
Introduction to Functional Programming: Lecture 5 1
Introduction toFunctional ProgrammingJohn HarrisonUniversity of CambridgeLecture 5Proving Programs Correct

Topics covered:� The correctness problem� Testing and veri�cation� Termination and totality� Exponential and gcd� Appending and reversing
John Harrison University of Cambridge, 23 January 1998

Introduction to Functional Programming: Lecture 5 2
The correctness problem

Programs are written to perform some particulartask.However, it is often very hard to write a programthat performs its intended function | asprogrammers know well.In practice, most large programs have `bugs'.Some bugs are harmless, others merely irritating.They can cause �nancial and public relationsdisasters (e.g. the Pentium FDIV bug).In some situation bugs can be deadly.Peter Neumann: `Computer Related Risks'.

John Harrison University of Cambridge, 23 January 1998

Introduction to Functional Programming: Lecture 5 3
Dangerous bugs

Some situations where bugs can be deadlyinclude:� Heart pacemakers� Aircraft autopilots� Car engine management systems and antilockbraking systems� Radiation therapy machines� Nuclear reactor controllersThese applications are said to be safety critical.

John Harrison University of Cambridge, 23 January 1998

Introduction to Functional Programming: Lecture 5 4
Testing and veri�cationOne good way to track down bugs is throughextensive testing.But usually there are too many possiblesituations to try them all exhaustively, so theremay still be bugs lying undetected.Program testing can be very useful fordemonstrating the presence of bugs, but it is onlyin a few unusual cases where it can demonstratetheir absence.An alternative is veri�cation, where we try toprove that a program behaves as required.Consider ordinary mathematical theorems, like�n=Nn=0 n = N(N + 1)2We can test this for many particular values of N ,but it is easier and more satisfactory simply toprove it (e.g. by induction).John Harrison University of Cambridge, 23 January 1998

Introduction to Functional Programming: Lecture 5 5
The limits of veri�cation

The enterprise of veri�cation can be representedby this diagram:

Actual system
Mathematical model

Mathematical speci�cation
Actual requirements

6
6
6

It is only the central link that is mathematicallyprecise. The others are still informal | all we cando is try to keep them small.
John Harrison University of Cambridge, 23 January 1998

Introduction to Functional Programming: Lecture 5 6
Verifying functional programs

We suggested earlier that functional programsmight be easier to reason about formally, becausethey correspond directly to the mathematicalfunctions that they represent.This is arguable, but at least we will try to showthat reasoning about some simple functionalprograms is straightforward.We need to remember that, in general, functionalprograms are partial functions. Sometimes weneed a separate argument to establishtermination.Often, the proofs proceed by induction,parallelling the de�nition of the functionsinvolved by recursion.
John Harrison University of Cambridge, 23 January 1998

Introduction to Functional Programming: Lecture 5 7
Exponentiation (1)

Recall the following simple de�nition of naturalnumber exponentiation:- fun exp x n =if n = 0 then 1else x * exp x (n - 1);We will prove that this satis�es the followingspeci�cation:For all n � 0 and x, exp x n terminates andexp x n = xnThe function is de�ned by (primitive) recursion.The proof is by (step-by-step, mathematical)induction.

John Harrison University of Cambridge, 23 January 1998

Introduction to Functional Programming: Lecture 5 8
Exponentiation (2)

� If n = 0, then by de�nition exp x n = 1. Sincefor any integer x, we have x0 = 1, so thedesired fact is established.� Suppose we know exp x n = xn. Becausen � 0, we also know n+ 1 6= 0. Therefore:exp x (n+ 1) = x � exp x ((n+ 1)� 1)= x � exp x n= x � xn= xn+1
Q.E.D.Note that we assume 00 = 1, an example of howone must state the speci�cation precisely!

John Harrison University of Cambridge, 23 January 1998

Introduction to Functional Programming: Lecture 5 9
Greatest common divisor (1)

We de�ne a function to calculate the gcd of twointegers using Euclid's algorithm.- fun gcd x y =if y = 0 then xelse gcd y (x mod y);We want to prove:For any integers x and y, gcd x y terminates andreturns a gcd of x and y.Here we need to be even more careful about thespeci�cation. What is a gcd of two negativenumbers?

John Harrison University of Cambridge, 23 January 1998

Introduction to Functional Programming: Lecture 5 10
Greatest common divisor (2)

We write xjy, pronounced `x divides y', to meanthat y is an integral multiple of x, i.e. there issome integer d with y = dx.We say that d is a common divisor of x and y ifdjx and djy.We say that d is a greatest common divisor if:� We have djx and djy� For any other integer d0, if d0jx and d0jy thend0jd.Note that unless x and y are both zero, we do notspecify the sign of the gcd. The speci�cation doesnot constrain the implementation completely.
John Harrison University of Cambridge, 23 January 1998

Introduction to Functional Programming: Lecture 5 11
Greatest common divisor (3)

Now we come to the proof. The gcd function isno longer de�ned by primitive recursion.In fact, gcd x y is de�ned in terms of gcd y (xmod y) in the step case.We do not, therefore, proceed by step-by-stepmathematical induction, but by wellfoundedinduction on jyj.The idea is that this quantity (often called ameasure) decreases with each call. We can use itto prove termination, and as a handle forwellfounded induction.In complicated recursions, �nding the rightwellfounded ordering on the arguments can betricky. But in many cases one can use this simple`measure' approach.
John Harrison University of Cambridge, 23 January 1998

Introduction to Functional Programming: Lecture 5 12
Greatest common divisor (4)

Now we come to the proof. Fix some arbitrary n.We suppose that the theorem is established for allarguments x and y with jyj < n, and we try toprove it for all x and y with jyj = n. There aretwo cases.First, suppose that y = 0. Then gcd x y = x byde�nition. Now trivially xjx and xj0, so it is acommon divisor.Suppose d is another common divisor, i.e. djx anddj0. Then immediately we get djx, so x is agreatest common divisor.This establishes the �rst part of the inductionproof.

John Harrison University of Cambridge, 23 January 1998

Introduction to Functional Programming: Lecture 5 13
Greatest common divisor (5)

Now suppose y 6= 0. We want to apply theinductive hypothesis to gcd y (x mod y).We will write r = x mod y for short. The basicproperty of the mod function that we use is that,since y 6= 0, for some integer q we have x = qy + rand jrj < jyj.Since jrj < jyj, the inductive hypothesis tells usthat d = gcd y (x mod y) is a gcd of y and r.We just need to show that it is a gcd of x and y.It is certainly a common divisor, since if djy anddjr we have djx, as x = qy + r.Now suppose d0jx and d0jy. By the sameequation, we �nd that d0jr. Thus d0 is a commondivisor of y and r, but then by the inductivehypothesis, d0jd as required.
John Harrison University of Cambridge, 23 January 1998

Introduction to Functional Programming: Lecture 5 14
Append (1)

Now consider an example concerning lists ratherthan numbers. De�ne:- fun append [] l = l| append (h::t) l = h::(append t l);This is supposed to join together two lists. Wewant to prove that the operation is associative,i.e. for any three lists l1, l2 and l3 we have:append l1 (append l2 l3) = append (append l1 l2) l3We can proceed by induction on the length of l1,but since the function was de�ned by structuralrecursion over lists, it is more natural to prove thetheorem by structural induction.The principle is: if a property holds for the emptylist, and whenever it holds for t it holds for anyh :: t, then it holds for any list.
John Harrison University of Cambridge, 23 January 1998

Introduction to Functional Programming: Lecture 5 15
Append (2)

We proceed, then, by structural induction on l1.There are two cases to consider. First, supposel1 = []. Then we have:
append l1 (append l2 l3)= append [] (append l2 l3)= append l2 l3= append (append [] l2) l3= append (append l1 l2) l3

As required.

John Harrison University of Cambridge, 23 January 1998

Introduction to Functional Programming: Lecture 5 16
Append (3)

Now suppose l1 = h :: t. We may assume that forany l2 and l3 we have:append t (append l2 l3) = append (append t l2) l3Therefore: append l1 (append l2 l3)= append (h :: t) (append l2 l3)= h :: (append t (append l2 l3))= h :: (append (append t l2) l3)= append (h :: (append t l2)) l3)= append (append (h :: t) l2) l3)= append (append l1 l2) l3)The theorem is proved.
John Harrison University of Cambridge, 23 January 1998

Introduction to Functional Programming: Lecture 5 17
Reverse (1)

For a �nal example, let us de�ne a function toreverse a list:- fun rev [] = []| rev (h::t) = append (rev t) [h];> val rev = fn : 'a list -> 'a list- rev [1,2,3];> val it = [3, 2, 1] : int listWe will prove that for any list l we have:rev(rev l) = lThis is again a structural induction. However werequire two lemmas, which can also be proved bystructural induction:append l [] = lrev(append l1 l2) = append (rev l2) (rev l1)
John Harrison University of Cambridge, 23 January 1998

Introduction to Functional Programming: Lecture 5 18
Reverse (2)

First suppose that l = []. Then the proof is easy:
rev(rev l) = rev(rev [])= rev []= []= l

Now suppose that l = h :: t and we know that
rev(rev t) = t

John Harrison University of Cambridge, 23 January 1998

Introduction to Functional Programming: Lecture 5 19
Reverse (3)

rev(rev l)= rev(rev (h :: t))= rev(append (rev t) [h])= append (rev [h]) (rev(rev t))= append (rev [h]) t= append (rev (h :: [])) t= append (append [] [h]) t= append [h] t= append (h :: []) t= h :: (append [] t)= h :: t= l
John Harrison University of Cambridge, 23 January 1998

Introduction to Functional Programming: Lecture 5 20
Harder casesHere is a di�cult exercise: prove that thefollowing terminates for n > 0.- fun Conway 1 = 1| Conway 2 = 1| Conway n =let val x = Conway(n-1)in Conway(x) + Conway(n-x)end;> val Conway = fn : int -> intHere is an unsolved problem: does the followingalways terminate?- fun Collatz n =if n <= 1 then 0else if n mod 2 = 0 thenCollatz(n div 2)else Collatz(3 * n + 1);> val Collatz = fn : int -> int

John Harrison University of Cambridge, 23 January 1998

