~(precision fmt = 0)

==> ?e. abs(e) <= mu rc /

&2 pow (precision fmt - 1) /\

(round fmt rc x = x * (&1 + e))

Rounded result is true result perturbed by

relative error.

Derived rules apply this result to computations in

a floating point algorithm automatically,

discharging the conditions as they go.

John Harrison Intel Corporation, 15 November 2000

Formal verification of floating point algorithms 18

Cancellation theorems

Many algorithms also rely on a number of

low-level tricks.

Rounding is trivial when the value being rounded

is already representable exactly:

|- a IN iformat fmt ==> (round fmt rc a = a)

Some special situations where this happens are as

follows:

|- a IN iformat fmt /\ b IN iformat fmt /\

a / &2 <= b /\ b <= &2 * a

==> (b - a) IN iformat fmt

|- x IN iformat fmt /\

y IN iformat fmt /\

abs(x) <= abs(y)

==> (round fmt Nearest (x + y) - y)

IN iformat fmt /\

(round fmt Nearest (x + y) - (x + y))

IN iformat fmt

John Harrison Intel Corporation, 15 November 2000

Formal verification of floating point algorithms 19

Algebraic example: square root

Division and square root operations on the

Itanium processor are performed in software.

This offers a number of advantages, particularly

increased throughput.

Square root algorithms are constructed using two

kinds of instruction:

• The floating point reciprocal square root

approximation instruction, which given x

returns an 8-bit approximation to 1√
x
.

• The fused multiply-add instruction, which

computes xy + z with a single rounding error.

Typical algorithms refine the initial

approximation to an accurate square root using

Newton-Raphson iteration or power series

expansions.

John Harrison Intel Corporation, 15 November 2000

Formal verification of floating point algorithms 20

A square root algorithm

1. y0 = 1√
a
(1 + ǫ) f(p)rsqrta

b = 1
2a Single

2. z0 = y2
0 Single

S0 = ay0 Single

3. d = 1
2 − bz0 Single

k = ay0 − S0 Single

H0 = 1
2y0 Single

4. e = 1 + 3
2d Single

T0 = dS0 + k Single

5. S1 = S0 + eT0 Single

c = 1 + de Single

6. d1 = a − S1S1 Single

H1 = cH0 Single

7. S = S1 + d1H1 Single

John Harrison Intel Corporation, 15 November 2000

Formal verification of floating point algorithms 21

Condition for perfect rounding

We prove perfect rounding using a formalization

of a technique described here:

http://developer.intel.com/technology/itj/q21998/articles/art_3.htm

A sufficient condition for perfect rounding is that

the closest floating point number to
√

a is also the

closest to S∗. That is, the two real numbers
√

a

and S∗ never fall on opposite sides of a midpoint

between two floating point numbers.

In the following diagram this is not true;
√

a

would round to the number below it, but S∗ to

the number above it.

-
66√

a S∗

How can we prove this?

John Harrison Intel Corporation, 15 November 2000

Formal verification of floating point algorithms 22

Exclusion zones

It would suffice if we knew for any midpoint m

that:

|
√

a − S∗| < |
√

a − m|
In that case

√
a and S∗ cannot lie on opposite

sides of m. Here is the formal theorem in HOL:

|- ¬(precision fmt = 0) ∧
(∀m. m IN midpoints fmt

⇒ abs(x - y) < abs(x - m))

⇒ (round fmt Nearest x =

round fmt Nearest y)

And this is possible to prove, because in fact

every midpoint m is surrounded by an ‘exclusion

zone’ of width δm > 0 within which the square

root of a floating point number cannot occur.

However, this δ can be quite small, considered as

a relative error. If the floating point format has

precision p, then we can have δm ≈ |m|/22p+2.

John Harrison Intel Corporation, 15 November 2000

Formal verification of floating point algorithms 23

Difficult cases

To ensure correct rounding, we need to make the

final approximation before the last rounding

accurate to more than twice the final accuracy.

In fact, even using the fused multiply-add it is not

quite that accurate.

However, only a fairly small number of possible

inputs a can come closer than say 2−(2p−1).

We can then use number-theoretic reasoning to

isolate the additional cases we need to consider,

then simply try them!

The critical cases can be found by solving

diophantine equations of the form:

2qm = k2 + d

to give the mantissa m. In HOL, the solutions

can be generated and checked automatically,

thanks to HOL’s programmability.

John Harrison Intel Corporation, 15 November 2000

Formal verification of floating point algorithms 24

Transcendental example: tangent

Works essentially as follows.

• The input number X is first reduced to r

with approximately |r| ≤ π/4 such that

X = r + Nπ/2 for some integer N . We now

need to calculate ±tan(r) or ±cot(r)

depending on N modulo 4.

• If the reduced argument r is still not small

enough, it is separated into its leading few

bits B and the trailing part x = r − B, and

the overall result computed from tan(x) and

pre-stored functions of B, e.g.

tan(B + x) = tan(B) +

1
sin(B)cos(B) tan(x)

cot(B) − tan(x)

• Now a power series approximation is used for

tan(r), cot(r) or tan(x) as appropriate.

John Harrison Intel Corporation, 15 November 2000

Formal verification of floating point algorithms 25

Overview of the verification

To verify this algorithm, we need to prove:

• The range reduction to obtain r is done

accurately.

• The mathematical facts used to reconstruct

the result from components are applicable.

• The pre-stored constants such as tan(B) are

sufficiently accurate.

• The power series approximation does not

introduce too much error in approximation.

• The rounding errors involved in computing

with floating point arithmetic are within

bounds.

Most of these parts are non-trivial. Moreover,

some of them require more pure mathematics

than might be expected.

John Harrison Intel Corporation, 15 November 2000

Formal verification of floating point algorithms 26

Why mathematics?

Controlling the error in range reduction becomes

difficult when the reduced argument X − Nπ/2 is

small.

To check that the computation is accurate

enough, we need to know:

How close can a floating point number be

to an integer multiple of π/2?

Even deriving the power series (for x 6= 0):

cot(x) = 1/x − 1

3
x − 1

45
x3 − 2

945
x5 − . . .

is much harder than you might expect.

John Harrison Intel Corporation, 15 November 2000

Formal verification of floating point algorithms 27

Conclusions

• Formal verification of mathematical software

is industrially important, and can be attacked

with current theorem proving technology.

• A large part of the work involves building up

general theories about both pure mathematics

and special properties of floating point

numbers.

• Programmability is critical to automate

special procedures like solving diophantine

equations, bounding copound errors etc.

• Using HOL Light, we can confidently

integrate all the different aspects of the proof

from pure mathematics to testing particular

arguments.

John Harrison Intel Corporation, 15 November 2000

