
Formal Verification at Intel

John Harrison
Intel Corporation

LICS 2003
Ottawa

22nd June 2003

0

The human cost of bugs

Computers are often used in safety-critical systems where a failure
could cause loss of life.

� Heart pacemakers

� Aircraft

� Nuclear reactor controllers

� Car engine management systems

� Radiation therapy machines

� Telephone exchanges (!)

� ...

1

Financial cost of bugs

Even when not a matter of life and death, bugs can be financially
serious if a faulty product has to be recalled or replaced.

� 1994 FDIV bug in the IntelPentium processor: US $500
million.

� Today, new products are ramped much faster...

So Intel is especially interested in all techniques to reduce errors.

2

Complexity of designs

At the same time, market pressures are leading to more and more
complex designs where bugs are more likely.

� A 4-fold increase in bugs in Intel processor designs per
generation.

� Approximately 8000 bugs introduced during design of the
Pentium 4.

Fortunately, pre-silicon detection rates are now very close to � � � � .

Just enough to tread water...

3

Limits of testing

Bugs are usually detected by extensive testing, including pre-silicon
simulation.

� Slow — especially pre-silicon

� Too many possibilities to test them all

For example:

� � � �� possible pairs of floating point numbers (possible inputs to
an adder).

� Vastly higher number of possible states of a complex
microarchitecture.

4

Formal verification

Formal verification: mathematically prove the correctness of a design
with respect to a mathematical formal specification.

Actual system

Design model

Formal specification

Actual requirements

�
�

�

5

Analogy with mathematics

Sometimes even a huge weight of empirical evidence can be
misleading.

� � ��� � � number of primes � �

� �� �� � � 	

� ��
 �� �� �

Littlewood proved in 1914 that � �� ��� �� �� � changes sign infinitely
often.

No change of sign at all had ever been found despite testing up to

� � � �
�� (in the days before computers).

Similarly, extensive testing of hardware or software may still miss
errors that would be revealed by a formal proof.

6

Formal verification in industry

Formal verification is increasingly becoming standard practice in the
hardware industry. It is much less used in the software industry
outside safety-critical niches.

Why the difference?

� Hardware is designed in a more modular way than most
software.

� There is more scope for complete automation

� The potential consequences of a hardware error are greater

7

Formal verification methods

Many different methods are used in formal verification, mostly trading
efficiency and automation against generality.

� Propositional tautology checking

� Symbolic simulation

� Symbolic trajectory evaluation

� Temporal logic model checking

� Decidable subsets of first order logic

� First order automated theorem proving

� Interactive theorem proving

8

Our work

Here we will focus on general interactive theorem proving.

We have formally verified correctness of various floating-point
algorithms for functions including:

� Division

� Square root

� Transcendental functions (�� � , � � � etc.)

The verifications are conducted using the HOL Light theorem prover.

9

HOL Light overview

HOL Light is a member of the HOL family of provers, descended
from Mike Gordon’s original HOL system developed in the 80s.

An LCF-style proof checker for classical higher-order logic built on
top of (polymorphic) simply-typed � -calculus.

HOL Light is designed to have a simple and clean logical foundation.

Versions written in CAML Light and Objective CAML.

10

Pushing the LCF approach to its limits

The main features of the LCF approach to theorem proving are:

� Reduce all proofs to a small number of relatively simple primitive
rules

� Use the programmability of the implementation/interaction
language to make this practical

Our work may represent the most “extreme” application of this
philosophy.

� HOL Light’s primitive rules are very simple.

� Some of the proofs expand to about 100 million primitive
inferences and can take many hours to check.

It is interesting to consider the scope of the LCF approach.

11

HOL Light primitive rules (1)

� � � � �� ��

� � � � � � � � � �

� � � � � � � 	 �
 � �

� � � � � � � � �

� � � � � �� � � � �
 �
�� �� ��

� � � � �

� � � �� � � � � � �� � � �

 � �

� � �� � � �� � �
� � 	

12

HOL Light primitive rules (2)

�� � � �

 � �� � �

� � � � � � � �

� � � � �

� � ��

� � � � � �

� � � � � � � � � � � �� � � � � � �
� � � � � 	
 � 	� �	 � � � � �

13

HOL Light primitive rules (3)

� �� � � � � � ��
 � � � �� � � � � � ��
 �

� � � � � � � � � �
 � � � � � � � � � � � �
 �
� � � 	

� � � � � � � � � �
 � � � � � � � � � � � �
 �

� �� � � � � � � �
 � � � �� � � � � � � �
 �
� � � 	 	 	 � �

Together with two definitional principles:

� for new constants equal to an existing term

� and new types in bijection with a nonempty set

14

Some of HOL Light’s derived rules
� Simplifier for (conditional, contextual) rewriting.

� Tactic mechanism for mixed forward and backward proofs.

� Tautology checker.

� Automated theorem provers for pure logic, based on tableaux
and model elimination.

� Tools for definition of (infinitary, mutually) inductive relations.

� Tools for definition of (mutually) recursive datatypes

� Linear arithmetic decision procedures over � ,� and � .

� Differentiator for real functions.

15

Our HOL Light proofs

The mathematics we formalize is mostly:

� Elementary number theory and real analysis

� Floating-point numbers, results about rounding etc.

As part of the process, various special proof procedures for
particular problems were programmed, e.g.

� Verifying solution set of some quadratic congruences

� Proving primality of particular numbers

� Proving bounds on rational approximations

� Verifying errors in polynomial approximations

16

LCF-style derived rules

How can we take a standard algorithm and produce a corresponding
LCF-style derived rule? Usually some mixture of the following:

� Mimic each step of the algorithm, producing a theorem at each
stage.

Example: implement rewriting as a ‘conversion’ producing an
equational theorem (� � � � � � � � � � � etc.)

� Produce some ‘certificate’ and generate a formal proof in the
checking process.

Example: run some highly tuned first-order proof search and
translate the proof eventually found.

Second is also useful in connection with proof-carrying code.

17

Example 1: polynomial approximation errors

Many transcendental functions are ultimately approximated by
polynomials.

This usually follows some initial reduction step to ensure that the
argument is in a small range, say� � ��� ��� � .

The minimax polynomials used have coefficients found numerically
to minimize the maximum error over the interval.

In the formal proof, we need to prove that this is indeed the maximum
error, say � � � ��� ��� � � � � � � �� ��� � �� � � � � ��� �	

�� � .

By using a Taylor series with much higher degree, we can reduce the
problem to bounding a pure polynomial with rational coefficients over
an interval.

18

Bounding functions

If a function � differentiable for � � � � � has the property that

� �� � � � at all points of zero derivative, as well as at� � � and

� � � , then � �� � � � everywhere.

|- (� x. a <= x � x <= b � (f diffl (f’ x)) x) �

f(a) <= K � f(b) <= K �
(� x. a <= x � x <= b � (f’(x) = &0)

� f(x) <= K)

� (� x. a <= x � x <= b � f(x) <= K)

Hence we want to be able to isolate zeros of the derivative (which is
just another polynomial).

19

Isolating derivatives

For any differentiable function � , � �� � can be zero only at one point
between zeros of the derivative ��� �� � .

More precisely, if �
� �� � �� � for � � � � � then if � � � � � �� �� � there

are no points of � � � � � with � �� � � � :

|- (� x. a <= x � x <= b � (f diffl f’(x))(x)) �

(� x. a < x � x < b � � (f’(x) = &0)) �

f(a) * f(b) >= &0

� � x. a < x � x < b � � (f(x) = &0)

20

Bounding and root isolation

This gives rise to a recursive procedure for bounding a polynomial
and isolating its zeros, by successive differentiation.

|- (� x. a <= x � x <= b � (f diffl (f’ x)) x) �

(� x. a <= x � x <= b � (f’ diffl (f’’ x)) x) �

(� x. a <= x � x <= b � abs(f’’(x)) <= K) �

a <= c � c <= x � x <= d � d <= b � (f’(x) = &0)

� abs(f(x)) <= abs(f(d)) + (K / &2) * (d - c) pow 2

At each stage we actually produce HOL theorems asserting bounds
and the enclosure properties of the isolating intervals.

21

Example 2: Difficult cases for reciprocals

Some algorithms for floating-point division, �
 � , can be optimized for
the special case of reciprocals (� � �).

A direct analytic proof of the optimized algorithm is sometimes too
hard because of the intricacies of rounding.

However, an analytic proof works for all but the ‘difficult cases’.

��

�
�

These are floating-point numbers whose reciprocal is very close to
another one, or a midpoint, making them trickier to round correctly.

22

Mixed analytical-combinatorial proofs

By finding a suitable set of ‘diffifult cases’, one can produce a proof
by a mixture of analytical reasoning and explicit checking.

� Find the set of difficult cases �

� Prove the algorithm analytically for all� �� �

� Prove the algorithm by explicit case analysis for� � �

Quite similar to some standard proofs in mathematics, e.g.
Bertrand’s conjecture.

23

Finding difficult cases with factorization

After scaling to eliminate the exponents, finding difficult cases
reduces to a straightforward number-theoretic problem.

A key component is producing the prime factorization of an integer
and proving that the factors are indeed prime.

In typical applications, the numbers can be � � – � � � bits long, so naive
approaches based on testing all potential factors are infeasible.

The primality prover is embedded in a HOL derived rule
PRIME CONV that maps a numeral to a theorem asserting its
primality or compositeness.

24

Certifying primality

We generate a ‘certificate of primality’ based on Pocklington’s
theorem:

|- 2 � n �

(n - 1 = q * r) �
n � q EXP 2 �

(a EXP (n - 1) == 1) (mod n) �

(� p. prime(p) � p divides q

� coprime(a EXP ((n - 1) DIV p) - 1,n))

� prime(n)

The certificate is generated ‘extra-logically’, using the factorizations
produced by PARI/GP.

The certificate is then checked by formal proof, using the above
theorem.

25

Conclusions

Some general conclusions about formal verification:

� Formal verification is increasingly important in the hardware
industry

� Some applications require general theorem proving

� LCF-style systems like HOL Light allow us to program various
symbolic algorithms as reductions to primitive inferences

It seems interesting to analyze common numerical and symbolic
algorithms to see how practical it is to modify them to produce formal
proofs.

26

