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What is automated reasoning?

Attempting to perform logical reasoning in an automatic and
algorithmic way. An old dream!

I Hobbes (1651): “Reason . . . is nothing but reckoning (that is,
adding and subtracting) of the consequences of general names
agreed upon, for the marking and signifying of our thoughts.”

I Leibniz (1685) “When there are disputes among persons, we
can simply say: Let us calculate [calculemus], without further
ado, to see who is right.”

Nowadays, by ‘automatic and algorithmic’ we mean ‘using a
computer program’.
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What does automated reasoning involve?

There are two steps to performing automated reasoning, as
anticipated by Leibniz:

I Express statement of theorems in a formal language.
(Leibniz’s characteristica universalis.)

I Use automated algorithmic manipulations on those formal
expressions. (Leibniz’s calculus ratiocinator).
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Theoretical and practical limitations

I Limitative results in logic (Gödel, Tarski, Church-Turing,
Matiyasevich) imply that not even elementary number theory
can be done completely automatically.

I There are formal proof systems (e.g. first-order set theory)
and semi-decision procedures that will in principle find the
proof of anything provable in ‘ordinary’ mathematics.

I In practice, because of time or space limits, these automated
procedures are often not useful, and we may prefer either

I Attempts to mimic human intelligence
I An interactive ‘proof assistant’ guided by a human
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Why automated reasoning?

For general intellectual interest? It is a fascinating field that helps
to understand the real nature of mathematical creativity. Or more
practically:

I To check the correctness of proofs in mathematics,
supplementing or even replacing the existing ‘social process’ of
peer review etc. with a more objective criterion.

I To extend rigorous proof from pure mathematics to the
verification of computer systems (programs, hardware
systems, protocols etc.), supplementing or replacing the usual
testing process.



Why automated reasoning?

For general intellectual interest? It is a fascinating field that helps
to understand the real nature of mathematical creativity. Or more
practically:

I To check the correctness of proofs in mathematics,
supplementing or even replacing the existing ‘social process’ of
peer review etc. with a more objective criterion.

I To extend rigorous proof from pure mathematics to the
verification of computer systems (programs, hardware
systems, protocols etc.), supplementing or replacing the usual
testing process.



Why automated reasoning?

For general intellectual interest? It is a fascinating field that helps
to understand the real nature of mathematical creativity. Or more
practically:

I To check the correctness of proofs in mathematics,
supplementing or even replacing the existing ‘social process’ of
peer review etc. with a more objective criterion.

I To extend rigorous proof from pure mathematics to the
verification of computer systems (programs, hardware
systems, protocols etc.), supplementing or replacing the usual
testing process.



Just to fix notation

English Our notation Other common notations

false ⊥ 0, F
true > 1, T
not p ¬p p, −p, ∼ p
p and q p ∧ q pq, p&q, p · q
p or q p ∨ q p + q, p | q, p or q
p implies q p ⇒ q p ≤ q, p → q, p ⊃ q
p iff q p ⇔ q p = q, p ≡ q, p ∼ q
for all x , p ∀x . p (∀x)p, (x)p
there exists x such that p ∃x . p (∃x)p, (Ex)p



For more details

An introductory survey of many central results in automated
reasoning, together with actual OCaml model implementations
http://www.cl.cam.ac.uk/~jrh13/atp/index.html

http://www.cl.cam.ac.uk/~jrh13/atp/index.html


Early history and taxonomy



Early research in automated reasoning

Most early theorem provers were fully automatic, with two main
styles:

I Human-oriented AI style approaches (Newell-Simon,
Gelerntner)

I Machine-oriented algorithmic approaches (Davis, Gilmore,
Wang, Prawitz)

Modern work is dominated by machine-oriented approach but there
have been some successes for the AI approach.
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A theorem in geometry (1)

Example of AI approach in action:
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B C
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If the sides AB and AC are equal (i.e. the triangle is isosceles),
then the angles ABC and ACB are equal.



A theorem in geometry (2)

Pick bisector D of the line BC :

A

B CD
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and then use the fact that the triangles ABD and ACD are
congruent.



A theorem in geometry (3)

Originally found by Pappus but not in many books:

A

B C
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Simply, the triangles ABC and ACB are congruent.



The Robbins Conjecture (1)

Huntington (1933) presented the following axioms for a Boolean
algebra:

x + y = y + x

(x + y) + z = x + (y + z)

n(n(x) + y) + n(n(x) + n(y)) = x

Herbert Robbins conjectured that the Huntington equation can be
replaced by a simpler one:

n(n(x + y) + n(x + n(y))) = x



The Robbins Conjecture (2)

This conjecture went unproved for more than 50 years, despite
being studied by many mathematicians, even including Tarski.
It because a popular target for researchers in automated reasoning.

In October 1996, a (key lemma leading to) a proof was found by
McCune’s program EQP.
The successful search took about 8 days on an RS/6000 processor
and used about 30 megabytes of memory.
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The scope of automation



What can be automated?

I Validity/satisfiability in propositional logic is decidable (SAT).

I Validity/satisfiability in many temporal logics is decidable.

I Validity in first-order logic is semidecidable, i.e. there are
complete proof procedures that may run forever on invalid
formulas

I Validity in higher-order logic is not even semidecidable (or
anywhere in the arithmetical hierarchy).
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Some specific theories

People usually use extensive background in set theory, arithmetic,
algebra or geometry. How does that affect decidability?

I Linear theory of N or Z is decidable. Nonlinear theory not
even semidecidable.

I Linear and nonlinear theory of R is decidable, though
complexity is very bad in the nonlinear case.

I Linear and nonlinear theory of C is decidable. Commonly used
in geometry.

Many of these naturally generalize known algorithms like
linear/integer programming and Sturm’s theorem.
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Quantifier elimination

Many decision methods based on quantifier elimination, e.g.

I C |= (∃x . x2 + 1 = 0)⇔ >
I R |= (∃x . ax2 + bx + c = 0)⇔ a 6= 0 ∧ b2 ≥ 4ac ∨ a =

0 ∧ (b 6= 0 ∨ c = 0)

If we can decide variable-free formulas, quantifier elimination
implies completeness.



The Big Four

Arguably these are the most important of the traditional
automated theorem provers:

I Propositional satisfiability / tautology checking (SAT), e.g.
MiniSAT, zchaff.

I First-order logic (resolution, tableaux, model elimination . . . ),
e.g. Vampire, prover9, Spass.

I Equational reasoning (Knuth-Bendix completion etc.), e.g.
Waldmeister.

I Combined decision procedures (SMT), e.g. Z3, MathSat.

There are also many more specialized symbolic algorithms, some of
which can produce proofs or other certificates.
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SAT

Traditionally, propositional logic has been regarded as fairly boring.

I There are severe limitations to what can be said with
propositional logic.

I Propositional logic is trivially decidable in theory.

I Propositional satisfiability (SAT) is the original NP-complete
problem, so seems intractable in practice.

However, modern fast algorithms (distantly descended from the
Davis-Putnam algorithm from the 60s) are surprisingly effective on
big problems.
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FOL and equational reasoning

Two major threads in theorem proving research, especially in the
60s and 70s:

I First-order proof search using a variety of algorithms
(tableaux, resolution / inverse method, model elimination,
. . . )

I Optimized treatment of equations based on rewriting and
orderings (Knuth-Bendix completion, demodulation,
paramodulation etc.)

Many first-order algorithms and their implementations blend the
key ideas from both threads (e.g. superposition).
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FOL example

This is  Loś’s well-known ‘non-obvious’ fact:

(∀x y z . P(x , y) ∧ P(y , z)⇒ P(x , z)) ∧
(∀x y z . Q(x , y) ∧ Q(y , z)⇒ Q(x , z)) ∧
(∀x y . Q(x , y)⇒ Q(y , x)) ∧
(∀x y . P(x , y) ∨ Q(x , y))
⇒ (∀x y . P(x , y)) ∨ (∀x y . Q(x , y))

Most people take more time to solve this than automated
first-order provers.



Equational logic examples

A simple group theory exercise,

(∀x y z . x · (y · z) = (x · y) · z))∧
(∀x . 1 · x = x)∧
(∀x . inv(x) · x = 1)
⇒ inv(inv(x)) = x

The conceptual core of the Eckmann-Hilton argument that certain
homotopy groups are abelian:

(∀x . 1 · x = x)∧
(∀x . x · 1 = x)∧
(∀x . 1 + x = x)∧
(∀x . x + 1 = x)∧
(∀w x y z . (w · x) + (y · z) = (w + y) · (x + z))
⇒ ∀x y . x · y = x + y



Equational logic examples

A simple group theory exercise,

(∀x y z . x · (y · z) = (x · y) · z))∧
(∀x . 1 · x = x)∧
(∀x . inv(x) · x = 1)
⇒ inv(inv(x)) = x

The conceptual core of the Eckmann-Hilton argument that certain
homotopy groups are abelian:

(∀x . 1 · x = x)∧
(∀x . x · 1 = x)∧
(∀x . 1 + x = x)∧
(∀x . x + 1 = x)∧
(∀w x y z . (w · x) + (y · z) = (w + y) · (x + z))
⇒ ∀x y . x · y = x + y



SMT

Two major threads of development of combined decision
procedures for ‘quantifier-free’ (purely universal) FOL together
with additional theories like linear arithmetic.

I Nelson-Oppen

I Shostak

Both were used in some early theorem provers and program
verification systems and some of the key ideas are still used today.
Modern systems are usually based on SAT as the core, hence
‘satisfiability modulo theories’ (SMT).
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SMT examples

SMT systems can handle purely equational reasoning (without
embedded quantifiers)

f (f (f (f (f (x))))) = x ∧ f (f (f (x))) = x ⇒ f (x) = x

or with arithmetic theories too:

f (v − 1)− 1 = v + 1 ∧ f (u) + 1 = u − 1 ∧ u + 1 = v ⇒ ⊥
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Quantifiers and theories?

We could attack a much wider range of problems with both
quantifier and theory reasoning together. However, almost all such
combinations immediately enter the realm of the undecidable.

For example, using linear integer arithmetic with one function
symbol, when we can characterize squaring:

(∀n.f (−n) = f (n))∧f (0) = 0∧(∀n.0 ≤ n⇒ f (n+1) = f (n)+n+n+1)

and then multiplication by

m = n · p ⇔ (n + p)2 = n2 + p2 + 2m

There are special cases that work (e.g. based on type structure),
and many SMT systems have incomplete heuristics for quantifiers.
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Interactive theorem proving (1)

In practice, most interesting problems can’t be automated
completely:

I They don’t fall in a practical decidable subset

I Pure first order proof search is not a feasible approach with,
e.g. set theory

In practice, we need an interactive arrangement, where the user
and machine work together.
The user can delegate simple subtasks to pure first order proof
search or one of the decidable subsets.
However, at the high level, the user must guide the prover.
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Interactive theorem proving (2)

The idea of a more ‘interactive’ approach was already anticipated
by pioneers, e.g. Wang (1960):

[...] the writer believes that perhaps machines may more
quickly become of practical use in mathematical research,
not by proving new theorems, but by formalizing and
checking outlines of proofs, say, from textbooks to
detailed formalizations more rigorous that Principia
[Mathematica], from technical papers to textbooks, or
from abstracts to technical papers.

However, constructing an effective and programmable combination
is not so easy.



SAM

First successful family of interactive provers were the SAM systems:

Semi-automated mathematics is an approach to
theorem-proving which seeks to combine automatic logic
routines with ordinary proof procedures in such a manner
that the resulting procedure is both efficient and subject
to human intervention in the form of control and
guidance. Because it makes the mathematician an
essential factor in the quest to establish theorems, this
approach is a departure from the usual theorem-proving
attempts in which the computer unaided seeks to
establish proofs.

SAM V was used to settle an open problem in lattice theory.



Three influential proof checkers

I AUTOMATH (de Bruijn, . . . ) — Implementation of type
theory, used to check non-trivial mathematics such as
Landau’s Grundlagen

I Mizar (Trybulec, . . . ) — Block-structured natural deduction
with ‘declarative’ justifications, used to formalize large body
of mathematics

I LCF (Milner et al) — Programmable proof checker for Scott’s
Logic of Computable Functions written in new functional
language ML.

Ideas from all these systems are used in present-day systems.
(Corbineau’s declarative proof mode for Coq . . . )
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Who checks the checker?

Why should we believe that a formally checked proof is more
reliable than a hand proof or one supported by ad-hoc programs?

I What if the underlying logic is inconsistent? Many notable
logicians (Frege, Curry, Martin-Löf, . . . ) have proposed
systems that turned out to be inconsistent.

I What if the inference rules of the logic are specified
incorrectly? It’s easy and common to make mistakes
connected with variable capture.

I What if the proof checker has a bug? They are often large
and complex pieces of software not developed to high
standards of rigour
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Prover architecture

The reliability of a theorem prover increases dramatically if its
correctness depends only on a small amount of code.

I de Bruijn approach — generate proofs that can be certified by
a simple, separate checker.

I LCF approach — reduce all rules to sequences of primitive
inferences implemented by a small logical kernel.

The checker or kernel can be much simpler than the prover as a
whole.
Nothing is ever certain, but we can potentially achieve very high
levels of reliability in this way.
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Key ideas behind LCF

I Implement in a strongly-typed functional programming
language (usually a variant of ML)

I Make thm (‘theorem’) an abstract data type with only simple
primitive inference rules

I Make the implementation language available for arbitrary
extensions.



Proof styles

Directly invoking the primitive or derived rules tends to give proofs
that are procedural.
A declarative style (what is to be proved, not how) can be nicer:

I Easier to write and understand independent of the prover

I Easier to modify

I Less tied to the details of the prover, hence more portable

Mizar pioneered the declarative style of proof.
Recently, several other declarative proof languages have been
developed, as well as declarative shells round existing systems like
HOL and Isabelle.
Finding the right style is an interesting research topic.



Procedural proof example

let NSQRT_2 = prove

(‘!p q. p * p = 2 * q * q ==> q = 0‘,

MATCH_MP_TAC num_WF THEN REWRITE_TAC[RIGHT_IMP_FORALL_THM] THEN

REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o AP_TERM ‘EVEN‘) THEN

REWRITE_TAC[EVEN_MULT; ARITH] THEN REWRITE_TAC[EVEN_EXISTS] THEN

DISCH_THEN(X_CHOOSE_THEN ‘m:num‘ SUBST_ALL_TAC) THEN

FIRST_X_ASSUM(MP_TAC o SPECL [‘q:num‘; ‘m:num‘]) THEN

ASM_REWRITE_TAC[ARITH_RULE

‘q < 2 * m ==> q * q = 2 * m * m ==> m = 0 <=>

(2 * m) * 2 * m = 2 * q * q ==> 2 * m <= q‘] THEN

ASM_MESON_TAC[LE_MULT2; MULT_EQ_0; ARITH_RULE ‘2 * x <= x <=> x = 0‘]);;



Declarative proof example

let NSQRT_2 = prove

(‘!p q. p * p = 2 * q * q ==> q = 0‘,

suffices_to_prove

‘!p. (!m. m < p ==> (!q. m * m = 2 * q * q ==> q = 0))

==> (!q. p * p = 2 * q * q ==> q = 0)‘

(wellfounded_induction) THEN

fix [‘p:num‘] THEN

assume("A") ‘!m. m < p ==> !q. m * m = 2 * q * q ==> q = 0‘ THEN

fix [‘q:num‘] THEN

assume("B") ‘p * p = 2 * q * q‘ THEN

so have ‘EVEN(p * p) <=> EVEN(2 * q * q)‘ (trivial) THEN

so have ‘EVEN(p)‘ (using [ARITH; EVEN_MULT] trivial) THEN

so consider (‘m:num‘,"C",‘p = 2 * m‘) (using [EVEN_EXISTS] trivial) THEN

cases ("D",‘q < p \/ p <= q‘) (arithmetic) THENL

[so have ‘q * q = 2 * m * m ==> m = 0‘ (by ["A"] trivial) THEN

so we’re finished (by ["B"; "C"] algebra);

so have ‘p * p <= q * q‘ (using [LE_MULT2] trivial) THEN

so have ‘q * q = 0‘ (by ["B"] arithmetic) THEN

so we’re finished (algebra)]);;



The Seventeen Provers of the World (1)

I ACL2 — Highly automated prover for first-order number
theory without explicit quantifiers, able to do induction proofs
itself.

I Alfa/Agda — Prover for constructive type theory integrated
with dependently typed programming language.

I B prover — Prover for first-order set theory designed to
support verification and refinement of programs.

I Coq — LCF-like prover for constructive Calculus of
Constructions with reflective programming language.

I HOL (HOL Light, HOL4, ProofPower) — Seminal LCF-style
prover for classical simply typed higher-order logic.

I IMPS — Interactive prover for an expressive logic supporting
partially defined functions.



The Seventeen Provers of the World (2)

I Isabelle/Isar — Generic prover in LCF style with a newer
declarative proof style influenced by Mizar.

I Lego — Well-established framework for proof in constructive
type theory, with a similar logic to Coq.

I Metamath — Fast proof checker for an exceptionally simple
axiomatization of standard ZF set theory.

I Minlog — Prover for minimal logic supporting practical
extraction of programs from proofs.

I Mizar — Pioneering system for formalizing mathematics,
originating the declarative style of proof.

I Nuprl/MetaPRL — LCF-style prover with powerful graphical
interface for Martin-Löf type theory with new constructs.



The Seventeen Provers of the World (3)

I Omega — Unified combination in modular style of several
theorem-proving techniques including proof planning.

I Otter/IVY — Powerful automated theorem prover for pure
first-order logic plus a proof checker.

I PVS — Prover designed for applications with an expressive
classical type theory and powerful automation.

I PhoX — prover for higher-order logic designed to be relatively
simple to use in comparison with Coq, HOL etc.

I Theorema — Ambitious integrated framework for theorem
proving and computer algebra built inside Mathematica.

For more, see Freek Wiedijk, The Seventeen Provers of the World,
Springer Lecture Notes in Computer Science vol. 3600, 2006.



Conclusions

I Automated reasoning as a general idea is an old dream, which
is finally being realized, at least to the extent it is possible.

I Traditional automated methods have their limitations, but
many of these tools are remarkably powerful.

I There is a rich and diverse group of interactive proof
assistants, which are integrating many automated tools in a
sound way, and being used for a variety of applications.
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