Optimizing Scientific Libraries for the Itanium

John Harrison Intel Corporation

Gelato Federation Meeting, HP Cupertino

May 25, 2005

Quick summary

Intel supplies 'drop-in replacement' versions of common libraries optimized for particular (micro-)architectures.

We'll focus on our version of the standard math library libm for the Intel® Itanium® architecture.

Provides superior speed and/or accuracy to typical generic versions (FDLIBM etc.)

Special features of Itanium make for some particularly high-quality implementations.

What makes Itanium special?

- Parallelism, many registers, predication and explicit scheduling
 can consider sophisticated algorithms with parallel threads
- Fused multiply-add and extended precision useful for polynomials and eases many accuracy-preserving techniques
- Non-atomic division and square root allows optimized integration into more complicated algorithms
- Multiple status fields intermediate computations can use higher intermediate precision with no performance hit
- Predication and register renaming can eliminate most control flow and pipeline multiple instances

"Naive" table-driven algorithm

A naive algorithm for e^x illustrates the key steps of the typical table-driven algorithm:

- Reduction: split x = N + r where N is an integer and $|r| \le 1/2$.
- Approximation: $e^r = 1 + r + r^2/2! + \cdots + r^n/n!$
- Reconstruction: $e^x = e^N e^r$ with e^N taken from a table.

Same pattern is used in most real algorithms, but with careful attention to numeric accuracy and the tradeoff between speed and table size.

Real table-driven algorithm

- The input number X is first reduced to r with approximately $|r| \le \pi/4$ such that $X = r + N\pi/2$ for some integer N. We now need to calculate $\pm tan(r)$ or $\pm cot(r)$ depending on N modulo 4.
- If the reduced argument r is still not small enough, it is separated into its leading few bits B and the trailing part x = r B, and the overall result computed from tan(x) and pre-stored functions of B, e.g.

$$tan(B+x) = tan(B) + \frac{\frac{1}{\sin(B)\cos(B)}tan(x)}{\cot(B) - tan(x)}$$

 Now a polynomial (plus reciprocal) approximation is used for tan(r), cot(r) or tan(x) as appropriate.

Polynomials using fma

A traditional approach to computing polynomials is "Horner's rule":

$$a_0 + x(a_1 + x(a_2 + x(a_3 + \dots + x(a_{n-1} + xa_n) \dots)))$$

Minimizes the total number of operations and usually has good numerical properties.

Even better on Itanium. The core FP operation is the *fused multiply-add*, which computes $a \cdot b + c$ in one operation.

Horner's rule is used in most of the throughput-optimized algorithms.

Binary splitting of polynomials

If our concern is *latency*, we can do better using binary splitting. This arrangement yields 3 fma latencies instead of 6:

 $1 + d + d^2 + \dots + d^6 = 1 + (1 + d + d^2)(d^4 + d)$

More generally, we can do most *n*-degree polynomials in around $log_2(n)$ latencies, thanks to pipelining and two floating-point units.

Using extended precision, there are few accuracy worries with algebraic rearrangement. (Need a little care over monotonicity!)

So our algorithms often use longer polynomials than the norm, given that they can be computed quickly and accurately.

Exploiting non-atomic division

On Itanium, there's no atomic division operation, but frcpa returns a reciprocal approximation good to about 8 bits.

Techniques largely due to Markstein allow this to be refined to an IEEE-correct quotient just using standard fma operations.

- Automatically inherits pipelining from core operations, giving high throughput and ability to schedule in parallel with other work
- Simpler hardware
- Can more flexibly use specially optimized algorithms, e.g. not force IEEE rounding of intermediate results
- Can exploit the reciprocal approximation itself for various tricks

Using parallelism and non-atomic division

In computing atan(x) for x > 1 we actually compute $\pi/2 - atan(1/x)$. It seems we have a division in the critical path.

But eventually we are computing a polynomial in 1/x, and we can factor out the highest term:

$$p(1/x) = 1/x^{45}q(x)$$

Now let c = frcpa(x) and $b = c \cdot x - 1$. We can actually compute the following, where all three terms in the product can be evaluated in parallel

$$p(1/x) = c^{45}r(b)q(x)$$

where r(b) is a power series expansion of $\frac{1}{(1+b)^{45}}$.

The frcpa trick

Though designed for starting a division, frcpa can speed up range reduction for some multiplicative functions.

Let $c = \operatorname{frcpa}(x)$ and $r = c \cdot x - 1$. Then:

ln(x) = ln((1+r)/c) = ln(1+r) - ln(c)

We have a precomputed table of values for ln(c), and ln(1+r) is approximated by a short power series.

Thanks to this, the logarithm is about the fastest of our transcendentals!

Some results

Figures for libm latency and VML throughput, double precision.

Function	Latency	Throughput	Accuracy (ulps)
atan	56	13.3	0.501
cbrt	34	10.2	0.501
exp	43	6.2	0.502
log	31	11.2	0.501
sin	49	8.2	0.503
tan	63	11.3	0.507

All figures for double precision "common path". Some cases may be quicker (exp(0)) or slower $(sin(2^{1000}))$.

Accuracy figures are for libm; those for VML may differ slightly.

Conclusions

Using Itanium's architectural features to the full, we can provide a libm with industry-leading speed and accuracy.

Almost every special architectural feature of Itanium is fully exploited here, occasionally in unexpected ways.

Some current work:

- Investigate perfectly rounded transcendental functions (with reasonable performance)
- Fill out functionality with high-quality versions of more obscure functions (e.g. Bessel functions $J_n(x)$ and $Y_n(x)$).

Further reading

For quick surveys:

New Algorithms for Improved Transcendental Functions on IA-64, Shane Story and Peter Tang, 14th IEEE Computer Arithmetic Conference, 1999.

The Computation of Transcendental Functions on the IA-64 Architecture, John Harrison, Ted Kubaska, Shane Story and Peter Tang, Intel Technology Journal Q4 1999.

Much more detailed information:

IA-64 and elementary functions: speed and precision, Peter Markstein, Hewlett-Packard Professional Books, 2000. *Scientific Computing on Itanium-based systems*, Marius Cornea, John Harrison and Peter Tang, Intel Press 2003.