
Introduction to Functional Programming: Lecture 6 1
Introduction toFunctional ProgrammingJohn HarrisonUniversity of CambridgeLecture 6E�ective ML

Topics covered:� Using standard combinators� Abstract types� Tail recursion and accumulators� Forcing evaluation� Minimizing consing
John Harrison University of Cambridge, 27 January 1998

Introduction to Functional Programming: Lecture 6 2
Using standard combinatorsIt often turns out that a few combinators are veryuseful: we can implement practically anything byplugging them together, especially given higherorder functions.For example, the itlist function:itlist f [x1; x2; : : : ; xn] b= f x1 (f x2 (f x3 (� � � (f xn b))))can often be used to avoid explicit recursivede�nitions over lists. We de�ne it as:- fun itlist f [] b = b| itlist f (h::t) b =f h (itlist f t b);> val itlist = fn : ('a -> ('b -> 'b)) ->'a list -> 'b -> 'bFunctions of this sort are often built in tofunctional langauges, and sometimes calledsomething like fold.John Harrison University of Cambridge, 27 January 1998

Introduction to Functional Programming: Lecture 6 3
Itlist examples (1)For example, here is a function to add up all theelements of a list:- fun sum l =itlist (fn x => fn sum => x + sum)l 0;> val sum = fn : int list -> int- sum [1,2,3,4,5];> val it = 15 : int- sum [];> val it = 0 : intIf we want to multiply the elements instead, wechange it to:- fun prod l =itlist (fn x => fn prod => x * prod)l 1;> val prod = fn : int list -> int- prod [1,2,3,4,5];> val it = 120 : intJohn Harrison University of Cambridge, 27 January 1998

Introduction to Functional Programming: Lecture 6 4
Itlist examples (2)Here is a �ltering function:- fun filter p l = itlist(fn x => fn s =>if p x then x::s else s) l [];and here are some logical operations over lists:- fun forall p l = itlist(fn h => fn a => p(h) andalso a)l true;- fun exists p l = itlist(fn h => fn a => p(h) orelse a)l false;and some old favourites:- fun length l =itlist (fn x => fn s => s + 1) l 1;- fun append l m =itlist (fn h => fn t => h::t) l m;- fun map f l = itlist(fn x => fn s => (f x)::s) l [];John Harrison University of Cambridge, 27 January 1998

Introduction to Functional Programming: Lecture 6 5
Itlist examples (3)

We can implement set operations quite directlyusing these combinators as building blocks.- fun mem x l =exists (fn y => y = x) l;- fun insert x l =if mem x l then l else x::l;- fun union l1 l2 =itlist insert l1 l2;- fun setify l =union l [];- fun Union l =itlist union l [];- fun intersect l1 l2 =filter (fn x => mem x l2) l1;- fun subtract l1 l2 =filter (fn x => not (mem x l2)) l1;- fun subset l1 l2 =forall (fn t => mem t l2) l1;John Harrison University of Cambridge, 27 January 1998

Introduction to Functional Programming: Lecture 6 6
Abstract types

An abstract type starts with an ordinaryrecursive type, and then imposes restrictions onhow the objects of the type can be manipulated.Essentially, users can only interact by a particular`interface' of functions and values.The advantage is that users cannot rely on anyother internal details of the type.This improves modularity, e.g. it is easy toreplace the implementation of the abstract typewith a new `better' (smaller, faster, not patented. . .) one, without requiring any changes to usercode.

John Harrison University of Cambridge, 27 January 1998

Introduction to Functional Programming: Lecture 6 7
Example: sets (1)

Here is an abstract type for integer sets.- abstype set = Set of int list withval empty = Set []fun set_insert a (Set s) =Set (insert a s)fun set_union (Set s) (Set t) =Set (union s t)fun set_intersect (Set s) (Set t) =Set (intersect s t)fun set_subset (Set s) (Set t) =subset s tend;Users can't access the internal representation(lists), which is only done via the interfacefunctions.
John Harrison University of Cambridge, 27 January 1998

Introduction to Functional Programming: Lecture 6 8
Example: sets (2)

Many of the operations are much more e�cient ifwe keep the lists sorted into numerical order. Forexample:- fun sunion [] [] = []| sunion [] l = l| sunion l [] = l| sunion (h1::t1) (h2::t2) =if h1 < h2 thenh1::(sunion t1 (h2::t2))else if h1 > h2 thenh2::(sunion (h1::t1) t2)else h1::(sunion t1 t2);> val sunion = fn : int list ->int list -> int listWe can change the internal representation to usesorted lists (or balanced trees, or arrays, . . .) andno changes are needed to code using the abstracttype.John Harrison University of Cambridge, 27 January 1998

Introduction to Functional Programming: Lecture 6 9
Storing local variables

Recall our de�nition of the factorial:#fun fact n = if n = 0 then 1else n * fact(n - 1);A call to fact 6 causes another call to fact 5(and beyond), but the computer needs to save theold value 6 in order to do the �nal multiplication.Therefore, the local variables of a function, in thiscase n, cannot be stored in a �xed place, becauseeach instance of the function needs its own copy.Instead each instance of the function is allocateda frame on a stack.This technique is similar in ML to most otherlanguages that support recursion, including C.

John Harrison University of Cambridge, 27 January 1998

Introduction to Functional Programming: Lecture 6 10
The stack

Here is an imaginary snapshot of the stack duringthe evaluation of the innermost call of fact:

SP - n = 0n = 1n = 2n = 3n = 4n = 5n = 6

Note that we use about n words of storage whenthere are n nested recursive calls. In manysituations this is very wasteful.
John Harrison University of Cambridge, 27 January 1998

Introduction to Functional Programming: Lecture 6 11
A tail recursive version

Now, by contrast, consider the followingimplementation of the factorial function:- fun tfact x n =if n = 0 then xelse tfact (x * n) (n - 1);> val tfact = fn : int -> int -> int- fun fact n = tfact 1 n;> val fact = fn : int -> int- fact 6;> val it = 720 : intThe recursive call is the whole expression; it doesnot occur as a proper subexpression of some otherexpression involving values of variables.Such a call is said to be a tail call because it isthe very last thing the calling function does.A function where all recursive calls are tail calls issaid to be tail recursive.John Harrison University of Cambridge, 27 January 1998

Introduction to Functional Programming: Lecture 6 12
Why tail recursion?

If a function is tail recursive, the compiler isclever enough to realize that the same area ofstorage can be used for the local variables of eachinstance.We avoid using all that stack.The additional argument x of the tfact functionis called an accumulator, because it accumulatesthe result as the recursive calls stack up, and isthen returned at the end.Working in this way, rather than modifying thereturn value on the way back up, is a commonway of making functions tail recursive.In a sense, a tail recursive implementation usingaccumulators corresponds to an iterative versionusing assignments and while-loops.The only di�erence is that we pass the statearound explicitly.John Harrison University of Cambridge, 27 January 1998

Introduction to Functional Programming: Lecture 6 13
Forcing evaluation (1)

Recall that ML does not evaluate inside lambdas.Therefore it sometimes pays to pull expressionsoutside a lambda when they do not depend on thevalue of the bound variable.For example, we might code the e�cient factorialby making tfact local:- fun fact n =let fun tfact x n =if n = 0 then xelse tfact (x * n) (n - 1)in tfact 1 nend;However the binding of the recursive function totfact does not get evaluated until fact sees itsarguments.Moreover, it gets reevaluated each time eventhough it doesn't depend on n.John Harrison University of Cambridge, 27 January 1998

Introduction to Functional Programming: Lecture 6 14
Forcing evaluation (2)

A better coding is as follows:- val fact =let fun tfact x n =if n = 0 then xelse tfact (x * n) (n - 1)in tfact 1end;In cases where the subexpression involves muchmore evaluation, the di�erence can be spectacular.Most compilers do not do such optimizationsautomatically.However it falls under the general heading ofpartial evaluation, a big research �eld.

John Harrison University of Cambridge, 27 January 1998

Introduction to Functional Programming: Lecture 6 15
Forcing evaluation (3)

An alternative coding is to use local:A better coding is as follows:- local fun tfact x n =if n = 0 then xelse tfact (x * n) (n - 1)in fun fact n = tfact 1 nend;> val fact = fn : int -> intThe local declaration is invisible outside the bodyof fact.

John Harrison University of Cambridge, 27 January 1998

Introduction to Functional Programming: Lecture 6 16
Minimizing consing (1)

The space used by type constructors (`cons cells')is not allocated and deallocated in such asstraightforward way as stack space.In general, it is di�cult to work out when acertain cons cell is in use, and when it is availablefor recycling. For example in:val l = 1::[] in tl l;the cons cell can be reused immediately. Howeverif l is passed to other functions, it is impossibleto decide at compile-time when the cons cell is nolonger needed.Therefore, space in functional languages has to bereclaimed by analyzing memory periodically anddeciding which bits are needed. The remainder isthen reclaimed. This process is known as garbagecollection.
John Harrison University of Cambridge, 27 January 1998

Introduction to Functional Programming: Lecture 6 17
Minimizing consing (2)

We can often make programs more space andtime e�cient by reducing consing. One simpletrick is to reduce the usage of append. By lookingat the de�nition:- fun append [] l = l| append (h::t) l = h::(append t l);> val append = fn :'a list -> 'a list -> 'a listwe can see that it generates n cons cells where nis the length of the �rst argument. For example,this implementation of reversal:- fun rev [] = []| rev (h::t) = append (rev t) [h];> val rev = fn : 'a list -> 'a listis very ine�cient, generating about n2=2 conscells, where n is the length of the list.
John Harrison University of Cambridge, 27 January 1998

Introduction to Functional Programming: Lecture 6 18
Minimizing consing (3)A far better version is:- local fun reverse [] acc = acc| reverse (h::t) acc =reverse t (h::acc)in fun rev l = reverse l []end;> val rev = fn : 'a list -> 'a listThis only generates n cons cells, and has theadditional merit of being tail recursive, so we savestack space.One can also avoid consing in pattern-matchingby using as, e.g. instead of rebuilding a cons cell:fn [] => []| (h::t) => if h < 0 then t else h::t;usingfn [] => []| (l as h::t) => if h < 0 then t else l;John Harrison University of Cambridge, 27 January 1998

