
Automated Reasoning and its Applications

John Harrison
Intel Corporation

Colloquium, Institute of Mathematics

Hanoi

30th July 2009

0

What is automated reasoning?

Attempting to perform logical reasoning in an automatic and
algorithmic way. An old dream:

• Hobbes (1651): “Reason . . . is nothing but reckoning (that is,
adding and subtracting) of the consequences of general names
agreed upon, for the marking and signifying of our thoughts.”

• Leibniz (1685) “When there are disputes among persons, we can
simply say: Let us calculate [calculemus], without further ado, to
see who is right.”

Nowadays, by ‘automatic and algorithmic’ we mean ‘using a
computer program’.

1

What does automated reasoning involve?

There are two steps to performing automated reasoning, as
anticipated by Leibniz:

• Express statement of theorems in a formal language. (Leibniz’s
characteristica universalis.)

• Use automated algorithmic manipulations on those formal
expressions. (Leibniz’s calculus ratiocinator).

Is that really possible?

2

Theoretical and practical limitations

• Modern results in logic (Gödel, Tarski) imply that not even
elementary number theory can be done completely
automatically.

• There are formal proof systems (e.g. first-order set theory) and
semi-decision procedures that will in principle find the proof of
anything provable in ‘ordinary’ mathematics.

• In practice, because of time or space limits, these automated
procedures are not all that useful, and we may prefer an
interactive arrangement where a human guides the machine.

3

Why automated reasoning?

For general intellectual interest? It is a fascinating field that helps to
understand the real nature of mathematical creativity. Or more
practically:

• To check the correctness of proofs in mathematics,
supplementing or even replacing the existing ‘social process’ of
peer review etc. with a more objective criterion.

• To extend rigorous proof from pure mathematics to the
verification of computer systems (programs, hardware systems,
protocols etc.), supplementing or replacing the usual testing
process.

These are currently the two main drivers of progress in the field.

4

Automated Reasoning is not the same as Computer Algebra

Both systems for symbolic computation, but rather different:

• Theorem provers are more logically flexible and rigorous

• CASs are generally easier to use and more efficient/powerful

Some systems like MathXpert, Theorema blur the distinction
somewhat . . .

5

Expressivity of logic

English Formal

false ⊥
true ⊤
not p ¬p

p and q p ∧ q

p or q p ∨ q

p implies q p ⇒ q

p iff q p ⇔ q

for all x, p ∀x. p

there exists x such that p ∃x. p

6

Limited expressivity in CASs

Often limited to conditional equations like

√
x2 =







x if x ≥ 0

−x if x ≤ 0

whereas using logic can say many interesting (and highly
undecidable) things

∀x ∈ R. ∀ǫ > 0. ∃δ > 0. ∀x′. |x − x′| < δ ⇒ |f(x) − f(x′)| < ǫ

7

Unclear expressions in CASs

Consider an equation (x2 − 1)/(x − 1) = x + 1 from a CAS. What
does it mean?

• Universally valid identity (albeit not quite valid)?

• Identity true when both sides are defined

• Identity over the field of rational functions

• . . .

8

Lack of rigour in many CASs

CASs often apply simplifications even when they are not strictly valid.

Hence they can return wrong results.

Consider the evaluation of this integral in Maple:

∫

∞

0

e−(x−1)2

√
x

dx

We try it two different ways:

9

An integral in Maple

> int(exp(-(x-t)ˆ2)/sqrt(x), x=0..infinity);

1

2

e−t
2

(

−
3(t2)

1

4 π
1

2 2
1

2 e
t
2

2 K3

4

(t
2

2
)

t2
+ (t2)

1

4 π
1

2 2
1

2 e
t
2

2 K7

4

(t
2

2)
)

π
1

2

> subs(t=1,%);

1

2

e−1
(

−3π
1

2 2
1

2 e
1

2 K3

4

(1
2) + π

1

2 2
1

2 e
1

2 K7

4

(1
2)

)

π
1

2

> evalf(%);

0.4118623312

> evalf(int(exp(-(x-1)ˆ2)/sqrt(x), x=0..infinity));

1.973732150

10

Orientation

Can divide theorem proving research into the following streams:

• Fully automated theorem proving

– AI-oriented

– Logic-oriented

• Interactive theorem proving

– Verification-oriented

– Mathematics-oriented

11

Early research in automated reasoning

Most early theorem provers were fully automatic, even though there
were several different approaches:

• Human-oriented AI style approaches (Newell-Simon, Gelerntner)

• Machine-oriented algorithmic approaches (Davis, Gilmore,
Wang, Prawitz)

Modern work dominated by machine-oriented approach but some
successes for AI approach.

12

A theorem in geometry (1)

Example of AI approach in action:

A

B C

�
�

�
�

�
�

�
�

A
A
A
A
A
A
A
A

If the sides AB and AC are equal (i.e. the triangle is isosceles), then
the angles ABC and ACB are equal.

13

A theorem in geometry (2)

Drop perpendicular meeting BC at a point D:

A

B CD

�
�

�
�

�
�

�
�

A
A
A
A
A
A
A
A

and then use the fact that the triangles ABD and ACD are
congruent.

14

A theorem in geometry (3)

Originally found by Pappus but not in many books:

A

B C

�
�

�
�

�
�

�
�

A
A
A
A
A
A
A
A

Simply, the triangles ABC and ACB are congruent.

15

The Robbins Conjecture (1)

Huntington (1933) presented the following axioms for a Boolean
algebra:

x + y = y + x

(x + y) + z = x + (y + z)

n(n(x) + y) + n(n(x) + n(y)) = x

Herbert Robbins conjectured that the Huntington equation can be
replaced by a simpler one:

n(n(x + y) + n(x + n(y))) = x

16

The Robbins Conjecture (2)

This conjecture went unproved for more than 50 years, despite being
studied by many mathematicians, even including Tarski.

It because a popular target for researchers in automated reasoning.

In October 1996, a (key lemma leading to) a proof was found by
McCune’s program EQP.

The successful search took about 8 days on an RS/6000 processor
and used about 30 megabytes of memory.

17

Interactive theorem proving

The idea of a more ‘interactive’ approach was already anticipated by
pioneers, e.g. Wang (1960):

[...] the writer believes that perhaps machines may more
quickly become of practical use in mathematical research,
not by proving new theorems, but by formalizing and
checking outlines of proofs, say, from textbooks to detailed
formalizations more rigorous that Principia [Mathematica],
from technical papers to textbooks, or from abstracts to
technical papers.

However, constructing an effective combination is not so easy.

18

The 17 Provers of the World

Freek Wiedijk’s book The Seventeen Provers of the World
(Springer-Verlag lecture notes in computer science volume 3600)
describes:

HOL, Mizar, PVS, Coq, Otter/IVY, Isabelle/Isar, Alfa/Agda, ACL2,
PhoX, IMPS, Metamath, Theorema, Lego, Nuprl, Omega, B prover,
Minlog.

Each one has a proof that
√

2 is irrational.

There are many other systems besides these . . .

19

Effective interactive theorem proving

What makes a good interactive theorem prover?

• Reliability

• Library of existing results

• Intuitive input format

• Powerful automated steps

• Programmability

• Checkability of proofs

The various systems have different strengths and weaknesses when
considered according to these criteria.

20

Benefits and costs

Working in an interactive theorem prover offers two main benefits:

• Confidence in correctness (if theorem prover is sound).

• Automatic assistance with tedious/routine parts of proof.

However, formalization and theorem proving is hard work, even for a
specialist. Mainly used in:

• Formal verification of computer systems

• Formalization of pure mathematics

21

The human cost of computer bugs

Computers are often used in safety-critical systems where a failure
could cause loss of life.

• Heart pacemakers

• Aircraft

• Nuclear reactor controllers

• Car engine management systems

• Radiation therapy machines

• Telephone exchanges (!)

• ...

22

Financial cost of bugs

Even when not a matter of life and death, bugs can be financially
serious if a faulty product has to be recalled or replaced.

• 1994: floating-point division (FDIV) bug in the IntelPentium
processor (cost $500M).

• 1996: floating-point conversion overflow causes self-destruct of
Ariane 5 rocket on its maiden flight (rocket and payload another
$500M).

Formal verification using computer theorem provers is now routinely
used for parts of such critical systems, and we expect to see more of
this in the future.

23

Formal verification

Formal verification: mathematically prove the correctness of a design
with respect to a mathematical formal specification.

Actual system

Design model

Formal specification

Actual requirements

6

6

6

24

Verification vs. testing

Verification has some advantages over testing:

• Exhaustive.

• Improves our intellectual grasp of the system.

However:

• Difficult and time-consuming.

• Only as reliable as the formal models used.

25

Formal verification methods

Many different methods are used in formal verification, mostly trading
efficiency and automation against generality.

• Propositional tautology checking

• Symbolic simulation

• Symbolic trajectory evaluation

• Temporal logic model checking

• Decidable subsets of first order logic

• First order automated theorem proving

• Interactive theorem proving

26

Logic and circuits

The correspondence between digital logic circuits and propositional
logic has been known for a long time.

Digital design Propositional Logic

circuit formula

logic gate propositional connective

input wire atom

internal wire subexpression

voltage level truth value

Many problems in circuit design and verification can be reduced to
automated propositional tautology or satisfiability checking (‘SAT’).

For example optimization correctess: φ ⇔ φ′ is a tautology.

27

Applying theorem provers in mathematics

Interactive theorem provers have been used to formalize many
non-trivial theorems of mathematics

See http://www.cs.ru.nl/ ∼freek/100/ for examples, e.g.

• Jordan Curve Theorem — Tom Hales (HOL Light), Artur
Kornilowicz et al. (Mizar)

• Prime Number Theorem — Jeremy Avigad et al (Isabelle/HOL),
John Harrison (HOL Light)

• Four-colour theorem — Georges Gonthier (Coq)

These indicate that highly non-trivial results are within reach.
However these all required months/years of work.

28

Are ordinary proofs in doubt?

Mathematical proofs are subjected to peer review, but errors often
escape unnoticed.

Professor Offord and I recently committed ourselves to an
odd mistake (Annals of Mathematics (2) 49, 923, 1.5). In
formulating a proof a plus sign got omitted, becoming in
effect a multiplication sign. The resulting false formula got
accepted as a basis for the ensuing fallacious argument. (In
defence, the final result was known to be true.)

A book by Lecat gave 130 pages of errors made by major
mathematicians up to 1900.

A similar book today would no doubt fill many volumes.

29

Most doubtful informal proofs

What are the proofs where we do in practice worry about
correctness?

• Those that are just very long and involved. Classification of finite
simple groups, Seymour-Robertson graph minor theorem

• Those that involve extensive computer checking that cannot in
practice be verified by hand. Four-colour theorem, Hales’s proof
of the Kepler conjecture

• Those that are about very technical areas where complete rigour
is painful. Some branches of proof theory, or formal properties of
type systems

30

The discouraging history of the 4-colour Theorem

Early history indicates fallibility of the traditional social process:

• Proof claimed by Kempe in 1879

• Flaw only point out in print by Heaywood in 1890

Later proof by Appel and Haken was apparently correct, but gave
rise to a new worry:

• How to assess the correctness of a proof where many explicit
configurations are checked by a computer program?

Most worries finally dispelled by Gonthier’s formal proof in Coq.

31

Hales’s Proof of the Kepler Conjecture

No packing of spheres in 3-dimensional space has higher density
than the natural packing commonly used to stack oranges,
cannonballs etc.

Tom Hales, working with Samuel Ferguson, proved this in 1998, with
300 pages of mathematics using the calculations performed by about
40,000 lines of computer code.

A panel of 12 referees for Annals of Mathematics, studied the proof
for 4 years. They finally returned with the disappointing verdict that
they were ‘99% certain’ of the correctness.

The proof was published in the Annals, but this process is somewhat
unsatisfactory, and the same thing is likely to recur more and more
often in the future.

32

The Flyspeck project

We should be able to do better by complete formalization, removing
almost all practical possibility of errors.

Hales launched the Flyspeck Project to completely formalize the
proof of the Kepler conjecture.

Considerable progress has already been made, and a workshop
devoted to the project is just coming to an end here in Hanoi.

http://weyl.math.pitt.edu/hanoi2009/

If you want to get involved, see, e.g.

http://code.google.com/p/flyspeck/wiki/

FlyspeckFactSheet

33

Conclusions

Let me finish with a quote from Tom Hales about the Flyspeck project

In truth, my motivations for the project are far more complex
than a simple hope of removing residual doubt from the
minds of few referees. Indeed, I see formal methods as
fundamental to the long-term growth of mathematics.

34

