Introduction to Functional Programming: Lecture 5

Introduction to
Functional Programming

Topics covered:

e The correctness problem

e Testing and verification
Termination and totality
Exponential and ged

Appending and reversing

University of Cambridge, 23 January 1998

Introduction to Functional Programming: Lecture 5

The correctness problem

Programs are written to perform some particular

task.

However, it is often very hard to write a program
that performs its intended function — as

programmers know well.
In practice, most large programs have ‘bugs’.
Some bugs are harmless, others merely irritating.

They can cause financial and public relations
disasters (e.g. the Pentium FDIV bug).

In some situation bugs can be deadly.

University of Cambridge, 23 January 1998

Introduction to Functional Programming: Lecture 5

Dangerous bugs

Some situations where bugs can be deadly

include:

e Heart pacemakers
Aircraft autopilots

Car engine management systems and antilock

braking systems
Radiation therapy machines

Nuclear reactor controllers

These applications are said to be safety critical.

University of Cambridge, 23 January 1998

Introduction to Functional Programming: Lecture 5

Testing and verification

One good way to track down bugs is through

extensive testing.

But usually there are too many possible
situations to try them all exhaustively, so there

may still be bugs lying undetected.

Program testing can be very useful for

demonstrating the presence of bugs, but it is only
in a few unusual cases where it can demonstrate

their absence.

An alternative is verification, where we try to

prove that a program behaves as required.

Consider ordinary mathematical theorems, like

We can test this for many particular values of N,
but it is easier and more satisfactory simply to

prove it (e.g. by induction).

University of Cambridge, 23 January 1998

Introduction to Functional Programming: Lecture 5

The limits of verification

The enterprise of verification can be represented

by this diagram:

It is only the central link that is mathematically
precise. The others are still informal — all we can
do is try to keep them small.

University of Cambridge, 23 January 1998

Introduction to Functional Programming: Lecture 5

Verifying functional programs

We suggested earlier that functional programs
might be easier to reason about formally, because
they correspond directly to the mathematical
functions that they represent.

This is arguable, but at least we will try to show
that reasoning about some simple functional

programs is straightforward.

We need to remember that, in general, functional
programs are partial functions. Sometimes we
need a separate argument to establish

termination.

Often, the proofs proceed by induction,
parallelling the definition of the functions

involved by recursion.

University of Cambridge, 23 January 1998

Introduction to Functional Programming: Lecture 5

Exponentiation (1)

Recall the following simple definition of natural

number exponentiation:

- fun exp x n =
if n = O then 1

else x * exp x (n - 1);

We will prove that this satisfies the following

specification:

For all n > 0 and x, exp £ n terminates and

expxrn=zx"
The function is defined by (primitive) recursion.

The proof is by (step-by-step, mathematical)

induction.

University of Cambridge, 23 January 1998

Introduction to Functional Programming: Lecture 5

Exponentiation (2)

e If n =0, then by definition exp x n = 1. Since
for any integer z, we have 2° = 1, so the
desired fact is established.

e Suppose we know exp x n = x". Because
n > 0, we also know n + 1 # 0. Therefore:

expx (n+1) rxexpz ((n+1)—1)
T * exXp T N
T xx"

xn+1

Q.E.D.

Note that we assume 0° = 1, an example of how

one must state the specification precisely!

University of Cambridge, 23 January 1998

Introduction to Functional Programming: Lecture 5

Greatest common divisor (1)

We define a function to calculate the gcd of two

integers using Fuclid’s algorithm.

- fun gcd x y =
if y = 0 then x
else gcd y (x mod y);

We want to prove:

For any integers x and y, gcd x y terminates and

returns a ged of x and y.

Here we need to be even more careful about the
specification. What is a gcd of two negative

numbers?

University of Cambridge, 23 January 1998

Introduction to Functional Programming: Lecture 5

Greatest common divisor (2)

We write x|y, pronounced ‘x divides y’, to mean
that y is an integral multiple of z, i.e. there is

some integer d with y = dx.

We say that d is a common divisor of x and y if
d|r and d|y.

We say that d is a greatest common divisor if:

e We have d|z and d|y

e For any other integer d’, if d'|x and d'|y then
d'|d.

Note that unless z and y are both zero, we do not
specify the sign of the gcd. The specification does

not constrain the implementation completely.

University of Cambridge, 23 January 1998

Introduction to Functional Programming: Lecture 5

Greatest common divisor (3)

Now we come to the proof. The gcd function is

no longer defined by primitive recursion.

In fact, gcd x y is defined in terms of ged y (x

mod y) in the step case.

We do not, therefore, proceed by step-by-step
mathematical induction, but by wellfounded

induction on |y|.

The idea is that this quantity (often called a
measure) decreases with each call. We can use it
to prove termination, and as a handle for
wellfounded induction.

In complicated recursions, finding the right
wellfounded ordering on the arguments can be
tricky. But in many cases one can use this simple

‘measure’ approach.

University of Cambridge, 23 January 1998

Introduction to Functional Programming: Lecture 5

Greatest common divisor (4)

Now we come to the proof. Fix some arbitrary n.
We suppose that the theorem is established for all
arguments x and y with |y| < n, and we try to
prove it for all z and y with |y| = n. There are

two cases.

First, suppose that y = 0. Then gcd x y = = by

definition. Now trivially x|z and |0, so it is a

common divisor.

Suppose d is another common divisor, i.e. d|x and
d|0. Then immediately we get d|x, so = is a

greatest common divisor.

This establishes the first part of the induction
proof.

University of Cambridge, 23 January 1998

Introduction to Functional Programming: Lecture 5

Greatest common divisor (5)

Now suppose y # 0. We want to apply the

inductive hypothesis to ged y (z mod y).

We will write »r = x mod y for short. The basic
property of the mod function that we use is that,
since y # 0, for some integer ¢ we have x = qy + r

and |r| < |y|.

Since |r| < |y|, the inductive hypothesis tells us
that d = ged y (z mod y) is a ged of y and 7.

We just need to show that it is a ged of x and y.
It is certainly a common divisor, since if d|y and

d|r we have d|z, as x = qy + r.

Now suppose d'|z and d'|y. By the same
equation, we find that d'|r. Thus d’ is a common
divisor of y and r, but then by the inductive
hypothesis, d'|d as required.

University of Cambridge, 23 January 1998

Introduction to Functional Programming: Lecture 5

Append (1)

Now consider an example concerning lists rather

than numbers. Define:

- fun append [] 1 =1

| append (h::t) 1 = h::(append t 1);

This is supposed to join together two lists. We
want to prove that the operation is associative,

i.e. for any three lists [, [and I3 we have:
append [; (append ls I3) = append (append Iy l5) I3

We can proceed by induction on the length of /4,
but since the function was defined by structural
recursion over lists, it is more natural to prove the

theorem by structural induction.

The principle is: if a property holds for the empty
list, and whenever it holds for ¢ it holds for any
h :: t, then it holds for any list.

University of Cambridge, 23 January 1998

Introduction to Functional Programming: Lecture 5

Append (2)

We proceed, then, by structural induction on /5.

There are two cases to consider. First, suppose

1 = []. Then we have:

append /1 (append l5 [3)
append || (append s I3)
append [y [3

append (append || l2) I3
append (append Iy I5) I3

As required.

University of Cambridge, 23 January 1998

Introduction to Functional Programming: Lecture 5

Append (3)

Now suppose {1 = h :: t. We may assume that for

any lo and 3 we have:

append t (append [l I3) = append (append ¢ l5) I3

Therefore:

append /1 (append ls I3)

append (h :: t) (append I3 [3)
h :: (append t (append I3 [3))
h :: (append (append t I5) I3)
append (h :: (append t l)) I3)
append (append (h :: t) I3) I3)
append (append [I2) [3)

The theorem is proved.

University of Cambridge, 23 January 1998

Introduction to Functional Programming: Lecture 5

For a final example, let us define a function to

reverse a list:

fun rev [1 = []

| rev (h::t) = append (rev t) [h];
val rev = fn : ’a list -> ’a list
rev [1,2,3];
val it = [3, 2, 1] : int list

We will prove that for any list [we have:
rev(revl) =1

This is again a structural induction. However we
require two lemmas, which can also be proved by

structural induction:

append [|| l
rev(append [y [o) append (rev ly) (rev ly)

University of Cambridge, 23 January 1998

John Harrison

Introduction to Functional Programming: Lecture 5

First suppose that [= [|. Then the proof is easy:

rev(rev [) rev(rev [|)

rev ||

|
z

Now suppose that [= h :: t and we know that

rev(revt) =t

University of Cambridge, 23 January 1998

Introduction to Functional Programming: Lecture 5

Reverse (3)

rev(rev [)
rev(rev (h :: t))
rev(append (rev t) [h])
append (rev [h]) (rev(rev t))
(rev [h]) ¢
(rev (h = []) ¢
append (append [] [A]) ¢
append [h] ¢
append (h :: []) ¢
h :: (append |[] t)
h:t
l

University of Cambridge, 23 January 1998

Introduction to Functional Programming: Lecture 5

Harder cases

Here is a difficult exercise: prove that the

following terminates for n > 0.

- fun Conway 1 =1
| Conway 2 = 1
| Conway n =

let val x = Conway(n-1)

in Conway(x) + Conway(n-x)

end ;

> val Conway = fn : int -> int

Here is an unsolved problem: does the following

always terminate?

- fun Collatz n =
if n <= 1 then O
else if n mod 2 = O then
Collatz(n div 2)
else Collatz(3 * n + 1);
> val Collatz = fn : int -> int

University of Cambridge, 23 January 1998

