
Formal proof:
current progress and outstanding challenges

John Harrison

Intel Corporation

5th May 2014 (11:00–12:00)



Summary of talk

I A century of formal proof

I Poincaré on formal proof
I From Principia Mathematica to the computer age
I Major milestones in formalization
I Development of mathematical libraries

I Current perspectives

I The provers of the world
I Foundations
I Software architecture
I Proof languages
I Automation
I Libraries

I More about HOL Light

I Foundations and architecture
I Decision procedures and automation
I A tour of the libraries

I The future



A century of formal proof



What would Poincaré have thought?



Poincaré’s had a distinct aversion to formal logic

I see in logistic only shackles for the inventor. It is no aid
to conciseness — far from it, and if twenty-seven
equations were necessary to establish that 1 is a number,
how many would be needed to prove a real theorem?

If we distinguish, with Whitehead, the individual x, the
class of which the only member is x and [...] the class of
which the only member is the class of which the only
member is x [...], do you think these distinctions, useful
as they may be, go far to quicken our pace?



Poincaré’s had a distinct aversion to formal logic

I see in logistic only shackles for the inventor. It is no aid
to conciseness — far from it, and if twenty-seven
equations were necessary to establish that 1 is a number,
how many would be needed to prove a real theorem?
If we distinguish, with Whitehead, the individual x, the
class of which the only member is x and [...] the class of
which the only member is the class of which the only
member is x [...], do you think these distinctions, useful
as they may be, go far to quicken our pace?



However, Poincaré’s was no stranger to errors

I In 1890 Poincaré’s memoir on the three body problem was
published in Acta Mathematica as the winning entry in King
Oscar II’s prize competition.

I As a result of probing questions by Phragmén, Poincaré
discovered a fundamental error after the prize had been
awarded and the journal issue printed and even delivered to
some subscribers.

I This was a very productive mistake: the new realization led to
a much deeper understanding of dynamical systems and laid
the foundations of modern chaos theory.

I However it was embarrassing and expensive for all concerned
— Poincaré spent more than the competition prize money
paying for the journal issues to be recalled and reprinted.



However, Poincaré’s was no stranger to errors

I In 1890 Poincaré’s memoir on the three body problem was
published in Acta Mathematica as the winning entry in King
Oscar II’s prize competition.

I As a result of probing questions by Phragmén, Poincaré
discovered a fundamental error after the prize had been
awarded and the journal issue printed and even delivered to
some subscribers.

I This was a very productive mistake: the new realization led to
a much deeper understanding of dynamical systems and laid
the foundations of modern chaos theory.

I However it was embarrassing and expensive for all concerned
— Poincaré spent more than the competition prize money
paying for the journal issues to be recalled and reprinted.



However, Poincaré’s was no stranger to errors

I In 1890 Poincaré’s memoir on the three body problem was
published in Acta Mathematica as the winning entry in King
Oscar II’s prize competition.

I As a result of probing questions by Phragmén, Poincaré
discovered a fundamental error after the prize had been
awarded and the journal issue printed and even delivered to
some subscribers.

I This was a very productive mistake: the new realization led to
a much deeper understanding of dynamical systems and laid
the foundations of modern chaos theory.

I However it was embarrassing and expensive for all concerned
— Poincaré spent more than the competition prize money
paying for the journal issues to be recalled and reprinted.



However, Poincaré’s was no stranger to errors

I In 1890 Poincaré’s memoir on the three body problem was
published in Acta Mathematica as the winning entry in King
Oscar II’s prize competition.

I As a result of probing questions by Phragmén, Poincaré
discovered a fundamental error after the prize had been
awarded and the journal issue printed and even delivered to
some subscribers.

I This was a very productive mistake: the new realization led to
a much deeper understanding of dynamical systems and laid
the foundations of modern chaos theory.

I However it was embarrassing and expensive for all concerned
— Poincaré spent more than the competition prize money
paying for the journal issues to be recalled and reprinted.



100 years since Principia Mathematica

Principia Mathematica was the first sustained and successful actual
formalization of mathematics.

I This practical formal mathematics was to forestall objections
to Russell and Whitehead’s ‘logicist’ thesis, not a goal in itself.

I The development was difficult and painstaking, and has
probably been studied in detail by very few.

I Subsequently, the idea of actually formalizing proofs has not
been taken very seriously.



100 years since Principia Mathematica

Principia Mathematica was the first sustained and successful actual
formalization of mathematics.

I This practical formal mathematics was to forestall objections
to Russell and Whitehead’s ‘logicist’ thesis, not a goal in itself.

I The development was difficult and painstaking, and has
probably been studied in detail by very few.

I Subsequently, the idea of actually formalizing proofs has not
been taken very seriously.



100 years since Principia Mathematica

Principia Mathematica was the first sustained and successful actual
formalization of mathematics.

I This practical formal mathematics was to forestall objections
to Russell and Whitehead’s ‘logicist’ thesis, not a goal in itself.

I The development was difficult and painstaking, and has
probably been studied in detail by very few.

I Subsequently, the idea of actually formalizing proofs has not
been taken very seriously.



100 years since Principia Mathematica

Principia Mathematica was the first sustained and successful actual
formalization of mathematics.

I This practical formal mathematics was to forestall objections
to Russell and Whitehead’s ‘logicist’ thesis, not a goal in itself.

I The development was difficult and painstaking, and has
probably been studied in detail by very few.

I Subsequently, the idea of actually formalizing proofs has not
been taken very seriously.



Even Russell did not enjoy doing formal proofs

“my intellect never quite recovered from the strain of
writing [Principia Mathematica]. I have been ever since
definitely less capable of dealing with difficult
abstractions than I was before.” (Russell, Autobiography)

However, now we have computers to check and even automatically
generate formal proofs.
Our goal is now not so much philosophical, but to achieve a real,
practical, useful increase in the precision and accuracy of
mathematical proofs.



Even Russell did not enjoy doing formal proofs

“my intellect never quite recovered from the strain of
writing [Principia Mathematica]. I have been ever since
definitely less capable of dealing with difficult
abstractions than I was before.” (Russell, Autobiography)

However, now we have computers to check and even automatically
generate formal proofs.
Our goal is now not so much philosophical, but to achieve a real,
practical, useful increase in the precision and accuracy of
mathematical proofs.



The importance of computers for formal proof

Computers can both help with formal proof and give us new
reasons to be interested in it:

I Computers are expressly designed for performing formal
manipulations quickly and without error, so can be used to
check and partly generate formal proofs.

I Correctness questions in computer science (hardware,
programs, protocols etc.) generate a whole new array of
difficult mathematical and logical problems where formal proof
can help.

Because of these dual connections, interest in formal proofs is
strongest among computer scientists, but some ‘mainstream’
mathematicians are becoming interested too.



The importance of computers for formal proof

Computers can both help with formal proof and give us new
reasons to be interested in it:

I Computers are expressly designed for performing formal
manipulations quickly and without error, so can be used to
check and partly generate formal proofs.

I Correctness questions in computer science (hardware,
programs, protocols etc.) generate a whole new array of
difficult mathematical and logical problems where formal proof
can help.

Because of these dual connections, interest in formal proofs is
strongest among computer scientists, but some ‘mainstream’
mathematicians are becoming interested too.



The importance of computers for formal proof

Computers can both help with formal proof and give us new
reasons to be interested in it:

I Computers are expressly designed for performing formal
manipulations quickly and without error, so can be used to
check and partly generate formal proofs.

I Correctness questions in computer science (hardware,
programs, protocols etc.) generate a whole new array of
difficult mathematical and logical problems where formal proof
can help.

Because of these dual connections, interest in formal proofs is
strongest among computer scientists, but some ‘mainstream’
mathematicians are becoming interested too.



The importance of computers for formal proof

Computers can both help with formal proof and give us new
reasons to be interested in it:

I Computers are expressly designed for performing formal
manipulations quickly and without error, so can be used to
check and partly generate formal proofs.

I Correctness questions in computer science (hardware,
programs, protocols etc.) generate a whole new array of
difficult mathematical and logical problems where formal proof
can help.

Because of these dual connections, interest in formal proofs is
strongest among computer scientists, but some ‘mainstream’
mathematicians are becoming interested too.



A formal proof from 1910

This is p379 of Whitehead and Russell’s Principia Mathematica.



Zooming in . . .



A formal proof from 2010
let PNT = prove

(‘((\n. &(CARD {p | prime p /\ p <= n}) / (&n / log(&n)))

---> &1) sequentially‘,

REWRITE_TAC[PNT_PARTIAL_SUMMATION] THEN

REWRITE_TAC[SUM_PARTIAL_PRE] THEN

REWRITE_TAC[GSYM REAL_OF_NUM_ADD; SUB_REFL; CONJUNCT1 LE] THEN

SUBGOAL_THEN ‘{p | prime p /\ p = 0} = {}‘ SUBST1_TAC THENL

[REWRITE_TAC[EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY] THEN

MESON_TAC[PRIME_IMP_NZ];

ALL_TAC] THEN

REWRITE_TAC[SUM_CLAUSES; REAL_MUL_RZERO; REAL_SUB_RZERO] THEN

MATCH_MP_TAC REALLIM_TRANSFORM_EVENTUALLY THEN

EXISTS_TAC

‘\n. ((&n + &1) / log(&n + &1) *

sum {p | prime p /\ p <= n} (\p. log(&p) / &p) -

sum (1..n)

(\k. sum {p | prime p /\ p <= k} (\p. log(&p) / &p) *

((&k + &1) / log(&k + &1) - &k / log(&k)))) / (&n / log(&n))‘ THEN

CONJ_TAC THENL

[REWRITE_TAC[EVENTUALLY_SEQUENTIALLY] THEN EXISTS_TAC ‘1‘ THEN SIMP_TAC[];

ALL_TAC] THEN

MATCH_MP_TAC REALLIM_TRANSFORM THEN

EXISTS_TAC

‘\n. ((&n + &1) / log(&n + &1) * log(&n) -

sum (1..n)

(\k. log(&k) * ((&k + &1) / log(&k + &1) - &k / log(&k)))) /

(&n / log(&n))‘ THEN

REWRITE_TAC[] THEN CONJ_TAC THENL

[REWRITE_TAC[REAL_ARITH

‘(a * x - s) / b - (a * x’ - s’) / b:real =

((s’ - s) - (x’ - x) * a) / b‘] THEN

REWRITE_TAC[GSYM SUM_SUB_NUMSEG; GSYM REAL_SUB_RDISTRIB] THEN

REWRITE_TAC[REAL_OF_NUM_ADD] THEN

MATCH_MP_TAC SUM_PARTIAL_LIMIT_ALT THEN



Zooming in . . .

At least the theorems are more substantial:

let PNT = prove

(‘((\n. &(CARD {p | prime p /\ p <= n}) / (&n / log(&n)))

---> &1) sequentially‘,

REWRITE_TAC[PNT_PARTIAL_SUMMATION] THEN

REWRITE_TAC[SUM_PARTIAL_PRE] THEN

REWRITE_TAC[GSYM REAL_OF_NUM_ADD; SUB_REFL; CONJUNCT1 LE] THEN

SUBGOAL_THEN ‘{p | prime p /\ p = 0} = {}‘ SUBST1_TAC THENL

Moreover, we can arrange to have more readable proofs — see for
example Bill Richter’s talk.



Zooming in . . .

At least the theorems are more substantial:

let PNT = prove

(‘((\n. &(CARD {p | prime p /\ p <= n}) / (&n / log(&n)))

---> &1) sequentially‘,

REWRITE_TAC[PNT_PARTIAL_SUMMATION] THEN

REWRITE_TAC[SUM_PARTIAL_PRE] THEN

REWRITE_TAC[GSYM REAL_OF_NUM_ADD; SUB_REFL; CONJUNCT1 LE] THEN

SUBGOAL_THEN ‘{p | prime p /\ p = 0} = {}‘ SUBST1_TAC THENL

Moreover, we can arrange to have more readable proofs — see for
example Bill Richter’s talk.



The major landmarks

These are arguably the three major landmarks in the formalization
of mathematics

I The four-colour theorem (every planar map is 4-colourable) —
Gonthier et al.

I The odd order theorem (every finite group of odd order is
solvable) — Gonthier et al.

I The Flyspeck project (the Kepler Conjecture that no sphere
packing beats face-centred cubic) — Hales et al.

These are demonstrations that the technology can handle long and
difficult proofs, and even that some leading mathematicians like
Hales are willing to use them.



The major landmarks

These are arguably the three major landmarks in the formalization
of mathematics

I The four-colour theorem (every planar map is 4-colourable) —
Gonthier et al.

I The odd order theorem (every finite group of odd order is
solvable) — Gonthier et al.

I The Flyspeck project (the Kepler Conjecture that no sphere
packing beats face-centred cubic) — Hales et al.

These are demonstrations that the technology can handle long and
difficult proofs, and even that some leading mathematicians like
Hales are willing to use them.



The major landmarks

These are arguably the three major landmarks in the formalization
of mathematics

I The four-colour theorem (every planar map is 4-colourable) —
Gonthier et al.

I The odd order theorem (every finite group of odd order is
solvable) — Gonthier et al.

I The Flyspeck project (the Kepler Conjecture that no sphere
packing beats face-centred cubic) — Hales et al.

These are demonstrations that the technology can handle long and
difficult proofs, and even that some leading mathematicians like
Hales are willing to use them.



The major landmarks

These are arguably the three major landmarks in the formalization
of mathematics

I The four-colour theorem (every planar map is 4-colourable) —
Gonthier et al.

I The odd order theorem (every finite group of odd order is
solvable) — Gonthier et al.

I The Flyspeck project (the Kepler Conjecture that no sphere
packing beats face-centred cubic) — Hales et al.

These are demonstrations that the technology can handle long and
difficult proofs, and even that some leading mathematicians like
Hales are willing to use them.



The major landmarks

These are arguably the three major landmarks in the formalization
of mathematics

I The four-colour theorem (every planar map is 4-colourable) —
Gonthier et al.

I The odd order theorem (every finite group of odd order is
solvable) — Gonthier et al.

I The Flyspeck project (the Kepler Conjecture that no sphere
packing beats face-centred cubic) — Hales et al.

These are demonstrations that the technology can handle long and
difficult proofs, and even that some leading mathematicians like
Hales are willing to use them.



Formalized theorems and libraries of mathematics

Also important is the progress made on more modest
building-blocks for mathematics, still including quite substantial
results, e.g.

I Jordan Curve Theorem — Tom Hales (HOL Light), Andrzej
Trybulec et al. (Mizar)

I Prime Number Theorem — Jeremy Avigad et al
(Isabelle/HOL), John Harrison (HOL Light)

I First and second Cartan Theorems — Marco Maggesi et al
(HOL Light)

In the process, provers are building up ever-larger libraries of
pre-proved theorems that can be deployed in future proofs.



Current perspectives



A few notable general-purpose theorem provers
There is a diverse (perhaps too diverse?) world of proof assistants,
with these being just a few:

I ACL2

I Agda

I Coq

I HOL (HOL Light, HOL4, ProofPower, HOL Zero)

I IMPS

I Isabelle

I Metamath

I Mizar

I Nuprl

I PVS

See Freek Wiedijk’s book The Seventeen Provers of the World
(Springer-Verlag lecture notes in computer science volume 3600)
for descriptions of many systems and proofs that

√
2 is irrational.



A few notable general-purpose theorem provers
There is a diverse (perhaps too diverse?) world of proof assistants,
with these being just a few:

I ACL2

I Agda

I Coq

I HOL (HOL Light, HOL4, ProofPower, HOL Zero)

I IMPS

I Isabelle

I Metamath

I Mizar

I Nuprl

I PVS

See Freek Wiedijk’s book The Seventeen Provers of the World
(Springer-Verlag lecture notes in computer science volume 3600)
for descriptions of many systems and proofs that

√
2 is irrational.



Foundations
The choice of foundations is a difficult one, sometimes balancing
simplicity against flexibility or expressiveness:

I The ‘traditional’ or ‘standard’ foundation for mathematics is
set theory, and some provers do use that

I Metamath and Isabelle/ZF (standard ZF/ZFC)
I Mizar (Tarski-Grothendieck set theory)

I Partly as a result of their computer science interconnections,
many provers are based on type theory

I HOL family and Isabelle/HOL (simple type theory)
I Martin-Löf type theory (Agda, Nuprl)
I Calculus of inductive constructions (Coq)
I Other typed formalisms (IMPS, PVS)

I Some are even based on very simple foundations analogous to
primitive recursive arithmetic, without explicit quantifiers
quantifiers (ACL2, NQTHM)

I There is now interest in a new foundational approach,
homotopy type theory, with experimental implementations.



Foundations
The choice of foundations is a difficult one, sometimes balancing
simplicity against flexibility or expressiveness:

I The ‘traditional’ or ‘standard’ foundation for mathematics is
set theory, and some provers do use that

I Metamath and Isabelle/ZF (standard ZF/ZFC)
I Mizar (Tarski-Grothendieck set theory)

I Partly as a result of their computer science interconnections,
many provers are based on type theory

I HOL family and Isabelle/HOL (simple type theory)
I Martin-Löf type theory (Agda, Nuprl)
I Calculus of inductive constructions (Coq)
I Other typed formalisms (IMPS, PVS)

I Some are even based on very simple foundations analogous to
primitive recursive arithmetic, without explicit quantifiers
quantifiers (ACL2, NQTHM)

I There is now interest in a new foundational approach,
homotopy type theory, with experimental implementations.



Foundations
The choice of foundations is a difficult one, sometimes balancing
simplicity against flexibility or expressiveness:

I The ‘traditional’ or ‘standard’ foundation for mathematics is
set theory, and some provers do use that

I Metamath and Isabelle/ZF (standard ZF/ZFC)
I Mizar (Tarski-Grothendieck set theory)

I Partly as a result of their computer science interconnections,
many provers are based on type theory

I HOL family and Isabelle/HOL (simple type theory)
I Martin-Löf type theory (Agda, Nuprl)
I Calculus of inductive constructions (Coq)
I Other typed formalisms (IMPS, PVS)

I Some are even based on very simple foundations analogous to
primitive recursive arithmetic, without explicit quantifiers
quantifiers (ACL2, NQTHM)

I There is now interest in a new foundational approach,
homotopy type theory, with experimental implementations.



Foundations
The choice of foundations is a difficult one, sometimes balancing
simplicity against flexibility or expressiveness:

I The ‘traditional’ or ‘standard’ foundation for mathematics is
set theory, and some provers do use that

I Metamath and Isabelle/ZF (standard ZF/ZFC)
I Mizar (Tarski-Grothendieck set theory)

I Partly as a result of their computer science interconnections,
many provers are based on type theory

I HOL family and Isabelle/HOL (simple type theory)
I Martin-Löf type theory (Agda, Nuprl)
I Calculus of inductive constructions (Coq)
I Other typed formalisms (IMPS, PVS)

I Some are even based on very simple foundations analogous to
primitive recursive arithmetic, without explicit quantifiers
quantifiers (ACL2, NQTHM)

I There is now interest in a new foundational approach,
homotopy type theory, with experimental implementations.



Foundations
The choice of foundations is a difficult one, sometimes balancing
simplicity against flexibility or expressiveness:

I The ‘traditional’ or ‘standard’ foundation for mathematics is
set theory, and some provers do use that

I Metamath and Isabelle/ZF (standard ZF/ZFC)
I Mizar (Tarski-Grothendieck set theory)

I Partly as a result of their computer science interconnections,
many provers are based on type theory

I HOL family and Isabelle/HOL (simple type theory)
I Martin-Löf type theory (Agda, Nuprl)
I Calculus of inductive constructions (Coq)
I Other typed formalisms (IMPS, PVS)

I Some are even based on very simple foundations analogous to
primitive recursive arithmetic, without explicit quantifiers
quantifiers (ACL2, NQTHM)

I There is now interest in a new foundational approach,
homotopy type theory, with experimental implementations.



Software architecture

The reliability of a theorem prover increases dramatically if its
correctness depends only on a small amount of code.

I de Bruijn approach — generate proofs that can be certified by
a simple, separate checker.

I LCF approach — reduce all rules to sequences of primitive
inferences implemented by a small logical kernel.

The checker or kernel can be much simpler than the prover as a
whole.
There have even recently been papers about versions of Milawa (a
simplified ACL2) and HOL Light verified right down to machine
code.



Software architecture

The reliability of a theorem prover increases dramatically if its
correctness depends only on a small amount of code.

I de Bruijn approach — generate proofs that can be certified by
a simple, separate checker.

I LCF approach — reduce all rules to sequences of primitive
inferences implemented by a small logical kernel.

The checker or kernel can be much simpler than the prover as a
whole.
There have even recently been papers about versions of Milawa (a
simplified ACL2) and HOL Light verified right down to machine
code.



Software architecture

The reliability of a theorem prover increases dramatically if its
correctness depends only on a small amount of code.

I de Bruijn approach — generate proofs that can be certified by
a simple, separate checker.

I LCF approach — reduce all rules to sequences of primitive
inferences implemented by a small logical kernel.

The checker or kernel can be much simpler than the prover as a
whole.
There have even recently been papers about versions of Milawa (a
simplified ACL2) and HOL Light verified right down to machine
code.



Software architecture

The reliability of a theorem prover increases dramatically if its
correctness depends only on a small amount of code.

I de Bruijn approach — generate proofs that can be certified by
a simple, separate checker.

I LCF approach — reduce all rules to sequences of primitive
inferences implemented by a small logical kernel.

The checker or kernel can be much simpler than the prover as a
whole.

There have even recently been papers about versions of Milawa (a
simplified ACL2) and HOL Light verified right down to machine
code.



Software architecture

The reliability of a theorem prover increases dramatically if its
correctness depends only on a small amount of code.

I de Bruijn approach — generate proofs that can be certified by
a simple, separate checker.

I LCF approach — reduce all rules to sequences of primitive
inferences implemented by a small logical kernel.

The checker or kernel can be much simpler than the prover as a
whole.
There have even recently been papers about versions of Milawa (a
simplified ACL2) and HOL Light verified right down to machine
code.



Proof languages

Directly invoking the primitive or derived rules tends to give proofs
that are procedural.

A declarative style (what is to be proved, not how) can be nicer:

I Easier to write and understand independent of the prover

I Easier to modify

I Less tied to the details of the prover, hence more portable

I However it can also be more verbose and less easy to script.

Mizar pioneered the declarative style of proof. Recently, several
other declarative proof languages have been developed, as well as
declarative shells round existing systems like HOL and Isabelle.



Proof languages

Directly invoking the primitive or derived rules tends to give proofs
that are procedural.
A declarative style (what is to be proved, not how) can be nicer:

I Easier to write and understand independent of the prover

I Easier to modify

I Less tied to the details of the prover, hence more portable

I However it can also be more verbose and less easy to script.

Mizar pioneered the declarative style of proof. Recently, several
other declarative proof languages have been developed, as well as
declarative shells round existing systems like HOL and Isabelle.



Proof languages

Directly invoking the primitive or derived rules tends to give proofs
that are procedural.
A declarative style (what is to be proved, not how) can be nicer:

I Easier to write and understand independent of the prover

I Easier to modify

I Less tied to the details of the prover, hence more portable

I However it can also be more verbose and less easy to script.

Mizar pioneered the declarative style of proof. Recently, several
other declarative proof languages have been developed, as well as
declarative shells round existing systems like HOL and Isabelle.



Proof languages

Directly invoking the primitive or derived rules tends to give proofs
that are procedural.
A declarative style (what is to be proved, not how) can be nicer:

I Easier to write and understand independent of the prover

I Easier to modify

I Less tied to the details of the prover, hence more portable

I However it can also be more verbose and less easy to script.

Mizar pioneered the declarative style of proof. Recently, several
other declarative proof languages have been developed, as well as
declarative shells round existing systems like HOL and Isabelle.



Proof languages

Directly invoking the primitive or derived rules tends to give proofs
that are procedural.
A declarative style (what is to be proved, not how) can be nicer:

I Easier to write and understand independent of the prover

I Easier to modify

I Less tied to the details of the prover, hence more portable

I However it can also be more verbose and less easy to script.

Mizar pioneered the declarative style of proof. Recently, several
other declarative proof languages have been developed, as well as
declarative shells round existing systems like HOL and Isabelle.



Proof languages

Directly invoking the primitive or derived rules tends to give proofs
that are procedural.
A declarative style (what is to be proved, not how) can be nicer:

I Easier to write and understand independent of the prover

I Easier to modify

I Less tied to the details of the prover, hence more portable

I However it can also be more verbose and less easy to script.

Mizar pioneered the declarative style of proof. Recently, several
other declarative proof languages have been developed, as well as
declarative shells round existing systems like HOL and Isabelle.



Proof languages

Directly invoking the primitive or derived rules tends to give proofs
that are procedural.
A declarative style (what is to be proved, not how) can be nicer:

I Easier to write and understand independent of the prover

I Easier to modify

I Less tied to the details of the prover, hence more portable

I However it can also be more verbose and less easy to script.

Mizar pioneered the declarative style of proof. Recently, several
other declarative proof languages have been developed, as well as
declarative shells round existing systems like HOL and Isabelle.



Automation

One major obstacle to the wider use of proof assistants is the low
level of automation, so it can be a struggle to prove ‘obvious’
facts. There are some quite powerful automated techniques, e.g.

I Pure logic proof search (SAT, FOL, HOL)

I Decision procedures for numerical theories (linear arithmetic
and algebra, SMT).

I Quantifier elimination procedures

Many of these have been successfully integrated into proof
assistants without compromising their soundness, e.g.

I Reimplement algorithms to perform proofs as they proceed

I Have suitable ‘certificates’ produced by an external tool
checked in the inference kernel.

I Extend kernel with verified implementation (reflection).



Automation

One major obstacle to the wider use of proof assistants is the low
level of automation, so it can be a struggle to prove ‘obvious’
facts. There are some quite powerful automated techniques, e.g.

I Pure logic proof search (SAT, FOL, HOL)

I Decision procedures for numerical theories (linear arithmetic
and algebra, SMT).

I Quantifier elimination procedures

Many of these have been successfully integrated into proof
assistants without compromising their soundness, e.g.

I Reimplement algorithms to perform proofs as they proceed

I Have suitable ‘certificates’ produced by an external tool
checked in the inference kernel.

I Extend kernel with verified implementation (reflection).



Automation

One major obstacle to the wider use of proof assistants is the low
level of automation, so it can be a struggle to prove ‘obvious’
facts. There are some quite powerful automated techniques, e.g.

I Pure logic proof search (SAT, FOL, HOL)

I Decision procedures for numerical theories (linear arithmetic
and algebra, SMT).

I Quantifier elimination procedures

Many of these have been successfully integrated into proof
assistants without compromising their soundness, e.g.

I Reimplement algorithms to perform proofs as they proceed

I Have suitable ‘certificates’ produced by an external tool
checked in the inference kernel.

I Extend kernel with verified implementation (reflection).



Automation

One major obstacle to the wider use of proof assistants is the low
level of automation, so it can be a struggle to prove ‘obvious’
facts. There are some quite powerful automated techniques, e.g.

I Pure logic proof search (SAT, FOL, HOL)

I Decision procedures for numerical theories (linear arithmetic
and algebra, SMT).

I Quantifier elimination procedures

Many of these have been successfully integrated into proof
assistants without compromising their soundness, e.g.

I Reimplement algorithms to perform proofs as they proceed

I Have suitable ‘certificates’ produced by an external tool
checked in the inference kernel.

I Extend kernel with verified implementation (reflection).



Automation

One major obstacle to the wider use of proof assistants is the low
level of automation, so it can be a struggle to prove ‘obvious’
facts. There are some quite powerful automated techniques, e.g.

I Pure logic proof search (SAT, FOL, HOL)

I Decision procedures for numerical theories (linear arithmetic
and algebra, SMT).

I Quantifier elimination procedures

Many of these have been successfully integrated into proof
assistants without compromising their soundness, e.g.

I Reimplement algorithms to perform proofs as they proceed

I Have suitable ‘certificates’ produced by an external tool
checked in the inference kernel.

I Extend kernel with verified implementation (reflection).



Automation

One major obstacle to the wider use of proof assistants is the low
level of automation, so it can be a struggle to prove ‘obvious’
facts. There are some quite powerful automated techniques, e.g.

I Pure logic proof search (SAT, FOL, HOL)

I Decision procedures for numerical theories (linear arithmetic
and algebra, SMT).

I Quantifier elimination procedures

Many of these have been successfully integrated into proof
assistants without compromising their soundness, e.g.

I Reimplement algorithms to perform proofs as they proceed

I Have suitable ‘certificates’ produced by an external tool
checked in the inference kernel.

I Extend kernel with verified implementation (reflection).



Automation

One major obstacle to the wider use of proof assistants is the low
level of automation, so it can be a struggle to prove ‘obvious’
facts. There are some quite powerful automated techniques, e.g.

I Pure logic proof search (SAT, FOL, HOL)

I Decision procedures for numerical theories (linear arithmetic
and algebra, SMT).

I Quantifier elimination procedures

Many of these have been successfully integrated into proof
assistants without compromising their soundness, e.g.

I Reimplement algorithms to perform proofs as they proceed

I Have suitable ‘certificates’ produced by an external tool
checked in the inference kernel.

I Extend kernel with verified implementation (reflection).



Automation

One major obstacle to the wider use of proof assistants is the low
level of automation, so it can be a struggle to prove ‘obvious’
facts. There are some quite powerful automated techniques, e.g.

I Pure logic proof search (SAT, FOL, HOL)

I Decision procedures for numerical theories (linear arithmetic
and algebra, SMT).

I Quantifier elimination procedures

Many of these have been successfully integrated into proof
assistants without compromising their soundness, e.g.

I Reimplement algorithms to perform proofs as they proceed

I Have suitable ‘certificates’ produced by an external tool
checked in the inference kernel.

I Extend kernel with verified implementation (reflection).



Libraries

I Another serious obstacle is the lack of libraries of ‘basic’
results, meaning that when proving a major theorem one
needs constantly to be proving a stream of low-level lemmas.

I Sometimes flashy or exciting theorems (Brouwer fixed-point
theorem, the Picard theorems) aren’t as useful as less showy
ones (the change of variables formula for integrals etc.)

I Large formalizations (Odd Order Theorem, Flyspeck) have
motivated formalization of ‘foundational’ material as a
by-product, making similar efforts easier in future.

I The earliest large mathematical library, still perhaps the largest
is the Mizar Mathematical Library (MML), following the style
of mathematical papers with extracted text and references.

I Many theorem provers including Coq, HOL Light and
Isabelle/HOL (including the ‘archive of formal proofs’) also
have large and every-expanding mathematical libraries.



Libraries

I Another serious obstacle is the lack of libraries of ‘basic’
results, meaning that when proving a major theorem one
needs constantly to be proving a stream of low-level lemmas.

I Sometimes flashy or exciting theorems (Brouwer fixed-point
theorem, the Picard theorems) aren’t as useful as less showy
ones (the change of variables formula for integrals etc.)

I Large formalizations (Odd Order Theorem, Flyspeck) have
motivated formalization of ‘foundational’ material as a
by-product, making similar efforts easier in future.

I The earliest large mathematical library, still perhaps the largest
is the Mizar Mathematical Library (MML), following the style
of mathematical papers with extracted text and references.

I Many theorem provers including Coq, HOL Light and
Isabelle/HOL (including the ‘archive of formal proofs’) also
have large and every-expanding mathematical libraries.



Libraries

I Another serious obstacle is the lack of libraries of ‘basic’
results, meaning that when proving a major theorem one
needs constantly to be proving a stream of low-level lemmas.

I Sometimes flashy or exciting theorems (Brouwer fixed-point
theorem, the Picard theorems) aren’t as useful as less showy
ones (the change of variables formula for integrals etc.)

I Large formalizations (Odd Order Theorem, Flyspeck) have
motivated formalization of ‘foundational’ material as a
by-product, making similar efforts easier in future.

I The earliest large mathematical library, still perhaps the largest
is the Mizar Mathematical Library (MML), following the style
of mathematical papers with extracted text and references.

I Many theorem provers including Coq, HOL Light and
Isabelle/HOL (including the ‘archive of formal proofs’) also
have large and every-expanding mathematical libraries.



Libraries

I Another serious obstacle is the lack of libraries of ‘basic’
results, meaning that when proving a major theorem one
needs constantly to be proving a stream of low-level lemmas.

I Sometimes flashy or exciting theorems (Brouwer fixed-point
theorem, the Picard theorems) aren’t as useful as less showy
ones (the change of variables formula for integrals etc.)

I Large formalizations (Odd Order Theorem, Flyspeck) have
motivated formalization of ‘foundational’ material as a
by-product, making similar efforts easier in future.

I The earliest large mathematical library, still perhaps the largest
is the Mizar Mathematical Library (MML), following the style
of mathematical papers with extracted text and references.

I Many theorem provers including Coq, HOL Light and
Isabelle/HOL (including the ‘archive of formal proofs’) also
have large and every-expanding mathematical libraries.



Libraries

I Another serious obstacle is the lack of libraries of ‘basic’
results, meaning that when proving a major theorem one
needs constantly to be proving a stream of low-level lemmas.

I Sometimes flashy or exciting theorems (Brouwer fixed-point
theorem, the Picard theorems) aren’t as useful as less showy
ones (the change of variables formula for integrals etc.)

I Large formalizations (Odd Order Theorem, Flyspeck) have
motivated formalization of ‘foundational’ material as a
by-product, making similar efforts easier in future.

I The earliest large mathematical library, still perhaps the largest
is the Mizar Mathematical Library (MML), following the style
of mathematical papers with extracted text and references.

I Many theorem provers including Coq, HOL Light and
Isabelle/HOL (including the ‘archive of formal proofs’) also
have large and every-expanding mathematical libraries.



More about HOL Light



The HOL family DAG

There are many HOL provers, of which HOL Light is just one, all
descended from Mike Gordon’s original HOL system in the late
1980s.

HOL88

�
�

�
�	

hol90

@
@
@
@R

ProofPower

HHH
HHH

HHj
Isabelle/HOL

?
HOL Light

?
hol98

@
@@R

�
�

�
�	

?
HOL 4

@
@
@
@R

HOL Zero
?



HOL Light primitive rules (1)

` t = t
REFL

Γ ` s = t ∆ ` t = u
Γ ∪∆ ` s = u

TRANS

Γ ` s = t ∆ ` u = v
Γ ∪∆ ` s(u) = t(v)

MK COMB

Γ ` s = t
Γ ` (λx . s) = (λx . t)

ABS

` (λx . t)x = t
BETA



HOL Light primitive rules (2)

{p} ` p
ASSUME

Γ ` p = q ∆ ` p

Γ ∪∆ ` q
EQ MP

Γ ` p ∆ ` q

(Γ− {q}) ∪ (∆− {p}) ` p = q
DEDUCT ANTISYM RULE

Γ[x1, . . . , xn] ` p[x1, . . . , xn]

Γ[t1, . . . , tn] ` p[t1, . . . , tn]
INST

Γ[α1, . . . , αn] ` p[α1, . . . , αn]

Γ[γ1, . . . , γn] ` p[γ1, . . . , γn]
INST TYPE



Pushing the LCF approach to its limits

The main features of the LCF approach to theorem proving are:

I Reduce all proofs to a small number of relatively simple
primitive rules

I Use the programmability of the implementation/interaction
language to make this practical

HOL Light may represent the most “extreme” application of this
philosophy.

I HOL Light’s primitive rules are very simple, and the trusted
core is just a few hundred lines of code.

I There is an extensive suite of automated tools built on top
that all reduce to this foundation.



Pushing the LCF approach to its limits

The main features of the LCF approach to theorem proving are:

I Reduce all proofs to a small number of relatively simple
primitive rules

I Use the programmability of the implementation/interaction
language to make this practical

HOL Light may represent the most “extreme” application of this
philosophy.

I HOL Light’s primitive rules are very simple, and the trusted
core is just a few hundred lines of code.

I There is an extensive suite of automated tools built on top
that all reduce to this foundation.



Pushing the LCF approach to its limits

The main features of the LCF approach to theorem proving are:

I Reduce all proofs to a small number of relatively simple
primitive rules

I Use the programmability of the implementation/interaction
language to make this practical

HOL Light may represent the most “extreme” application of this
philosophy.

I HOL Light’s primitive rules are very simple, and the trusted
core is just a few hundred lines of code.

I There is an extensive suite of automated tools built on top
that all reduce to this foundation.



Pushing the LCF approach to its limits

The main features of the LCF approach to theorem proving are:

I Reduce all proofs to a small number of relatively simple
primitive rules

I Use the programmability of the implementation/interaction
language to make this practical

HOL Light may represent the most “extreme” application of this
philosophy.

I HOL Light’s primitive rules are very simple, and the trusted
core is just a few hundred lines of code.

I There is an extensive suite of automated tools built on top
that all reduce to this foundation.



Pushing the LCF approach to its limits

The main features of the LCF approach to theorem proving are:

I Reduce all proofs to a small number of relatively simple
primitive rules

I Use the programmability of the implementation/interaction
language to make this practical

HOL Light may represent the most “extreme” application of this
philosophy.

I HOL Light’s primitive rules are very simple, and the trusted
core is just a few hundred lines of code.

I There is an extensive suite of automated tools built on top
that all reduce to this foundation.



Pushing the LCF approach to its limits

The main features of the LCF approach to theorem proving are:

I Reduce all proofs to a small number of relatively simple
primitive rules

I Use the programmability of the implementation/interaction
language to make this practical

HOL Light may represent the most “extreme” application of this
philosophy.

I HOL Light’s primitive rules are very simple, and the trusted
core is just a few hundred lines of code.

I There is an extensive suite of automated tools built on top
that all reduce to this foundation.



Some of HOL Light’s basic automation

I Simplifier for (conditional, contextual) rewriting.

I Tactic mechanism for mixed forward and backward proofs.

I Tautology checker.

I Automated theorem provers for pure logic, based on tableaux
and model elimination.

I Linear arithmetic decision procedures over R, Z and N.

I Differentiator for real functions.

I Generic normalizers for rings and fields

I General quantifier elimination over C
I Gröbner basis algorithm over fields



Some unusual automation

HOL Light has also introduced several novel automated proof
methods, all of which were developed to answer real problems in
formalization:

I Heuristic decision procedure for divisibility properties in
number theory via a reduction to ideal membership. (For
example, can prove the Chinese Remainder Theorem
automatically.)

I Decision procedures for general ‘triangle law’ reasoning in
normed spaces and general decision procedure for Hilbert
spaces, using decidability results developed in work with
Solovay and Arthan.

I ‘Without loss of generality’ tactics for simplifying goals in
geometry by use of special coordinate systems, which can
greatly simplify some Flyspeck goals.



Some unusual automation

HOL Light has also introduced several novel automated proof
methods, all of which were developed to answer real problems in
formalization:

I Heuristic decision procedure for divisibility properties in
number theory via a reduction to ideal membership. (For
example, can prove the Chinese Remainder Theorem
automatically.)

I Decision procedures for general ‘triangle law’ reasoning in
normed spaces and general decision procedure for Hilbert
spaces, using decidability results developed in work with
Solovay and Arthan.

I ‘Without loss of generality’ tactics for simplifying goals in
geometry by use of special coordinate systems, which can
greatly simplify some Flyspeck goals.



Some unusual automation

HOL Light has also introduced several novel automated proof
methods, all of which were developed to answer real problems in
formalization:

I Heuristic decision procedure for divisibility properties in
number theory via a reduction to ideal membership. (For
example, can prove the Chinese Remainder Theorem
automatically.)

I Decision procedures for general ‘triangle law’ reasoning in
normed spaces and general decision procedure for Hilbert
spaces, using decidability results developed in work with
Solovay and Arthan.

I ‘Without loss of generality’ tactics for simplifying goals in
geometry by use of special coordinate systems, which can
greatly simplify some Flyspeck goals.



Some unusual automation

HOL Light has also introduced several novel automated proof
methods, all of which were developed to answer real problems in
formalization:

I Heuristic decision procedure for divisibility properties in
number theory via a reduction to ideal membership. (For
example, can prove the Chinese Remainder Theorem
automatically.)

I Decision procedures for general ‘triangle law’ reasoning in
normed spaces and general decision procedure for Hilbert
spaces, using decidability results developed in work with
Solovay and Arthan.

I ‘Without loss of generality’ tactics for simplifying goals in
geometry by use of special coordinate systems, which can
greatly simplify some Flyspeck goals.



A tour of the libraries (1)

Partly as a result of Flyspeck, HOL Light is particularly strong in
the area of topology, analysis and geometry in Euclidean space Rn.

File Lines Contents

misc.ml 562 Background stuff
vectors.ml 8627 Basic vectors, linear algebra
determinants.ml 3141 Determinant and trace
topology.ml 20235 Basic topological notions
convex.ml 11827 Convex sets and functions
paths.ml 17066 Paths, simple connectedness etc.
polytope.ml 5855 Faces, polytopes, polyhedra etc.
dimension.ml 6794 Dimensional theorems
derivatives.ml 2732 Derivatives
clifford.ml 979 Geometric (Clifford) algebra
integration.ml 17407 Integration
measure.ml 10252 Lebesgue measure



A tour of the libraries (2)

From this foundation complex analysis is developed and used to
derive convenient theorems for R as well as more topological
results.

File Lines Contents

complexes.ml 2036 Complex numbers
canal.ml 3760 Complex analysis
transcendentals.ml 6981 Real & complex transcendentals
realanalysis.ml 15845 Some analytical stuff on R
moretop.ml 7349 Further topological results
cauchy.ml 18231 Complex line integrals

It would be desirable to generalize much of the material to general
topological spaces, metric spaces, measure spaces etc. Some work
already by Bill Richter on general topology.



A tour of the libraries (2)

From this foundation complex analysis is developed and used to
derive convenient theorems for R as well as more topological
results.

File Lines Contents

complexes.ml 2036 Complex numbers
canal.ml 3760 Complex analysis
transcendentals.ml 6981 Real & complex transcendentals
realanalysis.ml 15845 Some analytical stuff on R
moretop.ml 7349 Further topological results
cauchy.ml 18231 Complex line integrals

It would be desirable to generalize much of the material to general
topological spaces, metric spaces, measure spaces etc. Some work
already by Bill Richter on general topology.



Some examples from topology
The Brouwer fixed point theorem:

|- !f:real^N->real^N s.

compact s /\ convex s /\ ~(s = {}) /\

f continuous_on s /\ IMAGE f s SUBSET s

==> ?x. x IN s /\ f x = x

The Borsuk homotopy extension theorem:

|- !f:real^M->real^N g s t u.

closed_in (subtopology euclidean t) s /\

(ANR s /\ ANR t \/ ANR u) /\

f continuous_on t /\ IMAGE f t SUBSET u /\

homotopic_with (\x. T) (s,u) f g

==> ?g’. homotopic_with (\x. T) (t,u) f g’ /\

g’ continuous_on t /\

IMAGE g’ t SUBSET u /\

!x. x IN s ==> g’(x) = g(x)



Some examples from convexity

The Krein-Milman (Minkowski) theorem

|- !s:real^N->bool.

convex s /\ compact s

==> s = convex hull {x | x extreme_point_of s}

Approximation of convex sets by polytopes w.r.t. Hausdorff
distance:

|- !s:real^N->bool e.

bounded s /\ convex s /\ &0 < e

==> ?p. polytope p /\ s SUBSET p /\

hausdist(p,s) < e



Some examples from measure theory

Steinhaus’s theorem:

|- !s:real^N->bool.

lebesgue_measurable s /\ ~negligible s

==> ?d. &0 < d /\

ball(vec 0,d) SUBSET

{x - y | x IN s /\ y IN s}

Luzin’s theorem:

|- !f:real^M->real^N s e.

measurable s /\ f measurable_on s /\ &0 < e

==> ?k. compact k /\ k SUBSET s /\

measure(s DIFF k) < e /\

f continuous_on k



Some examples from complex analysis
The Little Picard theorem:

|- !f a b.

f holomorphic_on (:complex) /\

~(a = b) /\ IMAGE f (:complex) INTER {a,b} = {}

==> ?c. f = \x. c

The Riemann mapping theorem:

|- !s. open s /\ simply_connected s <=>

s = {} \/ s = (:complex) \/

?f g. f holomorphic_on s /\

g holomorphic_on ball(Cx(&0),&1) /\

(!z. z IN s

==> f z IN ball(Cx(&0),&1) /\

g(f z) = z) /\

(!z. z IN ball(Cx(&0),&1)

==> g z IN s /\ f(g z) = z)



The future



Future prospects

I There is still lots of scope for improving automation, either
with off-the-shelf methods adapted to be provably sound, or
new ideas.

I The steady increase in the stock of theorems in the prover
libraries will continue and eventually make tackling a ‘typical’
mathematical problem much more tractable.

I New research in foundations may result in fundamentally
better approaches to formalization and even have increasing
influence back on mathematics itself.

I Given the diversity of theorem proving systems, it seems there
will be still more research into sharing and importing and
exporting proofs between them.

I We can further increase the soundness guarantees by rigorous
verification down to the lowest levels as well as proof checking
and proof auditing.



Future prospects

I There is still lots of scope for improving automation, either
with off-the-shelf methods adapted to be provably sound, or
new ideas.

I The steady increase in the stock of theorems in the prover
libraries will continue and eventually make tackling a ‘typical’
mathematical problem much more tractable.

I New research in foundations may result in fundamentally
better approaches to formalization and even have increasing
influence back on mathematics itself.

I Given the diversity of theorem proving systems, it seems there
will be still more research into sharing and importing and
exporting proofs between them.

I We can further increase the soundness guarantees by rigorous
verification down to the lowest levels as well as proof checking
and proof auditing.



Future prospects

I There is still lots of scope for improving automation, either
with off-the-shelf methods adapted to be provably sound, or
new ideas.

I The steady increase in the stock of theorems in the prover
libraries will continue and eventually make tackling a ‘typical’
mathematical problem much more tractable.

I New research in foundations may result in fundamentally
better approaches to formalization and even have increasing
influence back on mathematics itself.

I Given the diversity of theorem proving systems, it seems there
will be still more research into sharing and importing and
exporting proofs between them.

I We can further increase the soundness guarantees by rigorous
verification down to the lowest levels as well as proof checking
and proof auditing.



Future prospects

I There is still lots of scope for improving automation, either
with off-the-shelf methods adapted to be provably sound, or
new ideas.

I The steady increase in the stock of theorems in the prover
libraries will continue and eventually make tackling a ‘typical’
mathematical problem much more tractable.

I New research in foundations may result in fundamentally
better approaches to formalization and even have increasing
influence back on mathematics itself.

I Given the diversity of theorem proving systems, it seems there
will be still more research into sharing and importing and
exporting proofs between them.

I We can further increase the soundness guarantees by rigorous
verification down to the lowest levels as well as proof checking
and proof auditing.



Future prospects

I There is still lots of scope for improving automation, either
with off-the-shelf methods adapted to be provably sound, or
new ideas.

I The steady increase in the stock of theorems in the prover
libraries will continue and eventually make tackling a ‘typical’
mathematical problem much more tractable.

I New research in foundations may result in fundamentally
better approaches to formalization and even have increasing
influence back on mathematics itself.

I Given the diversity of theorem proving systems, it seems there
will be still more research into sharing and importing and
exporting proofs between them.

I We can further increase the soundness guarantees by rigorous
verification down to the lowest levels as well as proof checking
and proof auditing.



Future prospects

I There is still lots of scope for improving automation, either
with off-the-shelf methods adapted to be provably sound, or
new ideas.

I The steady increase in the stock of theorems in the prover
libraries will continue and eventually make tackling a ‘typical’
mathematical problem much more tractable.

I New research in foundations may result in fundamentally
better approaches to formalization and even have increasing
influence back on mathematics itself.

I Given the diversity of theorem proving systems, it seems there
will be still more research into sharing and importing and
exporting proofs between them.

I We can further increase the soundness guarantees by rigorous
verification down to the lowest levels as well as proof checking
and proof auditing.


