
Introduction to Functional Programming: Lecture 3 1
Introduction toFunctional ProgrammingJohn HarrisonUniversity of CambridgeLecture 3ML's type system

Topics covered:� Why types?� Approaches to typing� Basic types.� Polymorphism.� ML typechecking.� Equality types
John Harrison University of Cambridge, 20 January 1998

Introduction to Functional Programming: Lecture 3 2
Logical reasons for types

Types help us rule out certain programs thatdon't seem to make sense.Is it reasonable to apply a function to itself, as inf f? It makes some sense for functions like theidentity fn x => x or constant functions fn x =>y. But in general it looks very suspicious.This sort of self-application can lead toinconsistencies in formal logics designed toprovide a foundation for mathematics.For example, Russell's paradox considersfx j x 62 xg, the set of all sets that are notmembers of themselves. To avoid this, Russellintroduced a system of types.Type theory is now seen as an alternative to settheory as a foundation. There are interestinglinks between type theory and programming.
John Harrison University of Cambridge, 20 January 1998

Introduction to Functional Programming: Lecture 3 3
Programming reasons for types

Types were introduced in programming for amixture of reasons. We can (at least inretrospect) see the following advantages:� They can help the computer to generate moree�cient code, and use space more e�ectively.� They serve as a kind of `sanity check' forprograms, catching a lot of programmingerrors before execution.� They can serve as documentation for people.� They can help with data hiding andmodularization.At the same time, some programmers �nd theman irksome restriction. How can we achieve thebest balance?
John Harrison University of Cambridge, 20 January 1998

Introduction to Functional Programming: Lecture 3 4
Di�erent typing methods

We can distinguish between� Strong typing, as in Modula-3, where typesmust match up exactly.� Weak typing, as in C, where greater latitudeis allowed (e.g. an argument of type int to afunction expecting a float).and also between� Static typing, as in FORTRAN, whichhappens during compilation� Dynamic typing, as in LISP, which happensduring execution.ML is statically and strongly typed. At the sametime, a feature called polymorphism gives manybene�ts of weak or dynamic typing.John Harrison University of Cambridge, 20 January 1998

Introduction to Functional Programming: Lecture 3 5
Basic typesThe primitive types in ML include:� Type unit, a 1-element type, whose onlyelement is written ().� Type bool, a 2-element type whose elementsare written true and false.� Type int, a subset of the positive andnegative integers, e.g. 6 and ~11.� Type real, oating point numbers, writtene.g. 1.0 and 3.1415926.� Type string, which corresponds to sequencesof characters, written "like this".These can be put together using typeconstructors, including the function constructor-> and the Cartesian product constructor *.We will see how to de�ne new types and typeconstructors later.John Harrison University of Cambridge, 20 January 1998

Introduction to Functional Programming: Lecture 3 6
PolymorphismSome functions can have various di�erent types| polymorphism. We distinguish between:� True (`parametric') polymorphism, where allthe possible types for an expression areinstances of some schematic type, and allinstances of that schema are possible types.For example, fn x => x can have any type ofthe form �->�, e.g. int -> int or bool ->bool but not int -> real.� Ad hoc polymorphism, or overloading, wherethis isn't so. The addition operation in fn x=> 1 + x and fn x => 1.0 + x has typesint * int -> int and real * real ->real respectively, but it can't have type bool* bool -> bool.ML has overloading, but only for a few specialcases, and we prefer to ignore it. We'llconcentrate on (parametric) polymorphism.John Harrison University of Cambridge, 20 January 1998

Introduction to Functional Programming: Lecture 3 7
Type variablesIn order to express polymorphism, ML allowstypes to contain type variables. These are written'a, 'b etc., ASCII approximations to � and �.If an expression has a type involving � then it canalso be given any type that results fromconsistently replacing � by another type (whichmay itself involve type variables).Let's say that a type � is more general than � ,and write � � � , when we can substitute types fortype variables in � and get � . For example:� � bool� � �(�! �) � (int ! int)(�! �) 6� (int ! bool)(� ! �) � (� ! �)(� ! �) 6� �

John Harrison University of Cambridge, 20 January 1998

Introduction to Functional Programming: Lecture 3 8
Most general types

Every expression in ML that has a type has amost general type. This was �rst proved in asimilar context by Hindley, and for the exactsetup here by Milner.What's more, there is an algorithm for �nding themost general type of any expression, even if itcontains no type information at all.ML implementations use this algorithm.Therefore it is never necessary in ML to writedown a type. All typing is implicit.Thus, the ML type system is much less irksomethan in many languages like Modula-3. We neverhave to specify types explicitly and we can oftenre-use the same code with di�erent types: thecompiler will work everything out for us.
John Harrison University of Cambridge, 20 January 1998

Introduction to Functional Programming: Lecture 3 9
ML type inference (1)

Roughly speaking, here's how ML's type inferenceworks. Using this method you can typecheck MLexpressions yourself, though it's rather laboriousand with some experience it becomes much easier.We'll use as an example:fn a => (fn f => fn x => f x) (fn x => x)First, attach distinct type variables to distinctvariables in the expression, and the appropriatetypes to previously de�ned constants, perhapsthemselves polymorphic. Di�erent type variablesmust be used for distinct instances ofpolymorphic constants.Note that variables like x in fn x => have alimited scope, and outside that scope instances ofx are really separate variables. We get fn (a:�)=> (fn (f:�) => fn (x:) => (f:�) (x:))(fn (x:�) => (x:�)).
John Harrison University of Cambridge, 20 January 1998

Introduction to Functional Programming: Lecture 3 10
ML type inference (2)

Now an application of a function to an argumentf x can only be well-typed if f : � ! � and x : �for some � and � . In this case, (f x) : � .An expression fn (x:�) => E: has type � ! .Using these facts, we can �nd relations among thetype variables. Essentially, we get a series ofsimultaneous equations, and use them toeliminate some unknowns. The remainingunknowns, if any, parametrize the �nalpolymorphic type.If the types can't be matched up, or some typevariable has to be equal to some composite typecontaining itself, then typechecking fails.Another way of looking at it is as a case ofuni�cation.
John Harrison University of Cambridge, 20 January 1998

Introduction to Functional Programming: Lecture 3 11
ML type inference (3)

First, we have an application (f:�) (x:). Forthis to be well-typed, we must have, for some �that � = ! �. Now(fn f => fn x => f x):(! �)! (! �)and this is applied to(fn x => x):� ! �So we must have (! �) = (� ! �) and so = �and � = �, and the whole expression has type� ! (� ! �).It doesn't matter how we name the type variablesnow, so we can call it � ! (� ! �).This is the end result of type checking.

John Harrison University of Cambridge, 20 January 1998

Introduction to Functional Programming: Lecture 3 12
Let polymorphismRecall that we can have local bindings, e.g. usinglet val v = E in E' end. We need to say howto typecheck this.We can regard it as synonymous with (fn v =>E') E, but then following the previous rules failsto give one very important property:If v is bound to something polymorphic, we wantto allow it to be instantiated to multiple instancesinside, e.g.let val I = fn x => xin if I true then I 1 else 0end;One can typecheck such expressions simply bysubstituting its de�nition for the bound variable.This is not very e�cient, but is satisfactory inprinciple. Of course, one must also check that thebound expression is itself well-typed, in case itisn't used in the body.John Harrison University of Cambridge, 20 January 1998

Introduction to Functional Programming: Lecture 3 13
Type preservation

In ML, the phases of type checking and evaluationare separate, the former completed `statically'before evaluation begins.For this to work, it's essential that evaluation ofwell-typed expressions cannot give rise toill-typed expressions, i.e. that (static) typing and(dynamic) evaluation don't interfere with eachother. This property is called type preservation.The main step in evaluation is the transition from(fn x => t[x]) u to t[u]. It's not hard to see,following our rules, that x and u must have thesame types at the outset, so this preservestypeability.The reverse is not true, e.g. (fn a => fn b =>b) (fn x => x x) is untypeable even though fnb => b is typeable.
John Harrison University of Cambridge, 20 January 1998

Introduction to Functional Programming: Lecture 3 14
Pathologies of typechecking

In all our examples, the system very quickly infersa most general type for each expression, and thetype is simple. This usually happens in practice,but there are pathological cases, e.g. the followingexample due to Mairson:fn a => let fun pair x y = fn z => z x yval x1 = fn y => pair y yval x2 = fn y => x1(x1 y)val x3 = fn y => x2(x2 y)val x4 = fn y => x3(x3 y)val x5 = fn y => x4(x4 y)in x5 (fn z => z)end;The type of this expression takes about a minuteto calculate, and when printed out takes 50,000lines.Don't try this at home.John Harrison University of Cambridge, 20 January 1998

Introduction to Functional Programming: Lecture 3 15
Equality types

Sometimes one sees instead of 'a a type variable''a. These sometimes arise when using thebuilt-in equality operation inside an expression.Equality is not completely polymorphic: onecannot compare functions, or expressions built upfrom functions.While this might seem to go against thefunctional programming philosophy, extensionalequality of functions is not computable. The typesystem is used to reect this.- (fn x => x) = (fn x => x);! Toplevel input:! (fn x => x) = (fn x => x);! ^^^^^^! Type clash: match rule of type! 'a -> 'b! cannot have equality type ''c
John Harrison University of Cambridge, 20 January 1998

