
Introduction to Functional Programming: Lecture 4 1
Introduction toFunctional ProgrammingJohn HarrisonUniversity of CambridgeLecture 4Recursive functionsand recursive types

Topics covered:� Kinds of recursion� Numbers as a recursive type� New types in ML� Pattern matching� More examples: sums, lists and trees.
John Harrison University of Cambridge, 22 January 1998

Introduction to Functional Programming: Lecture 4 2
Recursive functions: factorialRecursive functions are central to functionalprogramming, so it's as well to be clear aboutthem.Roughly speaking, a recursive function is one`de�ned in terms of itself'. For example, we cande�ne the factorial function in mathematics as

n! = 8<: 1 if n = 0n � (n� 1)! otherwise
This translates directly into ML:- fun fact n =if n = 0 then 1else n * fact(n - 1);> val fact = fn : int -> int- fact 6;> val it = 720 : int

John Harrison University of Cambridge, 22 January 1998

Introduction to Functional Programming: Lecture 4 3
Recursive functions: FibonacciAnother classic example of a function de�nedrecursively is the nth member of the Fibonaccisequence 1; 1; 2; 3; 5; 8; 13; 21; : : : where eachnumber is the sum of the two previous ones.
fibn = 8>><>>: 1 if n = 01 if n = 1fibn�2 + fibn�1 otherwiseOnce again the ML is similar:- fun fib n =if n = 0 then 1else if n = 1 then 1else fib(n - 2) + fib(n - 1);> val fib = fn : int -> int- fib 5;> val it = 8 : int- fib 6;> val it = 13 : intJohn Harrison University of Cambridge, 22 January 1998

Introduction to Functional Programming: Lecture 4 4
Kinds of recursionHow do we know that the evaluation of thesefunctions will terminate?Trivially fact 0 terminates, since it doesn'tgenerate a recursive call.If we evaluate fact n for n > 0, we need fact (n- 1), then maybe fact (n - 2), fact (n - 3)etc., but eventually, after n recursive calls, wereach the base case. This is why termination isguaranteed. (Though it loops for n < 0.)This sort of recursion, where the argument to therecursive call(s) decreases by 1 each time is calledprimitive recursion. The function fib is di�erent:the recursion is not primitive.To know that fib n terminates, we need to knowthat fib (n - 1) and fib (n - 2) terminate.Nevertheless, we are still sure to reach a base caseeventually because the argument does becomesmaller, and can't skip over both 1 and 0.John Harrison University of Cambridge, 22 January 1998

Introduction to Functional Programming: Lecture 4 5
Proofs of termination

More formally, we can turn the above into a proofby mathematical induction than fact nterminates for each natural number n. We provethat fact 0 terminates, then that if fact nterminates, so does fact (n + 1).8P: P (0) ^ (8n: P (n)) P (n+ 1))) 8n: P (n)The appropriate way to prove fib n terminatesfor all natural numbers n is to use the principle ofwellfounded induction, rather than step-by-stepinduction.8P:(8n:(8m:m < n) P (m))) P (n)) 8n:P (n)There is thus a close parallel between the kind ofrecursion used to de�ne a function and the kindof induction used to reason about it, in this caseshow that it terminates.
John Harrison University of Cambridge, 22 January 1998

Introduction to Functional Programming: Lecture 4 6
The naturals as a recursive type

The principle of mathematical induction saysexactly that every natural number is generated bystarting with 0 and repeatedly adding one, i.e.applying the successor operation S(n) = n+ 1.If we regard the natural numbers as a set or atype, then we may say that it is generated by theconstructors 0 and S.Moreover, each natural number can only begenerated in one way like this: we can't haveS(n) = 0, and ifp timesz }| {S(S(� � � (S(0)) � � �)) = q timesz }| {S(S(� � � (S(0)) � � �))then p = q. The second property is equivalent tosaying that S is injective.In such cases the set or type is said to be free,because there are no relationships forced on theelements.John Harrison University of Cambridge, 22 January 1998

Introduction to Functional Programming: Lecture 4 7
New types in ML

ML allows us to de�ne new types in just this way.We write:- datatype num = O| S of num;> datatype numcon O = O : numcon S = fn : num -> numThis declares a completely new type called numand the appropriate new constructors.But in order to de�ne functions like fact we needto be able to take numbers apart again, i.e. gofrom S(n) to n. We haven't got something likesubtraction here.

John Harrison University of Cambridge, 22 January 1998

Introduction to Functional Programming: Lecture 4 8
Properties of type constructors

All type constructors arising from a datatypede�nition have three key properties, which we canillustrate using the above example.1. They are exhaustive, . every element of thenew type is obtainable either by O or as S xfor some x.2. They are injective, i.e. an equality test S x =S y is true if and only if x = y.3. They are distinct, i.e. their ranges aredisjoint. More concretely this means in theabove example that S(x) = O is falsewhatever x might be.Because of these properties, we can de�nefunctions, including recursive ones, by patternmatching.
John Harrison University of Cambridge, 22 January 1998

Introduction to Functional Programming: Lecture 4 9
Pattern matching | how

We perform pattern matching by using moregeneral expressions called varstructs as thearguments in fn => ... or fun => ...expressions.Moreover, we can have several di�erent cases tomatch against, separated by |. For example, hereis a test for whether something of type num is zero:- fun iszero O = true| iszero (S n) = false;> val iszero = fn : num -> bool- iszero (S(S(O)));> val it = false : bool- iszero O;> val it = true : boolThis function has the property, naturally enough,that when applied to O it returns true and whenapplied to S x it returns false.
John Harrison University of Cambridge, 22 January 1998

Introduction to Functional Programming: Lecture 4 10
Pattern matching | why

Why is this valid?1. The constructors are distinct, so we knowthat there is no ambiguity. The cases for Oand S x don't overlap.2. The constructors are injective, so we canalways recover x from S x if we want to use xin the body of that clause.3. The constructors are exhaustive, so we knowthat if we have a case for each constructor,the function is de�ned everywhere on thetype.

John Harrison University of Cambridge, 22 January 1998

Introduction to Functional Programming: Lecture 4 11
Non-exhaustive matching

In fact, we can de�ne partial functions that don'tcover every case. Here is a `predecessor' function.- fun pred (S(n)) = n;! Toplevel input:! fun pred (S(n)) = n;! ^^^^^^^^^^^^^^^! Warning: pattern matching is notexhaustive> val pred = fn : num -> numThe compiler warns us of this fact. If we try touse the function on an argument not of the formS x, then it will not work:- pred O;! Uncaught exception:! Match
John Harrison University of Cambridge, 22 January 1998

Introduction to Functional Programming: Lecture 4 12
General matching

Moreover, we can perform matching even in othersituations, when the matches might not bemutually exclusive. In this case, the �rst possiblematch is taken.- (fn true => 1 | false => 0) (4 < 3);> val it = 0 : int- (fn true => 1 | false => 0) (2 < 4);> val it = 1 : intHowever, in general, constants need specialconstructor status, or they will be treated just asvariables for binding:- let val t = true and f = falsein (fn t => 1 | f => 0) (4 < 3)end;!> val it = 1 : intJohn Harrison University of Cambridge, 22 January 1998

Introduction to Functional Programming: Lecture 4 13
Nonrecursive typesNew types don't actually need to be recursive.For example, here is a type of disjoint sums.- datatype ('a,'b)sum = inl of 'a| inr of 'b;> datatype ('a, 'b) sumcon inl = fn : 'a -> ('a, 'b) sumcon inr = fn : 'b -> ('a, 'b) sumThis creates a new type constructor sum and twonew constructors. Again we can de�ne functionsby pattern matching, e.g.- fun outl (inl a) = a;! Toplevel input:! fun outl (inl a) = a;! ^^^^^^^^^^^^^^^^! Warning: pattern matching is notexhaustive> val outl = fn : ('a, 'b) sum -> 'aJohn Harrison University of Cambridge, 22 January 1998

Introduction to Functional Programming: Lecture 4 14
Lists (1)An important type is the type of �nite lists:- datatype ('a)list =Nil| Cons of 'a * ('a)list;> datatype 'a listcon Nil = Nil : 'a listcon Cons = fn : 'a * 'a list -> 'a listWe imagine Nil as the empty list and Cons as afunction that adds a new element on the front of alist. The lists [], [1], [1; 2] and [1; 2; 3] are written:Nil;Cons(1,Nil);Cons(1,Cons(2,Nil));Cons(1,Cons(2,Cons(3,Nil)));

John Harrison University of Cambridge, 22 January 1998

Introduction to Functional Programming: Lecture 4 15
Lists (2)

Actually, this type is already built in. The emptylist is written [] and the recursive constructor ::,has in�x status. (You can make your ownidenti�er f in�x by writing infixr f.) Thus, theabove lists are actually written:- [];> val it = [] : 'a list- 1::[];> val it = [1] : int list- 1::2::[];> val it = [1, 2] : int list- 1::2::3::[];> val it = [1, 2, 3] : int listThe version that is printed can also be used forinput:- [1,2,3,4,5] = 1::2::3::4::5::[];> val it = true : bool
John Harrison University of Cambridge, 22 January 1998

Introduction to Functional Programming: Lecture 4 16
Pattern matching over listsWe can now de�ne functions by pattern matchingin the usual way. For example, we can de�nefunctions to take the head and tail of a list:- fun hd (h::t) = h;! Toplevel input:! fun hd (h::t) = h;! ^^^^^^^^^^^^^! Warning: pattern matching is notexhaustive> val hd = fn : 'a list -> 'a- fun tl (h::t) = t;! Toplevel input:! fun tl (h::t) = t;! ^^^^^^^^^^^^^! Warning: pattern matching is notexhaustive> val tl = fn : 'a list -> 'a listML warns us that they will fail when applied toan empty list.John Harrison University of Cambridge, 22 January 1998

Introduction to Functional Programming: Lecture 4 17
Recursive functions over lists

It is possible to mix pattern matching andrecursion. This is natural since the type itself isde�ned recursively. For example, here is afunction to return the length of a list:- fun length [] = 0| length (h::t) = 1 + length t;> val length = fn : 'a list -> int- length [5,3,1];> val it = 3 : intAlternatively, this can be written in terms of ourearlier `destructor' functions hd and tl. Thisstyle of function de�nition is more usual in manylanguages, notably LISP, but the direct use ofpattern matching is often more elegant.

John Harrison University of Cambridge, 22 January 1998

Introduction to Functional Programming: Lecture 4 18
TreesLists can be though of as tree structures, but arerather `one-sided'. Here is a type of binary treeswith integers at the branch nodes:- datatype tree =Leaf| Br of (tree*int*tree);> datatype treecon Leaf = Leaf : treecon Br = fn : tree * int * tree -> treeFor example, the following recursive function addsup all the integers in a tree:- fun treesum Leaf = 0| treesum (Br(t1,n,t2)) =treesum t1 + n + treesum t2;> val treesum = fn : tree -> intSuch tree structures are often useful forrepresenting the syntax of formal languages, e.g.arithmetic expressions, C programs.John Harrison University of Cambridge, 22 January 1998

Introduction to Functional Programming: Lecture 4 19
The subtlety of recursive types

Consider the following:- datatype ('a)embedding =K of ('a)embedding->'a;This looks suspicious because it embeds thefunction space A! B inside A. In fact it onlyembeds the computable functions. It allows us tode�ne recursive functions without explicit use ofrecursion:- fun Y h =let fun g (K x) z = h (x (K x)) zin g (K g)end;- val fact = Y (fn f => fn n =>if n = 0 then 1 else n * f(n - 1));> val fact = fn : int -> int- fact 6;> val it = 720 : int
John Harrison University of Cambridge, 22 January 1998

