
Introduction to Functional Programming: Lecture 8 1
Introduction toFunctional ProgrammingJohn HarrisonUniversity of CambridgeLecture 8Imperative features of ML

Topics covered:� Output� Sequencing commands� Exceptions� References� Arrays� Imperative types
John Harrison University of Cambridge, 30 January 1998



Introduction to Functional Programming: Lecture 8 2
ML's imperative features

ML is not a pure functional programminglanguage. Now at last we will discuss itsimperative features.Whether a certain feature is really imperative ispartly a matter of taste. We group together heresome features that may not be found in purelanguages.The main reasons for having these features is thatthey can make programs (a) more e�cient and/or(b) easier to write.In any case, it's hard to imagine doing certainthings like I/O in ML in a purely functional way.

John Harrison University of Cambridge, 30 January 1998



Introduction to Functional Programming: Lecture 8 3
OutputInput-output and other kinds of interaction withthe environment seem essentially imperative.From a certain point of view, we can imagine theinput and output as potentially in�nite streamsand handle them in a purely functional style |this is done in some lazy languages like Mirandaor Haskell. It's not very convenient in ML.ML has various special functions whoseevaluation causes a side-e�ect of interacting withthe environment. We will show one, the printfunction which prints a string:- print;> val it = fn : string -> unit- print "hello";hello> val it = () : unit- print "goodbye\n";goodbye> val it = () : unitJohn Harrison University of Cambridge, 30 January 1998



Introduction to Functional Programming: Lecture 8 4
SequencingNow that we have some expressions whoseevaluation causes a side-e�ect, we care even moreabout evaluation order. Since we know the rules,we can predict for example:- let val x = print "first "in print "second\n"end;first secondHowever, ML also provides a sequencingoperation ; as do most imperative languages likeModula-3. In e1 ; e2, expression e1 is evaluatedand the result discarded, then e2 is evaluated andis the value of the whole expression:- (print "first "; print "second\n");first second> val it = () : unit- (1;2);> val it = 2 : intJohn Harrison University of Cambridge, 30 January 1998



Introduction to Functional Programming: Lecture 8 5
Exceptions (1)

ML's errors, e.g. matching failures and division byzero, are all signalled by propagating exceptions:- 1 div 0;! Uncaught exception:! DivIn all these cases the compiler complains about an`uncaught exception'. As the error messagesuggests, it is possible to `catch' them.There is a type exn of exceptions, which ise�ectively a recursive type. Unlike with ordinarytypes, one can add new constructors for the typeexn at any point in the program via an exceptiondeclaration, e.g.- exception Died;> exn Died = Died : exn- exception Failed of string;> exn Failed = fn : string -> exnJohn Harrison University of Cambridge, 30 January 1998



Introduction to Functional Programming: Lecture 8 6
Exceptions (2)

One can explicitly generate an exception usingthe raise construct.raise <exception>For example, we might invent our own exceptionto cover the case of taking the head of an emptylist:> exn Head_of_empty = Head_of_empty : exn- fun hd [] = raise Head_of_empty| hd (h::t) = h;> val hd = fn : 'a list -> 'a- hd(tl [1]);! Uncaught exception:! Head_of_empty

John Harrison University of Cambridge, 30 January 1998



Introduction to Functional Programming: Lecture 8 7
Exceptions (3)One can catch exceptions using <expr> handle<patterns>, where the patterns to matchexceptions are just as for ordinary recursive types.- fun headstring sl =hd slhandle Head_of_empty => ""| Failed s =>"Failure because "^s;> val headstring =fn : string list -> string- headstring ["hi","there"];> val it = "hi" : string- headstring [];> val it = "" : stringOn one view, exceptions are not really imperativefeatures. We can imagine a hidden type ofexceptions tacked onto the return type of eachfunction. Anyway, they are often quite useful!John Harrison University of Cambridge, 30 January 1998



Introduction to Functional Programming: Lecture 8 8
Exceptions (4)Exceptions can normally be treated just as otherML values. For example, suppose we want tode�ne a function to \trace" other functions:- fun trace name f x =(print ("entering "^name^"\n");let val y =f x handle ex =>(print (name^" gave an exception\n");raise ex)in (print (name^" finished\n"); y)end);> val trace = fn : string ->('a -> 'b) -> 'a -> 'b- fun hd' l = trace "hd" hd l;> val hd' = fn : 'a list -> 'a- hd' [1,2];entering hdhd finished> val it = 1 : intJohn Harrison University of Cambridge, 30 January 1998



Introduction to Functional Programming: Lecture 8 9
References (1)

ML does have real assignable variables, andexpressions can, as a side-e�ect, modify the valuesof these variables.They are explicitly accessed via references(pointers in C parlance) and the pointersthemselves behave more like ordinary ML values.One sets up a new assignable memory cell withthe initial contents x by writing ref x. Thisexpression returns the corresponding reference,i.e. a pointer to it.One manipulates the contents via the pointer.This is quite similar to C: here one often simulates`variable parameters' and passes back compositeobjects from functions via explicit use of pointers.To get at the contents of a ref, use thedereferencing (indirection) operator !. To modifyits value, use :=.John Harrison University of Cambridge, 30 January 1998



Introduction to Functional Programming: Lecture 8 10
References (2)

Here is an example of how we can create and playwith a reference cell:- val x = ref 1;> val x = ref 1 : int ref- !x;> val it = 1 : int- x := 2;> val it = () : unit- !x;> val it = 2 : int- x := !x + !x;> val it = () : unit- x;> val it = ref 4 : int ref- !x;> val it = 4 : intIn most respects ref behaves like a typeconstructor, so one can pattern-match against it.John Harrison University of Cambridge, 30 January 1998



Introduction to Functional Programming: Lecture 8 11
References (3)

References are useful in ML for two di�erentreasons.First, as you might expect, they allow us tomodify the state of the program as we go along,in a more conventional style. If we didn't usereferences, functions would often have to haveadditional arguments.Secondly, they can be used to construct datastructures that are shared or cyclic.Whichever way you use them, it is sometimesuseful to have reference variables inside a functionfor convenience or e�ciency, but use them in sucha way that the function as a whole is still a truefunction, i.e. returns the same value on multiplecalls.
John Harrison University of Cambridge, 30 January 1998



Introduction to Functional Programming: Lecture 8 12
References (4)

For example, it's ofen convenient to memoize orcache the result of a previous function call, sothat if we get the same argument again, we canreturn the stored value instead of recalculating it.We start by de�ning a function to �nd an item ina list of pairs:- exception Not_found;> exn Not_found = Not_found : exn- fun assoc a [] = raise Not_found| assoc a ((x,y)::rest) =if x = a then yelse assoc a rest;> val assoc =fn : ''a -> (''a * 'b) list -> 'b

John Harrison University of Cambridge, 30 January 1998



Introduction to Functional Programming: Lecture 8 13
References (5)Now we declare an internal reference variablestore to hold the list of (x,f(x)) pairs forpreviously encountered calls.- fun cache f =let val store = ref []in fn x =>assoc x (!store)handle Not_found =>let val y = f(x)in (store := (x,y)::(!store);y)endend;> val cache = fn : (''a -> 'b) ->(''a -> 'b)First the cached function sees if it's already gotthe result stored. If so, it returns it. Otherwise,the underlying function is calculated and a newpair put in the store before the result is returned.John Harrison University of Cambridge, 30 January 1998



Introduction to Functional Programming: Lecture 8 14
Arrays (1)

As well as individual reference cells, one can usearrays. The appropriate functions for handlingarrays need to be made available by:- open Array;An array of size n, with each element initializedto x is created using the following call- array(n,x);One can then read element m of an array a using:- sub(a,m);and write value y to element m of a using:- update(a,n,y);The elements are numbered from zero. Thus theelements of an array of size n are 0; : : : ; n� 1.
John Harrison University of Cambridge, 30 January 1998



Introduction to Functional Programming: Lecture 8 15
Arrays (2)

Here is a simple example:- val a = array(5,0);> val a = <array> : int array- sub(a,1);> val it = 0 : int- update(a,1,7);> val it = () : unit- sub(a,1);> val it = 7 : intAll reading and writing is constrained by boundschecking, e.g.- sub(a,5);! Uncaught exception:! Subscript
John Harrison University of Cambridge, 30 January 1998



Introduction to Functional Programming: Lecture 8 16
Imperative features and typesThere are unfortunate interactions betweenreferences and let polymorphism.For example, according to the usual rules, thefollowing should be valid, even though it writessomething as an integer and reads it as a boolean:val l = ref [];l := 1;hd(!l) = trueML places restrictions on the polymorphic type ofexpressions involving references to avoid theseproblems. It won't let you declare something likethe above:- val l = ref [];! Toplevel input:! val l = ref [];! ^^^^^^^^^^^^^^! Value polymorphism: Free type variableat top levelJohn Harrison University of Cambridge, 30 January 1998


