Introduction to Functional Programming: Lecture 6

Introduction to
Functional Programming

Topics covered:

e Using standard combinators
Abstract types
Tail recursion and accumulators
Forcing evaluation

Minimizing consing

University of Cambridge, 27 January 1998

Introduction to Functional Programming: Lecture 6

Using standard combinators

It often turns out that a few combinators are very
useful: we can implement practically anything by
plugging them together, especially given higher

order functions.

For example, the itlist function:

itlist f [z1, 2, ... ,Zn] b
=fx1 (fz2 (fzs (- (fzn)))))

can often be used to avoid explicit recursive

definitions over lists. We define it as:

- fun itlist £ [b = b
| itlist f (h::t) b =
f h (itlist f t b);
> val itlist = fn : (Pa -> (b -> ’b)) ->
’a list -> ’b -> ’b

Functions of this sort are often built in to
functional langauges, and sometimes called
something like fold.

University of Cambridge, 27 January 1998

Introduction to Functional Programming: Lecture 6

Itlist examples (1)

For example, here is a function to add up all the
elements of a list:

fun sum 1 =
itlist (fn x => fn sum => x + sum)
1 0;
val sum = fn : int list -> int
sum [1,2,3,4,5];
val it = 15 : int
sum [];

val it O : int

If we want to multiply the elements instead, we
change it to:

- fun prod 1 =
itlist (fn x => fn prod => x * prod)
1 1;
val prod = fn : int list -> int
prod [1,2,3,4,5];
val it = 120 : int

University of Cambridge, 27 January 1998

Introduction to Functional Programming: Lecture 6

Itlist examples (2)

Here is a filtering function:

- fun filter p 1 = itlist
(fn x => fn s =>

if p x then x::s else s) 1 [];

and here are some logical operations over lists:

- fun forall p 1 = itlist
(fn h => fn a => p(h) andalso a)

1 true;

- fun exists p 1 = 1itlist
(fn h => fn a => p(h) orelse a)
1 false;

and some old favourites:

- fun length 1 =

itlist (fn x => fn s => s + 1) 1 1;
- fun append 1 m =

itlist (fn h => fn t => h::t) 1 m;
- fun map f 1 = itlist

(fn x => fn s => (f x)::8) 1 [1;

University of Cambridge, 27 January 1998

Introduction to Functional Programming: Lecture 6

Itlist examples (3)

We can implement set operations quite directly

using these combinators as building blocks.

- fun mem x 1 =
exists (fn y => y = x) 1;
fun insert x 1 =
1f mem x 1 then 1 else x::1;
fun union 11 12 =
itlist insert 11 12;
fun setify 1 =
union 1 [];
fun Union 1 =
itlist union 1 [];
fun intersect 11 12 =
filter (fn x => mem x 12) 11;
fun subtract 11 12 =
filter (fn x => not (mem x 12)) 11;
fun subset 11 12 =
forall (fn t => mem t 12) 11;

University of Cambridge, 27 January 1998

Introduction to Functional Programming: Lecture 6

Abstract types

An abstract type starts with an ordinary

recursive type, and then imposes restrictions on

how the objects of the type can be manipulated.

Essentially, users can only interact by a particular

‘interface’ of functions and values.

The advantage is that users cannot rely on any
other internal details of the type.

This improves modularity, e.g. it is easy to

replace the implementation of the abstract type

with a new ‘better’ (smaller, faster, not patented
..) one, without requiring any changes to user

code.

University of Cambridge, 27 January 1998

Introduction to Functional Programming: Lecture 6

Example: sets (1)

Here is an abstract type for integer sets.

- abstype set = Set of int list with

val empty = Set []

fun set_insert a (Set s) =
Set (insert a s)

fun set_union (Set s) (Set t) =
Set (union s t)

fun set_intersect (Set s) (Set t) =
Set (intersect s t)

fun set_subset (Set s) (Set t) =
subset s t

end;

Users can’t access the internal representation
(lists), which is only done via the interface

functions.

University of Cambridge, 27 January 1998

John Harrison

Introduction to Functional Programming: Lecture 6

Example: sets (2)

Many of the operations are much more efficient if

we keep the lists sorted into numerical order. For

example:

- fun sunion [] [] = []
sunion [] 1 =1
sunion 1 [] =1
sunion (hil::t1) (h2::t2) =
if hl < h2 then
hil::(sunion t1 (h2::t2))
else if hl > h2 then
h2::(sunion (hil::t1) t2)
else hl::(sunion t1 t2);
sunion = fn : int list ->
int list -> int list

We can change the internal representation to use
sorted lists (or balanced trees, or arrays, ...) and

no changes are needed to code using the abstract

type.

University of Cambridge, 27 January 1998

Introduction to Functional Programming: Lecture 6

Storing local variables

Recall our definition of the factorial:

#fun fact n = if n = 0 then 1

else n * fact(n - 1);

A call to fact 6 causes another call to fact 5

(and beyond), but the computer needs to save the

old value 6 in order to do the final multiplication.

Therefore, the local variables of a function, in this
case n, cannot be stored in a fixed place, because

each instance of the function needs its own copy.

Instead each instance of the function is allocated

a frame on a stack.

This technique is similar in ML to most other

languages that support recursion, including C.

University of Cambridge, 27 January 1998

Introduction to Functional Programming: Lecture 6

Here is an imaginary snapshot of the stack during

the evaluation of the innermost call of fact:

Note that we use about n words of storage when
there are n nested recursive calls. In many

situations this is very wasteful.

University of Cambridge, 27 January 1998

Introduction to Functional Programming: Lecture 6

A tail recursive version

Now, by contrast, consider the following

implementation of the factorial function:

fun tfact x n =
if n = 0 then x
else tfact (x * n) (n - 1);
val tfact = fn : int -> int -> int
fun fact n = tfact 1 n;
val fact = fn : int -> int
fact 6;
val it = 720 : int

The recursive call is the whole expression; it does
not occur as a proper subexpression of some other

expression involving values of variables.

Such a call is said to be a tail call because it is

the very last thing the calling function does.

A function where all recursive calls are tail calls is

sald to be tail recursive.

University of Cambridge, 27 January 1998

Introduction to Functional Programming: Lecture 6

Why tail recursion?

If a function is tail recursive, the compiler is

clever enough to realize that the same area of

storage can be used for the local variables of each

instance.
We avoid using all that stack.

The additional argument x of the tfact function
is called an accumulator, because it accumulates
the result as the recursive calls stack up, and is

then returned at the end.

Working in this way, rather than modifying the
return value on the way back up, is a common

way of making functions tail recursive.

In a sense, a tail recursive implementation using
accumulators corresponds to an iterative version

using assignments and while-loops.

The only difference is that we pass the state

around explicitly.

University of Cambridge, 27 January 1998

Introduction to Functional Programming: Lecture 6

Forcing evaluation (1)

Recall that ML does not evaluate inside lambdas.
Therefore it sometimes pays to pull expressions
outside a lambda when they do not depend on the

value of the bound variable.

For example, we might code the efficient factorial

by making tfact local:

- fun fact n =
let fun tfact x n =
if n = 0 then x
else tfact (x * n) (n - 1)
in tfact 1 n

end;

However the binding of the recursive function to
tfact does not get evaluated until fact sees its

arguments.

Moreover, it gets reevaluated each time even
though it doesn’t depend on n.

University of Cambridge, 27 January 1998

Introduction to Functional Programming: Lecture 6

Forcing evaluation (2)

A better coding is as follows:

- val fact =
let fun tfact x n =
if n = 0 then x
else tfact (x * n) (n - 1)
in tfact 1

end;

In cases where the subexpression involves much

more evaluation, the difference can be spectacular.

Most compilers do not do such optimizations

automatically.

However it falls under the general heading of

partial evaluation, a big research field.

University of Cambridge, 27 January 1998

Introduction to Functional Programming: Lecture 6

Forcing evaluation (3)

An alternative coding is to use local:

A better coding is as follows:

- local fun tfact x n =
if n = 0 then x
else tfact (x * n) (n - 1)
in fun fact n = tfact 1 n
end ;

> val fact = fn : int -> int

The local declaration is invisible outside the body
of fact.

University of Cambridge, 27 January 1998

Introduction to Functional Programming: Lecture 6

Minimizing consing (1)

The space used by type constructors (‘cons cells’)

is not allocated and deallocated in such as

straightforward way as stack space.

In general, it is difficult to work out when a
certain cons cell is in use, and when it is available

for recycling. For example in:
val 1 = 1::[] in t1 1;

the cons cell can be reused immediately. However
if 1 is passed to other functions, it is impossible
to decide at compile-time when the cons cell is no

longer needed.

Therefore, space in functional languages has to be
reclaimed by analyzing memory periodically and

deciding which bits are needed. The remainder is
then reclaimed. This process is known as garbage

collection.

University of Cambridge, 27 January 1998

Introduction to Functional Programming: Lecture 6

Minimizing consing (2)

We can often make programs more space and

time efficient by reducing consing. One simple
trick is to reduce the usage of append. By looking
at the definition:

- fun append [] 1 =1
| append (h::t) 1 = h::(append t 1);
> val append = fn :

’a list -> ’a list -> ’a list

we can see that it generates n cons cells where n
is the length of the first argument. For example,

this implementation of reversal:

- fun rev [] = []
| rev (h::t) = append (rev t) [h];

> val rev = fn : ’a list -> ’a list

is very inefficient, generating about n?/2 cons

cells, where n is the length of the list.

University of Cambridge, 27 January 1998

Introduction to Functional Programming: Lecture 6

Minimizing consing (3)

A far better version is:

- local fun reverse [] acc = acc

| reverse (h::t) acc =

reverse t (h::acc)
in fun rev 1 = reverse 1 []
end;

> val rev = fn : ’a list -> ’a list

This only generates n cons cells, and has the
additional merit of being tail recursive, so we save

stack space.

One can also avoid consing in pattern-matching

by using as, e.g. instead of rebuilding a cons cell:

fn [1 => []
| (h::t) => if h < 0 then t else h::t;

using

fn [1 => []
| (1 as h::t) => if h < 0 then t else 1;

University of Cambridge, 27 January 1998

