Introduction to Functional Programming: Lecture 4

Introduction to
Functional Programming

Topics covered:

e Kinds of recursion
Numbers as a recursive type
New types in ML
Pattern matching

More examples: sums, lists and trees.

University of Cambridge, 22 January 1998




Introduction to Functional Programming: Lecture 4

Recursive functions: factorial

Recursive functions are central to functional
programming, so it’s as well to be clear about
them.

Roughly speaking, a recursive function is one

‘defined in terms of itself’. For example, we can

define the factorial function in mathematics as

1 iftn=20
n! =
n*x(n—1) otherwise

This translates directly into ML:

fun fact n =

if n = 0 then 1

else n *x fact(n - 1);
val fact = fn : int -> int
fact 6;
val it = 720 : int

University of Cambridge, 22 January 1998




Introduction to Functional Programming: Lecture 4

Recursive functions: Fibonacci

Another classic example of a function defined

h member of the Fibonacci

recursively is the n!
sequence 1,1,2,3,5,8,13,21,... where each

number is the sum of the two previous ones.

/

1 itn=20
fib, =< 1 itn=1

| fibp—2 + fib,_1 otherwise

Once again the ML is similar:

- fun fib n =
if n = 0 then 1
else if n = 1 then 1
else fib(n - 2) + fib(n - 1);
val fib = fn : int -> int
fib 5;
val it
fib 6;

val it

University of Cambridge, 22 January 1998




Introduction to Functional Programming: Lecture 4

Kinds of recursion

How do we know that the evaluation of these

functions will terminate?

Trivially fact 0 terminates, since it doesn’t

generate a recursive call.

If we evaluate fact n for n > 0, we need fact (n
- 1), then maybe fact (n - 2), fact (n - 3)

etc., but eventually, after n recursive calls, we

reach the base case. This is why termination is
guaranteed. (Though it loops for n < 0.)

This sort of recursion, where the argument to the
recursive call(s) decreases by 1 each time is called
primitive recursion. The function £fib is different:

the recursion is not primitive.

To know that fib n terminates, we need to know
that fib (n - 1) and fib (n - 2) terminate.
Nevertheless, we are still sure to reach a base case
eventually because the argument does become

smaller, and can’t skip over both 1 and 0.

University of Cambridge, 22 January 1998




Introduction to Functional Programming: Lecture 4

Proofs of termination

More formally, we can turn the above into a proof
by mathematical induction than fact n
terminates for each natural number n. We prove
that fact O terminates, then that if fact n

terminates, so does fact (n + 1).

VP. P(0) A (Vn. P(n) = P(n+ 1)) = Vn. P(n)

The appropriate way to prove fib n terminates
for all natural numbers n is to use the principle of
wellfounded induction, rather than step-by-step

induction.
VP.(Vn.(Vm.m <n = P(m)) = P(n) = Vn.P(n)

There is thus a close parallel between the kind of
recurston used to define a function and the kind
of induction used to reason about it, in this case

show that it terminates.

University of Cambridge, 22 January 1998




Introduction to Functional Programming: Lecture 4

The naturals as a recursive type

The principle of mathematical induction says
exactly that every natural number is generated by
starting with 0 and repeatedly adding one, i.e.

applying the successor operation S(n) =n + 1.

If we regard the natural numbers as a set or a
type, then we may say that it is generated by the

constructors 0 and S.

Moreover, each natural number can only be

generated in one way like this: we can’t have
S(n) =0, and if

p times g times

N\ \

S(S(---(S(0))---)) = S(S(--- (S(0)) ---))

then p = q. The second property is equivalent to

saying that S is injective.

In such cases the set or type is said to be free,
because there are no relationships forced on the

elements.

University of Cambridge, 22 January 1998




Introduction to Functional Programming: Lecture 4

New types in ML

ML allows us to define new types in just this way.

We write:

- datatype num = (O

| S of num;

> datatype num

con 0 = 0 : num

con S = fn : num -> num

This declares a completely new type called num
and the appropriate new constructors.

But in order to define functions like fact we need
to be able to take numbers apart again, i.e. go
from S(n) to n. We haven’t got something like

subtraction here.

University of Cambridge, 22 January 1998




Introduction to Functional Programming: Lecture 4

Properties of type constructors

All type constructors arising from a datatype

definition have three key properties, which we can

illustrate using the above example.

1. They are exhaustive, . every element of the
new type is obtainable either by 0 or as S x

for some x.

. They are injective, i.e. an equality test S x =

S y is true if and only if x = y.

. They are distinct, i.e. their ranges are
disjoint. More concretely this means in the
above example that S(x) = 0 is false

whatever x might be.

Because of these properties, we can define
functions, including recursive ones, by pattern

matching.

University of Cambridge, 22 January 1998




Introduction to Functional Programming: Lecture 4

Pattern matching — how

We perform pattern matching by using more
general expressions called varstructs as the
arguments in fn => ... or fun =>

expressions.

Moreover, we can have several different cases to

match against, separated by |. For example, here

is a test for whether something of type num is zero:

fun iszero 0 = true
| iszero (S n) = false;
val iszero = fn : num -> bool
iszero (S(S(0)));
val it = false : bool
iszero 0;

val 1t = true : bool

This function has the property, naturally enough,
that when applied to 0 it returns true and when
applied to S x it returns false.

University of Cambridge, 22 January 1998




Introduction to Functional Programming: Lecture 4

Pattern matching — why

Why is this valid?

1. The constructors are distinct, so we know

that there is no ambiguity. The cases for O

and S x don’t overlap.

. The constructors are injective, so we can
always recover x from S x if we want to use x
in the body of that clause.

. The constructors are exhaustive, so we know
that if we have a case for each constructor,

the function is defined everywhere on the

type.

University of Cambridge, 22 January 1998




Introduction to Functional Programming: Lecture 4

Non-exhaustive matching

In fact, we can define partial functions that don’t

cover every case. Here is a ‘predecessor’ function.

fun pred (S(n))
Toplevel input:
fun pred (S(n))

Warning: pattern matching is not

exhaustive

> val pred = fn : num -> num

The compiler warns us of this fact. If we try to
use the function on an argument not of the form

S x, then it will not work:

- pred O;
I Uncaught exception:
I Match

University of Cambridge, 22 January 1998



Introduction to Functional Programming: Lecture 4

General matching

Moreover, we can perform matching even in other

situations, when the matches might not be
mutually exclusive. In this case, the first possible

match is taken.

(fn true => 1 | false => 0) (4 < 3);
val it = 0 : int
(fn true => 1 | false => 0) (2 < 4);

val it = 1 : int

However, in general, constants need special
constructor status, or they will be treated just as
variables for binding:

— let val t = true and f = false
in (fn t => 1 | £ => 0) (4 < 3)

> val it =

University of Cambridge, 22 January 1998




Introduction to Functional Programming: Lecture 4

Nonrecursive types

New types don’t actually need to be recursive.

For example, here is a type of disjoint sums.

- datatype (’a,’b)sum = inl of ’a
| inr of
> datatype (’a, ’b) sum
con inl = fn : ’a -> (’a, ’b) sum

con inr = fn : ’b -> (’a, ’b) sum

This creates a new type constructor sum and two

new constructors. Again we can define functions

by pattern matching, e.g.

- fun outl (inl a)
Toplevel input:

fun outl (inl a)

Warning: pattern matching is not

exhaustive

> val outl : (’a, ’b) sum -> ’a

University of Cambridge, 22 January 1998




Introduction to Functional Programming: Lecture 4

An important type is the type of finite lists:

- datatype (’a)list =
Nil
| Cons of ’a * (’a)list;
> datatype ’a list
con Nil = Nil : ’a list

con Cons = fn : ’a *x ’a list -> ’a 1list

We imagine Nil as the empty list and Cons as a

function that adds a new element on the front of a
list. The lists [], [1], [1,2] and [1,2, 3] are written:

Nil;

Cons(1,Nil);
Cons(1,Cons(2,Nil));
Cons(1,Cons(2,Cons(3,Nil)));

University of Cambridge, 22 January 1998




Introduction to Functional Programming: Lecture 4

Actually, this type is already built in. The empty

list is written [] and the recursive constructor ::,
has infix status. (You can make your own
identifier f infix by writing infixr f.) Thus, the

above lists are actually written:

[1;

val it [] : ’a list

1::[1;

val it = [1] : int 1list
1::2::[];

val it = [1, 2] : int list
1::2::3::[1;

val it = [1, 2, 3] : int list

The version that is printed can also be used for
input:
- [1,2,3,4,5] = 1::2::3::4::5::[];

> val it = true : bool

University of Cambridge, 22 January 1998




Introduction to Functional Programming: Lecture 4

Pattern matching over lists

We can now define functions by pattern matching

in the usual way. For example, we can define

functions to take the head and tail of a list:

fun hd (h::t) = h;
Toplevel input:
fun hd (h::t) = h;

Warning: pattern matching is not
exhaustive

val hd = fn : ’a list -> ’a

fun tl (h::t) = t;

Toplevel input:

fun tl (h::t) = t;

Warning: pattern matching is not
exhaustive
val tl = fn : ’a list -> ’a list

ML warns us that they will fail when applied to
an empty list.

University of Cambridge, 22 January 1998




Introduction to Functional Programming: Lecture 4

Recursive functions over lists

It is possible to mix pattern matching and
recursion. This is natural since the type itself is
defined recursively. For example, here is a

function to return the length of a list:

fun length [] = O

| length (h::t) = 1 + length t;
val length = fn : ’a list -> int
length [5,3,1];

val it = 3 : int

Alternatively, this can be written in terms of our
earlier ‘destructor’ functions hd and t1. This
style of function definition is more usual in many
languages, notably LISP, but the direct use of

pattern matching is often more elegant.

University of Cambridge, 22 January 1998




Introduction to Functional Programming: Lecture 4

Trees

Lists can be though of as tree structures, but are

rather ‘one-sided’. Here is a type of binary trees
with integers at the branch nodes:

- datatype tree =
Leaf
| Br of (treexintx*tree);
> datatype tree
con Leaf = Leaf : tree

con Br = fn : tree * int * tree -> tree

For example, the following recursive function adds

up all the integers in a tree:

- fun treesum Leaf = 0
| treesum (Br(tl,n,t2)) =
treesum tl + n + treesum t2;

> val treesum = fn : tree -> int

Such tree structures are often useful for
representing the syntax of formal languages, e.g.

arithmetic expressions, C programs.

University of Cambridge, 22 January 1998




Introduction to Functional Programming: Lecture 4

The subtlety of recursive types

Consider the following:

- datatype (’a)embedding =
K of (’a)embedding->’a;

This looks suspicious because it embeds the

function space A — B inside A. In fact it only

embeds the computable functions. It allows us to
define recursive functions without explicit use of

recursion:

fun Y h =
let fun g (K x) z=h (x (K x)) z
in g (K g)
end;
val fact = Y (fn f => fn n =>
if n = 0 then 1 else n *x f(n - 1));
val fact fn : int -> int
fact 6;
val it = 720 : int

University of Cambridge, 22 January 1998




