
Verifying Nonlinear Real Formulas
via Sums of Squares

John Harrison
Intel Corporation

TPHOLs, Kaiserslautern

Thu 13th September 2007 (11:30 – 12:00)

0



Proving nonnegativity of polynomials

We want to prove a polynomial is positive semidefinite (PSD):

∀x. p(x) ≥ 0
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Proving nonnegativity of polynomials

We want to prove a polynomial is positive semidefinite (PSD):

∀x. p(x) ≥ 0

For a simple example:

x2 − 2x + 1 ≥ 0
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Proving nonnegativity of polynomials

We want to prove a polynomial is positive semidefinite (PSD):

∀x. p(x) ≥ 0

For a simple example:

x2 − 2x + 1 = (x − 1)2 ≥ 0

it’s a perfect square.
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A more complicated example

23x2 + 6xy + 3y2 − 20x + 5 ≥ 0
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A more complicated example

23x2 + 6xy + 3y2 − 20x + 5 = 5 · (2x − 1)2 + 3 · (x + y)2 ≥ 0
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A more complicated example

23x2 + 6xy + 3y2 − 20x + 5 = 5 · (2x − 1)2 + 3 · (x + y)2 ≥ 0

23x2 + 6xy + 3y2 − 20x + 5 = 1
23 (23x + 3y − 10)2 + 15

23 (2y + 1)2 ≥ 0
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A more complicated example

23x2 + 6xy + 3y2 − 20x + 5 = 5 · (2x − 1)2 + 3 · (x + y)2 ≥ 0

23x2 + 6xy + 3y2 − 20x + 5 = 1
23 (23x + 3y − 10)2 + 15

23 (2y + 1)2 ≥ 0

We have found sum of squares (SOS) decompositions, which suffice
to prove nonnegativity.
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From Zeng et al, JSC vol 37, 2004, p83-99

w6 + 2z2w3 + x4 + y4 + z4 + 2x2w + 2x2z+

3x2 + w2 + 2zw + z2 + 2z + 2w + 1 ≥ 0

8



From Zeng et al, JSC vol 37, 2004, p83-99

w6 + 2z2w3 + x4 + y4 + z4 + 2x2w + 2x2z+

3x2 + w2 + 2zw + z2 + 2z + 2w + 1 =

(y2)2 + (x2 + w + z + 1)2 + x2 + (w3 + z2)2 ≥ 0
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Pros and cons

• Provides simple certificate for a theorem prover (or person) to
verify

But:

• Polynomial nonnegativity is a rather special problem

• SOS decomposition may not exist even if the polynomial is PSD

• Not easy to find the SOS decomposition even if it does exist
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Not quite so special

Nonnegativity over an interval

∀x. 0 ≤ x ≤ 1 ⇒ p(x) ≥ 0
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Not quite so special

Nonnegativity over an interval

∀x. 0 ≤ x ≤ 1 ⇒ p(x) ≥ 0

can be reduced to

∀x. p(x2/(1 + x2)) ≥ 0

and then clear denominators by multiplying through by (1 + x2)∂(p).
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Not quite so special

Nonnegativity over an interval

∀x. 0 ≤ x ≤ 1 ⇒ p(x) ≥ 0

can be reduced to

∀x. p(x2/(1 + x2)) ≥ 0

and then clear denominators by multiplying through by (1 + x2)∂(p).

A more complete answer to this problem is coming up . . .
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Insufficiency of Sum-of-squares

In general, a PSD polynomial may not have a SOS decomposition,
e.g. the Motzkin form 1 + x4y2 + x2y4 − 3x2y2.
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Insufficiency of Sum-of-squares

In general, a PSD polynomial may not have a SOS decomposition,
e.g. the Motzkin form 1 + x4y2 + x2y4 − 3x2y2.

By Artin’s positive solution of Hilbert’s 17th problem, a PSD
polynomial is always a sum of rational squares, e.g.

1 + x4y2 + x2y4 − 3x2y2 =
(

x2y(x2+y2
−2)

x2+y2

)2

+
(

xy2(x2+y2
−2)

x2+y2

)2

+
(

xy(x2+y2
−2)

x2+y2

)2

+
(

x2
−y2

x2+y2

)2
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Insufficiency of Sum-of-squares

In general, a PSD polynomial may not have a SOS decomposition,
e.g. the Motzkin form 1 + x4y2 + x2y4 − 3x2y2.

By Artin’s positive solution of Hilbert’s 17th problem, a PSD
polynomial is always a sum of rational squares, e.g.

1 + x4y2 + x2y4 − 3x2y2 =
(

x2y(x2+y2
−2)

x2+y2

)2

+
(

xy2(x2+y2
−2)

x2+y2

)2

+
(

xy(x2+y2
−2)

x2+y2

)2

+
(

x2
−y2

x2+y2

)2

However, no good algorithm is known for finding these
decompositions, and the known bounds are spectacularly bad.
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Sufficiency of sum-of-squares

PSD and SOS are equivalent in several special cases, the most
important being

• Univariate polynomials of any degree

• Quadratic forms (all terms have degree exactly 2) in any number
of variables (‘complete the square’)

Moreover, one can base complete approaches on various
“Positivstellensatz” results that also depend essentially on sums of
squares.

17



The usual Nullstellensatz

Over algebraically closed fields like C we have a nice simple
equivalence.

The polynomial equations p1(x) = 0, . . . , pk(x) = 0 in an
algebraically closed field have no common solution iff there are
polynomials q1(x), . . . , qk(x) such that the following polynomial
identity holds:

q1(x) · p1(x) + · · · + qk(x) · pk(x) = 1

Thus we can reduce equation-solving to ideal membership and
solve it efficiently using Gröbner bases.

18



The real Nullstellensatz

In the analogous Nullstellensatz result over R, sums of squares play
a central role:

The polynomial equations p1(x) = 0, . . . , pk(x) = 0 in a real closed
closed field have no common solution iff there are polynomials q1(x),
. . . , qk(x), s1(x), . . . , sm(x) such that

q1(x) · p1(x) + · · · + qk(x) · pk(x) + s1(x)2 + · · · + sm(x)2 = −1
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The real Positivstellensatz

There are still more general “Positivstellensatz” results about the
inconsistency of a set of equations, negated equations, strict and
non-strict inequalities.

Can use this to prove any universally quantified formula in the
first-order language of reals, e.g. prove

∀a b c x. ax2 + bx + c = 0 ⇒ b2 − 4ac ≥ 0

via the following SOS certificate:

b2 − 4ac = (2ax + b)2 − 4a(ax2 + bx + c)
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Reduction to semidefinite programming

Can reduce finding SOS decompositions, and PSatz certificates of
bounded degree, to semidefinite programming (SDP).

SDP is basically optimizing a linear function of parameters while
making a matrix linearly parametrized by those parameters PSD.

Can be considered a generalization of linear programming, and
similarly is solvable in polynomial time using interior-point algorithms.

There are many efficient tools to solve the problem effectively in
practice. I mostly use CSDP.

21



Experience and problems

This approach is often much more efficient than competing
techniques such as general quantifier elimination.

Lends itself very well to a separation of proof search and LCF-style
checking, so fits very well with HOL Light.

Still some awkward numerical problems where the PSD is tight (can
become zero) and the rounding to rationals causes loss of
PSD-ness.

Available with HOL Light since 2.0 in Examples/sos.ml, and
seems quite useful. (Includes over-engineered and under-optimized
SOS_CONV.)

Coq port by Laurent Théry.
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The univariate case

Alternative based on the simple observation that every nonnegative
univariate polynomial is a sum of squares of real polynomials.

All roots, real or complex, must occur in conjugate pairs. Thus the
polynomial is a product of factors

(x − [ak + ibk])(x − [ak − ibk])

and so is of the form

(q(x) + ir(x))(q(x) − ir(x)) = q(x)2 + r(x)2

To get an exact rational decomposition, we need a more intricate
algorithm, but this is the basic idea.
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Experience of univariate case

Numerical problems can be particularly annoying with some
polynomial bound problems in real applications where the
coefficients are non-trivial (60-200 bits).

For example, proving ∀x. |x| ≤ k ⇒ |f(x) − p(x)| < ǫ where p is a
short approximation to a longer polynomial f .

The direct approach is often better than SDP-based methods, for
numerical reasons, in such examples.
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Conclusion

Very effective technique for universal theory of reals.

Typically more efficient than traditional quantifier elimination, and
much better suited to formal certification.

Still some numerical problems. Would be good to experiment with
high-precision SDP solver.
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