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The human cost of bugs

Computers are often used in safety-critical systems where a failure
could cause loss of life.

e Heart pacemakers

e Aircraft

e Nuclear reactor controllers

e Car engine management systems
e Radiation therapy machines

e Telephone exchanges (!)



Financial cost of bugs

Even when not a matter of life and death, the consequences of bugs
can be quite dramatic.

e In 1996, the Ariane 5 rocket made its first flight
e It was automatically destroyed shortly after takeoff

e The cause was an uncaught exception on floating-point to
integer conversion.



Another floating-point bug

Intel has also had at least one major floating-point issue:

e Error in the floating-point division (FDIV) instruction on some
early InteldJPentium(] processors

e \ery rarely encountered, but was hit by a mathematician doing
research in number theory.

e Intel eventually set aside US $475 million to cover the costs.



Things are not getting easier

The environment is becoming even less benign:

e The overall market is much larger, so the potential cost of
recall/replacement is far higher.

e New products are ramped faster and reach high unit sales very
quickly.

e Competitive pressures are leading to more design complexity.



Some complexity metrics

Recent Intel processor generations (Pentium, P6 and Pentium 4)
iIndicate:

e A 4-fold increase in overall complexity (lines of RTL ...) per
generation

e A 4-fold increase in design bugs per generation.

e Approximately 8000 bugs introduced during design of the
Pentium 4.

Fortunately, pre-silicon detection rates are now very close to 100%.

Just enough to keep our heads above water. . .



Limits of testing

Bugs are usually detected by extensive testing, including pre-silicon
simulation.

e Slow — especially pre-silicon
e Too many possibilities to test them all
For example:

e 2190 possible pairs of floating point numbers (possible inputs to
an adder).

e Vastly higher number of possible states of a complex
microarchitecture.



Formal verification

Formal verification: mathematically prove the correctness of a design
with respect to a mathematical formal specification.
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Verification vs. testing

Verification has some advantages over testing:
e Exhaustive.
e Improves our intellectual grasp of the system.
However:
e Difficult and time-consuming.
e Only as reliable as the formal models used.

e How can we be sure the proof is right?



Analogy with mathematics

Sometimes even a huge weight of empirical evidence can be
misleading.

e m(n) = number of primes <n

o li(n) = [, du/ln(u)

Littlewood proved in 1914 that w(n) — li(n) changes sign infinitely
often.

No change of sign at all had ever been found despite testing up to
n = 101Y (in the days before computers).

Similarly, extensive testing of hardware or software may still miss
errors that would be revealed by a formal proof.



Formal verification is hard

Writing out a completely formal proof of correctness for real-world
hardware and software is difficult.

e Must specify intended behaviour formally
e Need to make many hidden assumptions explicit
e Requires long detailed proofs, difficult to review

The state of the art is quite limited.

Software verification has been around since the 60s, but there have
been few major successes.
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Machine-checked proof

A more promising approach is to have the proof checked (or even
generated) by a computer program.

e It can reduce the risk of mistakes.
e The computer can automate some parts of the proofs.

There are limits on the power of automation, so detailed human
guidance is often necessary.
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A spectrum of formal techniques

There are various possible levels of rigor in correctness proofs:
e Programming language typechecking
e Lint-like static checks (uninitialized variables .. .)
e Checking of loop invariants and other annotations

e Complete functional verification
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FV in the software industry

Some recent success with partial verification in the software world:
e Analysis of Microsoft Windows device drivers using SLAM
e Non-overflow proof for Airbus A380 flight control software

Much less use of full functional verification. Very rare except in highly
safety-critical or security-critical niches.
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FV in the hardware industry

In the hardware industry, full functional correctness proofs are
iIncreasingly becoming common practice.

e Hardware is designed in a more modular way than most
software.

e There is more scope for complete automation

e The potential consequences of a hardware error are greater
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Formal verification methods

Many different methods are used in formal verification, mostly trading
efficiency and automation against generality.

e Propositional tautology checking

e Symbolic simulation

e Symbolic trajectory evaluation

e Temporal logic model checking

e Decidable subsets of first order logic

e First order automated theorem proving

e Interactive theorem proving



Our work

We will focus on our own formal verification activities:
e Formal verification of floating-point operations
e Targeted at the Intell] Itaniuml processor family.

e Conducted using the interactive theorem prover HOL Light.
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Why floating-point?

There are obvious reasons for focusing on floating-point:

e Known to be difficult to get right, with several issues in the past.
We don’t want another FDIV!

e Quite clear specification of how most operations should behave.
We have the IEEE Standard 754.

However, Intel is also applying FV in many other areas, e.g. control
logic, cache coherence, bus protocols ...
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Why interactive theorem proving?

Limited scope for highly automated finite-state techniques like model
checking.

It's difficult even to specify the intended behaviour of complex
mathematical functions in bit-level terms.

We need a general framework to reason about mathematics in
general while checking against errors.
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HOL Light overview

HOL Light is a member of the HOL family of provers, descended
from Mike Gordon’s original HOL system developed in the 80s.

An LCF-style proof checker for classical higher-order logic built on
top of (polymorphic) simply-typed A-calculus.

HOL Light is designed to have a simple and clean logical foundation.

Current version written in Objective CAML (*OCaml”).
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What does LCF mean?

The name is a historical accident:

The original Stanford and Edinburgh LCF systems were for
Scott’s Logic of Computable Functions.

The main features of the LCF approach to theorem proving are:

e Reduce all proofs to a small number of relatively simple primitive
rules

e Use the programmability of the implementation/interaction
language to make this practical
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No free lunch

There is no practical way of automatically proving highly
sophisticated mathematics.

Some isolated successes such as the solution of the Robbins
conjecture ...

Mostly, we content ourselves with automating “routine” parts of the
proof.
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Automating the routine

We can automate linear inequality reasoning:
a<zAb<yAlr—y|<l|z—a|Alz—y| <|zr—>bA
b<z=lz—a|l<|lz—=b)AN(a<y=|y—>b| <|r—al
=a=25

and basic algebraic rearrangement:

wi + 21 +yt +21) - (w3 + 25+ Y3+ 23) =

|- Wy — Ty - Ty — Y1 - Yo — 21 - Z2)°F

22+

S

g

" X2+ X1 W T Y122 — 21

=

(
(
( y2)
( 'y2—5€1'22+y1'w2+2’1'332)2+
( ws)

2
2

g

"2 T X1 Y2 — Y1 T2+ 21

22



The obviousness mismatch

Can also automate some purely logical reasoning such as this:

Ve yz Plx,y) NP(y,z) = P(x,z)) A
Yoy z. Q(z,y) A Q(y, 2) = Q(z,2)) A
Vo y. Q(z,y) = Qy,z)) A

Vo y. P(z,y) vV Q(z,y))

= (Vo y. P(z,y)) vV (Vo y. Q(z,y))

/N N N /N

As L0S points out, this is not obvious for most people.
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Floating point verification

We’ve used HOL Light to verify the accuracy of floating point
algorithms (used in hardware and software) for:

e Division and square root

e Transcendental function such as sin, exp, atan.
This involves background work in formalizing:

e Real analysis

e Basic floating point arithmetic
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Existing real analysis theory

e Definitional construction of real numbers
e Basic topology

e General limit operations

e Sequences and series

e Limits of real functions

e Differentiation

e Power series and Taylor expansions

e Transcendental functions

e Gauge integration
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Examples of useful theorems

sin(x +y) =sin(x) *» cos(y) + cos(x) * sin(y)
tan(&n * pi) = &0

& < x A& <y = (In(x /7 y) =1In(x) - In(y))
f contl x A g contl (f x) = (g o f) contl X
(VX. a<=x AX <=b = (f diffl (f° x)) x) A
f(a) <= KA f(b) <= KA

(VX. a <= X AX <=Db A (f"(x) = &) = f(x) <= K)
= VX. a<=X AX <=b = f(x) <= K
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HOL floating point theory (1)

A floating point format is identified by a triple of natural numbers f nt .

The corresponding set of real numbers is format(fmt), or ignoring
the upper limit on the exponent, iformat(fmt).

Floating point rounding returns a floating point approximation to a
real number, ignoring upper exponent limits. More precisely

round fnmt rc X

returns the appropriate member of iformat(fmt) for an exact value
x, depending on the rounding mode rc, which may be one of
Nearest, Down, Up and Zero.
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HOL floating point theory (2)

For example, the definition of rounding down is:

| - (round fm Down x = cl osest
{a| alNiformat fnt A a <= x} X)

We prove a large number of results about rounding, e.g.

|- —(precision fm =0) A Xx INiformat fnt
= (round fnmt rc x = x)

that rounding is monotonic:

| - —(precision fnt =0) A X <=y
= round fnt rc x <=round fnm rc vy

and that subtraction of nearby floating point numbers is exact:

|- aINiformat fmt A b INiformat fnt A

al & <=b ANb<=& * a = (b- a) INiformat fnt
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The (1 + ¢) property

Designers often rely on clever “cancellation” tricks to avoid or
compensate for rounding errors.

But many routine parts of the proof can be dealt with by a simple
conservative bound on rounding error:

| - normalizes fn x A
—-(precision fnmt = 0)
= de. abs(e) <= murc / & pow (precision fm - 1) A
(round fnt rc x =x * (& + e))

Derived rules apply this result to computations in a floating point
algorithm automatically, discharging the conditions as they go.
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Example: tangent algorithm

e The input number X is first reduced to » with approximately
7| < m/4 such that X =r + N« /2 for some integer N. We now
need to calculate t+tan(r) or +cot(r) depending on N modulo 4.

e |If the reduced argument r is still not small enough, it is separated
into its leading few bits B and the trailing part = r — B, and the
overall result computed from tan(x) and pre-stored functions of
B, e.g.

1
sin(B)cos(B)

cot(B) — tan(x)

tan(x)
tan(B + x) = tan(B) +

e Now a power series approximation is used for tan(r), cot(r) or
tan(x) as appropriate.
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Overview of the verification

To verify this algorithm, we need to prove:

The range reduction to obtain r is done accurately.

The mathematical facts used to reconstruct the result from
components are applicable.

Stored constants such as tan(B) are sufficiently accurate.

The power series approximation does not introduce too much
error in approximation.

The rounding errors involved in computing with floating point
arithmetic are within bounds.

Most of these parts are non-trivial. Moreover, some of them require
more pure mathematics than might be expected.
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Why mathematics?

Controlling the error in range reduction becomes difficult when the
reduced argument X — N« /2 is small.

To check that the computation is accurate enough, we need to know:

How close can a floating point number be to an integer
multiple of 7 /27?

Even deriving the power series (for 0 < |z| < 7):

1 1 2
cot(x) =1/x — 3%~ E:c‘g— %aﬁ—...

IS much harder than you might expect.
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Polynomial approximation errors

Many transcendental functions are ultimately approximated by
polynomials in this way.

This usually follows some initial reduction step to ensure that the
argument is in a small range, say = € [a, b].

The minimax polynomials used have coefficients found numerically
to minimize the maximum error over the interval.

In the formal proof, we need to prove that this is indeed the maximum
error, say Vz € [a, b]. |sin(z) — p(z)] < 107%2%|x|.

By using a Taylor series with much higher degree, we can reduce the
problem to bounding a pure polynomial with rational coefficients over
an interval.
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Bounding functions

If a function f differentiable for a < xz < b has the property that
f(z) < K at all points of zero derivative, as well as at x = a and
x = b, then f(x) < K everywhere.
|- (WX, a<=x AX <=b = (f diffl (f’ x)) x) A

f(a) <= KA f(b) <= KA

(Vx. a<=x AXx <=Db A (f'(x) = &0)

= f(x) <= K
= (. a<=X A X <=b = f(x) <= K)

Hence we want to be able to isolate zeros of the derivative (which is
just another polynomial).
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Isolating derivatives

For any differentiable function f, f(x) can be zero only at one point
between zeros of the derivative f'(x).

More precisely, if f/(x) #0fora < x < bthenif f(a)f(b) > 0 there
are no points of a < = < b with f(x) = 0:

|- (WX, a<=x AX <=b = (f diffl f'(x))(x)) A
(VX. a <X AX<b=—o(f"(x) =&)) A
f(a) »~ f(b) >= &0
= VX. a <X AX<b = —(f(x) = &)
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Bounding and root isolation

This gives rise to a recursive procedure for bounding a polynomial
and isolating its zeros, by successive differentiation.
|- (. a<=x AX <=b = (f diffl (f’ x)) x) A

(VWx. a<=x AX <=b = (f" diffl (f'" x)) x) A

(VX. a <= X A X <=Db = abs(f’'’(x)) <= K) A

a<=c ANC<=ExXxAx<=dAd<=DbA(f"(x) = &0)

= abs(f(x)) <= abs(f(d)) + (K/ &) » (d - c) pow 2

At each stage we actually produce HOL theorems asserting bounds
and the enclosure properties of the isolating intervals.
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Conclusions

Formal verification is industrially important, and can be attacked
with current theorem proving technology.

A large part of our work involves building up general theories
about both pure mathematics and special properties of floating
point numbers.

It is easy to underestimate the amount of pure mathematics
needed for obtaining very practical results.

The mathematics required is often the sort that is not found in
current textbooks: very concrete results but with a proof!

Using HOL Light, we can confidently integrate all the different
aspects of the proof, using programmability to automate tedious
parts.
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