Introduction to Functional Programming: Lecture 8

Introduction to
Functional Programming

Topics covered:

e Qutput

e Sequencing commands
Exceptions
References
Arrays

Imperative types

University of Cambridge, 30 January 1998



Introduction to Functional Programming: Lecture 8

ML’s imperative features

ML is not a pure functional programming
language. Now at last we will discuss its

imperative features.

Whether a certain feature is really imperative is
partly a matter of taste. We group together here
some features that may not be found in pure

languages.

The main reasons for having these features is that
they can make programs (a) more efficient and/or

(b) easier to write.

In any case, it’s hard to imagine doing certain

things like I/O in ML in a purely functional way.

University of Cambridge, 30 January 1998




Introduction to Functional Programming: Lecture 8

Input-output and other kinds of interaction with

the environment seem essentially imperative.

From a certain point of view, we can imagine the
input and output as potentially infinite streams
and handle them in a purely functional style —
this is done in some lazy languages like Miranda
or Haskell. It’s not very convenient in ML.

ML has various special functions whose
evaluation causes a side-effect of interacting with
the environment. We will show one, the print

function which prints a string:

- print;

> val it = fn : string -> unit
- print "hello";

hello> val it = () : unit

- print "goodbye\n";

goodbye

> val it = () : unit

University of Cambridge, 30 January 1998




Introduction to Functional Programming: Lecture 8

Now that we have some expressions whose
evaluation causes a side-effect, we care even more

about evaluation order. Since we know the rules,

we can predict for example:

- let val x = print "first "
in print "second\n"
end ;

first second

However, ML also provides a sequencing
operation ; as do most imperative languages like
Modula-3. In el ; e2, expression el is evaluated
and the result discarded, then e2 is evaluated and

is the value of the whole expression:

- (print "first "; print "second\n");
first second

> val it = () : unit

- (1;2);

> val it

University of Cambridge, 30 January 1998




Introduction to Functional Programming: Lecture 8

Exceptions (1)

ML’s errors, e.g. matching failures and division by

zero, are all signalled by propagating exceptions:

- 1 div O;
I Uncaught exception:

I Div

In all these cases the compiler complains about an
‘uncaught exception’. As the error message
suggests, it is possible to ‘catch’ them.

There is a type exn of exceptions, which is

effectively a recursive type. Unlike with ordinary
types, one can add new constructors for the type
exn at any point in the program via an exception

declaration, e.g.

exception Died;
exn Died = Died : exn
exception Failed of string;

exn Failed = fn : string -> exn

University of Cambridge, 30 January 1998




Introduction to Functional Programming: Lecture 8

Exceptions (2)

One can explicitly generate an exception using

the raise construct.

raise <exception>

For example, we might invent our own exception

to cover the case of taking the head of an empty
list:

exn Head_of_empty = Head_of_empty : exn
fun hd [] = raise Head_of_empty
| hd (h::t) = h;
val hd = fn : ’a list -> ’a
hd(tl [1]);
Uncaught exception:

Head_of_empty

University of Cambridge, 30 January 1998



Introduction to Functional Programming: Lecture 8

Exceptions (3)

One can catch exceptions using <expr> handle

<patterns>, where the patterns to match

exceptions are just as for ordinary recursive types.

fun headstring sl =
hd sl
handle Head_of_empty => ""

| Failed s =>
"Failure because "“s;

val headstring =

fn : string list -> string
headstring ["hi","there"];
val it = "hi" : string
headstring [];

val it = "" : string

On one view, exceptions are not really imperative
features. We can imagine a hidden type of
exceptions tacked onto the return type of each

function. Anyway, they are often quite useful!

University of Cambridge, 30 January 1998




Introduction to Functional Programming: Lecture 8

Exceptions (4)

Exceptions can normally be treated just as other
ML values. For example, suppose we want to

define a function to “trace” other functions:

- fun trace name f x =

(print ("entering "“name~"\n");

let val y =
f x handle ex =>
(print (name~" gave an exception\n");
raise ex)
in (print (name~" finished\n"); y)
end) ;
val trace = fn : string ->
(’a => ’b) -> ’a > b
fun hd’ 1 trace "hd" hd 1;
val hd’ = : ’a list -> ’a
hd’ [1,2];
entering hd
hd finished
> val it = 1 : int

University of Cambridge, 30 January 1998




Introduction to Functional Programming: Lecture 8

References (1)

ML does have real assignable variables, and
expressions can, as a side-effect, modify the values

of these variables.

They are explicitly accessed via references

(pointers in C parlance) and the pointers

themselves behave more like ordinary ML values.

One sets up a new assignable memory cell with
the initial contents x by writing ref x. This
expression returns the corresponding reference,

l.e. a pointer to it.
One manipulates the contents via the pointer.

This is quite similar to C: here one often simulates
‘variable parameters’ and passes back composite
objects from functions via explicit use of pointers.

To get at the contents of a ref, use the
dereferencing (indirection) operator !. To modify

its value, use :=.

University of Cambridge, 30 January 1998




Introduction to Functional Programming: Lecture 8

References (2)

Here is an example of how we can create and play

with a reference cell:

val x ref 1;

ref 1 : int ref
int
() : unit
2 : int
Ix;
() : unit

ref 4 : int ref

4 : int

In most respects ref behaves like a type

constructor, so one can pattern-match against it.

University of Cambridge, 30 January 1998




Introduction to Functional Programming: Lecture 8

References (3)

References are useful in ML for two different

reasol1ls.

First, as you might expect, they allow us to

modify the state of the program as we go along,

in a more conventional style. If we didn’t use

references, functions would often have to have

additional arguments.

Secondly, they can be used to construct data

structures that are shared or cyclic.

Whichever way you use them, it is sometimes
useful to have reference variables inside a function
for convenience or efficiency, but use them in such
a way that the function as a whole is still a true
function, i.e. returns the same value on multiple

calls.

University of Cambridge, 30 January 1998




Introduction to Functional Programming: Lecture 8

References (4)

For example, it’s ofen convenient to memoize or

cache the result of a previous function call, so

that if we get the same argument again, we can

return the stored value instead of recalculating it.

We start by defining a function to find an item in

a list of pairs:

exception Not_found;
exn Not_found = Not_found : exn
fun assoc a [] = raise Not_found
| assoc a ((x,y)::rest) =
if x = a then y
else assoc a rest;
val assoc =
fn : ’’a -> (’’a * ’b) list -> ’b

University of Cambridge, 30 January 1998




Introduction to Functional Programming: Lecture 8

References (5)

Now we declare an internal reference variable
store to hold the list of (x,f(x)) pairs for
previously encountered calls.

- fun cache f =
let val store = ref []
in fn x =>
assoc x (!store)
handle Not_found =>
let val y = f(x)
in (store := (x,y)::(!store);
y)
end
end;
> val cache = fn : (°’a -> ’b) ->
(’’a => ’b)
First the cached function sees if it’s already got
the result stored. If so, it returns it. Otherwise,

the underlying function is calculated and a new

pair put in the store before the result is returned.

University of Cambridge, 30 January 1998




Introduction to Functional Programming: Lecture 8

As well as individual reference cells, one can use
arrays. The appropriate functions for handling

arrays need to be made available by:
- open Array;

An array of size n, with each element initialized

to x is created using the following call

- array(n,x);

One can then read element m of an array a using:
- sub(a,m);

and write value y to element m of a using:
- update(a,n,y);

The elements are numbered from zero. Thus the

elements of an array of size n are 0,...,n — 1.

University of Cambridge, 30 January 1998




Introduction to Functional Programming: Lecture 8

Here is a simple example:

val a = array(5,0);

val a = <array> : int array
sub(a,1);

val it = 0 : int
update(a,1,7);

val it = () : unit
sub(a,1);
val it = 7 : int
All reading and writing is constrained by bounds

checking, e.g.

- sub(a,b);
I Uncaught exception:

I Subscript

University of Cambridge, 30 January 1998




Introduction to Functional Programming: Lecture 8

Imperative features and types

There are unfortunate interactions between

references and let polymorphism.

For example, according to the usual rules, the

following should be valid, even though it writes

something as an integer and reads it as a boolean:

val 1 = ref [];
1 :=1;
hd(!'1l) = true

ML places restrictions on the polymorphic type of
expressions involving references to avoid these
problems. It won’t let you declare something like

the above:

val 1 = ref [];
Toplevel input:

Value polymorphism: Free type variable

at top level

University of Cambridge, 30 January 1998




