
A Machine-Checked Theory of Floating Point Arithmetic 1

A Machine-Checked Theory

of Floating Point Arithmetic

John Harrison

Intel Corporation, EY2-03

• Introduction to IA-64 and HOL Light

• Floating point formats

• Ulps

• Rounding

• Proof tools and execution

• Conclusions

John Harrison Intel EY2-03, 15 Sep 1999

A Machine-Checked Theory of Floating Point Arithmetic 2

IA-64 overview

IA-64 is a new 64-bit computer architecture

jointly developed by Hewlett-Packard and Intel,

and the forthcoming Merced chip from Intel is its

first silicon implementation. Among the special

features of IA-64 are:

• An instruction format encoding parallelism

explicitly

• Instruction predication

• Speculative and advanced loads

• Upward compatibility with IA-32 (x86).

The IA-64 Applications Developer’s Architecture

Guide is now available from Intel in printed form

and online:

http://developer.intel.com/design/ia64/downloads/adag.htm

John Harrison Intel EY2-03, 15 Sep 1999

A Machine-Checked Theory of Floating Point Arithmetic 3

HOL Light

Verifications are conducted using the HOL Light

theorem prover.

• A simplified version of HOL:

– Coded in CAML Light

– More minimalist axiomatic foundations

– Structured more rationally

• LCF-style system:

– Every theorem created by primitive rules

– All theories developed definitionally

– Full programmability in ML toplevel

We are using HOL Light to formally verify

various pieces of mathematical (floating point)

software. This talk covers the basic theories.

John Harrison Intel EY2-03, 15 Sep 1999

A Machine-Checked Theory of Floating Point Arithmetic 4

Floating point numbers

There are various different schemes for floating

point numbers. Usually, the floating point

numbers are those representable in some number

n of significant binary digits, within a certain

exponent range, i.e.

(−1)s × d0.d1d2 · · · dn × 2e

where

• s ∈ {0, 1} is the sign

• d0.d1d2 · · · dn is the significand and d1d2 · · · dn

is the fraction. These are not always used

consistently; sometimes ‘mantissa’ is used for

one or the other

• e is the exponent.

We often refer to p = n + 1 as the precision.

John Harrison Intel EY2-03, 15 Sep 1999

A Machine-Checked Theory of Floating Point Arithmetic 5

HOL floating point formats

We have formalized a generic floating point

theory in HOL, which can be applied to all the

IA-64 formats, and others supported in software

such as quad precision.

A floating point format is identified by a triple of

natural numbers fmt.

The corresponding set of real numbers is

format(fmt), or ignoring the upper limit on the

exponent, iformat(fmt).

|- iformat (E,p,N) =

{ x | ∃s e k. s < 2 ∧ k < 2 EXP p ∧

(x = --(&1) pow s * &2 pow e *

&k / &2 pow N)}

We distinguish carefully between actual floating

point numbers (as bitstrings) and the

corresponding real numbers. For the central

concept, rounding, only the latter is relevant.

John Harrison Intel EY2-03, 15 Sep 1999

A Machine-Checked Theory of Floating Point Arithmetic 6

Units in the last place

It’s customary to give a bound on the error in

transcendental functions in terms of ‘units in the

last place’ (ulps).

While ulps are a standard way of measuring error,

there’s a remarkable lack of unanimity in

published definitions of the term. One of the

merits of a formal treatment is to clear up such

ambiguities.

-

2k

Roughly, a unit in the last place is the gap

between adjacent floating point numbers. But at

the boundary 2k between ‘binades’, this distance

changes.

John Harrison Intel EY2-03, 15 Sep 1999

A Machine-Checked Theory of Floating Point Arithmetic 7

Two definitions

Goldberg considers the binade containing the

computed result:

In general, if the floating-point number

d.d · · ·d × βe is used to represent z, it is

in error by |d.d · · ·d − (z/βe)|βp−1e units

in the last place.

Muller considers the binade containing the exact

result:

The term ulp(x) (for unit in the last

place) denotes the distance between the

two floating point numbers that are

closest to x.

However these both have counterintuitive

properties.

John Harrison Intel EY2-03, 15 Sep 1999

A Machine-Checked Theory of Floating Point Arithmetic 8

Problems with these definitions

An error of 0.5ulp according to Goldberg, but

intuitively 1ulp.

-

?

exact

2k

?

computed

An error of 0.4ulp according to Muller, but

intuitively 0.2 ulp. Rounding up is worse...

-

?

exact

2k

?

computed

Our definition: ulp(x) is the distance between the

closest pair of floating point numbers a and b

with a ≤ x ≤ b. Note that we are counting the

exact result 2k as belonging to the binade below.

John Harrison Intel EY2-03, 15 Sep 1999

A Machine-Checked Theory of Floating Point Arithmetic 9

Rounding

Rounding is controlled by a rounding mode,

which is defined in HOL as an enumerated type:

roundmode = Nearest | Down | Up | Zero

We define notions of ‘closest approximation’ as

follows:

|- is_closest s x a =

a IN s ∧ ∀b. b IN s =⇒ abs(b - x) >= abs(a - x)

|- closest s x = εa. is_closest s x a

|- closest_such s p x =

εa. is_closest s x a ∧

(∀b. is_closest s x b ∧ p b =⇒ p a)

and hence define rounding:

|- (round fmt Nearest x =

closest_such (iformat fmt)

(EVEN o decode_fraction fmt) x) ∧

(round fmt Down x =

closest {a | a IN iformat fmt ∧ a <= x} x) ∧

(round fmt Up x =

closest {a | a IN iformat fmt ∧ a >= x} x) ∧

(round fmt Zero x =

closest {a | a IN iformat fmt ∧ abs a <= abs x} x)

John Harrison Intel EY2-03, 15 Sep 1999

A Machine-Checked Theory of Floating Point Arithmetic 10

Theorems about rounding

We prove some basic properties of rounding, e.g.

that an already-representable number rounds to

itself and conversely:

|- a IN iformat fmt =⇒ (round fmt rc a = a)

|- ¬(precision fmt = 0)

=⇒ ((round fmt rc x = x) = x IN iformat fmt)

and that rounding is monotonic in all rounding

modes:

|- ¬(precision fmt = 0) ∧ x <= y

=⇒ round fmt rc x <= round fmt rc y

There are various other simple properties, e.g.

symmetries and skew-symmetries like:

|- ¬(precision fmt = 0)

=⇒ (round fmt Down (--x) = --(round fmt Up x))

John Harrison Intel EY2-03, 15 Sep 1999

A Machine-Checked Theory of Floating Point Arithmetic 11

Exact calculation

It’s often important to prove that certain

expressions in terms of floating point numbers are

themselves representable, and hence when

calculated with machine arithmetic operations

incur no rounding error. For example the

following is a classic result:

|- a IN iformat fmt ∧ b IN iformat fmt ∧

a / &2 <= b ∧ b <= &2 * a

=⇒ (b - a) IN iformat fmt

The following shows how we can retrieve the

rounding error in multiplication using a fused

multiply-accumulate (available on IA-64).

|- a IN iformat fmt ∧ b IN iformat fmt ∧

&2 pow (2 * precision fmt - 1) / &2 pow (ulpscale fmt)

<= abs(a * b)

=⇒ (a * b - round fmt Nearest (a * b)) IN iformat fmt

Here’s a similar one for addition and subtraction:

|- x IN iformat fmt ∧ y IN iformat fmt ∧ abs(x) <= abs(y)

=⇒ (round fmt Nearest (x + y) - y) IN iformat fmt ∧

(round fmt Nearest (x + y) - (x + y)) IN iformat fmt

John Harrison Intel EY2-03, 15 Sep 1999

A Machine-Checked Theory of Floating Point Arithmetic 12

Proof tools and execution

Several definitions are highly non-constructive,

notably rounding. However we often need to

prove what the result of rounding a particular

number is. We have a conversion ROUND CONV that

will round a rational number to a given format

while returning an equational theorem, e.g.

#ROUND_CONV ‘round (10,11,12) Nearest (&22 / &7)‘;;

|- round (10,11,12) Nearest (&22 / &7) = &1609 / &512

Internally, HOL derives this using theorems about

sufficient conditions for correct rounding. In

ACL2, we would be forced to adopt a

non-standard constructive definition, but would

then have such proving procedures without

further work and highly efficient.

More generally, we have a number of proof tools

to apply routine forms of reasoning automatically,

disposing of side-conditions. These tools can, for

example, derive absolute or relative error bounds

in a sequence of floating point operations.

John Harrison Intel EY2-03, 15 Sep 1999

A Machine-Checked Theory of Floating Point Arithmetic 13

Conclusions

Our formalization has the following properties:

• Complete genericity over arbitrary floating

point formats, which even includes

(sign-magnitude) integers as a special case.

• Precise formalization of all the main IEEE

concepts such as formats, rounding, flags and

exceptions, as well as notions like ulps.

• Extensive collection of important and

non-trivial lemmas that are often needed.

• Support from automatic proof tools to

automate explicit execution and other

important proof steps like error analysis.

It has been used in the formal verification of

software for division, square root and various

transcendental functions. As we do more

examples, we will further extend and refine the

theory.

John Harrison Intel EY2-03, 15 Sep 1999

