Introduction to Functional Programming: Lecture 12

Introduction to
Functional Programming

Topics covered:

e Prolog terms: parsing and printing
e Unification and Prolog backtracking
Prolog examples
A simple theorem prover

Theorem proving examples

University of Cambridge, 11 February 1997

Introduction to Functional Programming: Lecture 12

Overview

Prolog is another ‘declarative’ language, popular

in Artificial Intelligence research.

You will learn more about it in the lecture course

‘Prolog for Artificial Intelligence’.

It is a logic programming language, and is said to
be ‘relational’ rather than functional.

Its standard search strategy, backward chaining
with unification and backtracking, is useful for a
wide range of applications including databases,

expert systems and theorem provers.

We will show how to implement a cut-down

Prolog interpreter in ML.

We will then use the same tools and techniques to

build a simple theorem prover.

University of Cambridge, 11 February 1997

Introduction to Functional Programming: Lecture 12

Prolog terms

Prolog code and data is represented using a

uniform system of first order terms.

We will represent this using a recursive type
similar to the one used for mathematical

expressions.

type term = Var of string

| Fn of string * (term list);;

Note that we treat constants as nullary functions,
i.e. functions that take an empty list of

arguments.

Where we would formerly have used Const s, we

will now use Fn(s, []1).

Note that we will treat functions of different
arities (different numbers of arguments) as

distinct, even if they have the same name.

University of Cambridge, 11 February 1997

Introduction to Functional Programming: Lecture 12

Lexical analysis (1)

In Prolog, identifiers that begin with an upper
case letter or an underscore are treated as
variables, while other alphanumeric identifiers,

along with numerals, are treated as constants.

For example X and Answer are variables while x

and john are constants.

We will lump all symbolic identifiers together as
constants too, but we will distinguish the
punctuation symbols: left and right brackets,

commas and semicolons.

Non-punctuation symbols are collected together
into the longest strings possible, so symbolic
identifiers need not consist only of one character.

type token = Variable of string
| Constant of string

| Punctuation of string;;

University of Cambridge, 11 February 1997

Introduction to Functional Programming: Lecture 12

Lexical analysis (2)

let several p = many (some p) in
let collect(h,t) = h~(itlist (prefix ~) t "") in
let upper_alpha s = "A" <= s & s <= "Z" or s = "_"

let lex =

and lower_alpha s = "a" <= s & s <= "z" or
"O" <= g & s <= "gn

and punct s = s = "(" or s = ")" or s = "[" or

S
S

s "l"m or s = "," or s =
and space s S " " or s ="\n" or s = "\t" in
let alnum s upper_alpha s or lower_alpha s in
let symbolic s = not space s & not alnum s &
not punct s in
let rawvariable = some upper_alpha ++ several alnum
>> (Variable o collect)
and rawconstant = (some lower_alpha ++ several alnum
|| some symbolic ++ several symbolic)
>> (Constant o collect)
and rawpunct = some punct >> Punct in
let token = (rawvariable || rawconstant || rawpunct)
++ several space >> fst in
let tokens = (several space ++ many token) >> snd in
let alltokens = (tokens ++ finished) >> fst in
fst o alltokens o explode;;

University of Cambridge, 11 February 1997

Introduction to Functional Programming: Lecture 12

Parsing and printing

The printer is exactly the same as before.

The parser is almost the same as before; again we
allow some operators like addition to be written

infix. We also allow a special syntax for lists.

We regard [x1,x2,...,xn] as shorthand for

cons(x1l,cons(x2,...,cons(xn,nil)))

where cons is the function corresponding to a list
constructor, just like :: in ML. The printer
writes it as an infix dot. Also, [H|T] is allowed
instead of cons(H,T).

A Prolog rule is of one of these forms:

term.

term term, ..., term.

We have a parser for these, returning a

term * term list.

University of Cambridge, 11 February 1997

Introduction to Functional Programming: Lecture 12

Prolog uses a set of rules to solve a current goal by

trying to match one of the rules against the goal.

A rule consisting of a single term can solve a goal

immediately.

In the case of a rule term :- termq, ..., term,., if
the goal matches term, then Prolog needs to solve
each term; as a subgoal in order to finish the

original goal.

However, goals and rules do not have to be
exactly the same. Instead, Prolog assigns
variables in both to make them match up. This

process is called unification.

This means that we can end up proving a special
case of the original goal, e.g. P(f(X)) instead of
P(Y).

University of Cambridge, 11 February 1997

Introduction to Functional Programming: Lecture 12

Unification: examples and algorithm

To unify f(g(X),Y) and f(g(a), X) we need to
set X =a and Y = a. Then both terms are

f(g(a), a).
To unify f(a, X,Y) and f(X,a,Z) we need to set
X =aand Y = Z, and then both terms are

fla,a, 7).
It is impossible to unify f(X) and X.

There is a systematic procedure for finding a most

general unifier.

Roughly, one descends the two terms recursively
in parallel, and on finding a variable on either
side, assigns it to whatever the term on the other
side is.

One needs to check that the variable hasn’t
already been assigned to something else, and that
it doesn’t occur in the term being assigned to it
(as in the last example above).

University of Cambridge, 11 February 1997

Introduction to Functional Programming: Lecture 12

Unification: code

We have a set of existing instantiations, and we

look each variable up to see if it is already

assigned before proceeding.

let rec unify tml tm2 insts =
match tml with
Var(x) ->
(try let tml’ = assoc x insts in
unify tml’ tm2 insts
with Not_found ->
augment (x,tm2) insts)
| Fn(f1,argsl) ->
match tm2 with
Var(y) ->
(try let tm2’ = assoc y insts in
unify tml tm2’ insts
with Not_found ->
augment (y,tml) insts)
| Fn(f2,args2) ->
if f1 = £2
then itlist2 unify argsl args2 insts
else raise (error "functions do not match");

We use the existing instantiations as an

accumulator.

University of Cambridge, 11 February 1997

Introduction to Functional Programming: Lecture 12

Augmenting instantiations

let rec occurs_in x =
fun (Var y) -> x =y
| (Fn(_,args)) -> exists (occurs_in x) args;;

let rec subst insts = fun
(Var y) -> (try assoc y insts with Not_found -> tm)

| (Fn(f,args)) -> Fn(f,map (subst insts) args);;

let raw_augment =
let augmentl theta (x,s) =
let s’ = subst theta s in
if occurs_in x s & not(s = Var(x))
then raise (error "Occurs check")
else (x,s’) in
fun p insts -> p::(map (augmentl [p]) insts);;

let augment (v,t) insts =
let t’ = subst insts t in match t’ with
Var(w) -> if w <= v then
if w = v then insts
else raw_augment (v,t’) insts
else raw_augment (w,Var(v)) insts
_ —> if occurs_in v t’
then raise (error "Occurs check")

else raw_augment (v,t’) insts;;

University of Cambridge, 11 February 1997

Introduction to Functional Programming: Lecture 12

Backtracking

Prolog proceeds by depth-first search, but it may

backtrack: even if a rule unifies successtully, if all
the remaining goals cannot be solved under the
resulting instantiations, then another initial rule
is tried. Thus we consider the whole list of goals

rather than one at a time:

let rec first f =
fun [] -> raise (error "No rules applicable")
| (h::t) -> try £ h with error _ -> first f t;;

let rec expand n rules insts goals =
first (fun rule ->

if goals = [] then insts else
let conc,asms =

rename_rule (string_of_int n) rule in
let insts’ = unify conc (hd goals) insts in
let local,global = partition

(fun (v,_) -> occurs_in v conc or

exists (occurs_in v) asms) insts’ in
let goals’ = (map (subst local) asms) @
(tl goals) in

expand (n + 1) rules global goals’) rules;;

University of Cambridge, 11 February 1997

Introduction to Functional Programming: Lecture 12

Other details

Note that we produce fresh variables for the rules

each time:

let rec rename s =
fun (Var v) -> Var(""""v~s)
| (Fn(f,args)) -> Fn(f,map (rename s) args);;
let rename_rule s (conc,asms) =

(rename s conc,map (rename s) asms);;

Finally, we package everything up:

type outcome = No | Yes of (string * term) list;;

let prolog rules goal =
try let insts = expand O rules [] [goall] in
Yes(filter (fun (v,_) -> occurs_in v goal)
insts)

with error _ -> No;;

This says either that the goal cannot be solved, or
that it can be solved with the given
instantiations. Note that we only return one

answer in this case, but this is easy to fix.

University of Cambridge, 11 February 1997

Introduction to Functional Programming: Lecture 12

Prolog examples (1)

#let rules = parse_rules
"male (albert) .
male (edward) .
female(alice).
female(victoria).
parents(edward,victoria,albert).
parents(alice,victoria,albert).
sister_of (X,Y) :-
female(X),
parents(X,M,F),
parents(Y,M,F).";;
rules : (term * term list) list =
[‘male(albert) ‘, []; ‘male(edward)‘, [I1;
‘female(alice) ¢, []; ‘female(victoria)‘, [1;
‘parents(edward,victoria,albert) ‘¢, [];
‘parents(alice,victoria,albert)‘, [];
‘sister_of (X,Y) ¢,
[‘female(X) ¢; ‘parents(X,M,F)‘; ‘parents(Y,M,F) ‘1]
#prolog rules ("sister_of(alice,edward)");;
- : outcome = Yes []
#prolog rules (parse_term "sister_of(alice,X)");;
- : outcome = Yes ["X", ‘edward‘]
#prolog rules (parse_term "sister_of(X,Y)");;
- : outcome = Yes ["Y", ‘edward‘; "X", ‘alice‘]

University of Cambridge, 11 February 1997

Introduction to Functional Programming: Lecture 12

Prolog examples (2)

#let r = parse_rules
"append([],L,L).
append ([HIT],L, [HIA]) :- append(T,L,A).";;
r : (term * term list) list =
[“append([]1,L,L)¢, [1;
‘append(H . T,L,H . A)‘, [‘append(T,L,A)‘]]
#prolog r (parse_term "append([1,2],[3],[1,2,31)");;

- : outcome = Yes []

#prolog r (parse_term "append([1,2],[3,4]1,X)");;

- : outcome = Yes ["X", ‘1 . (2 . (3. (4 . [1)))]
#prolog r (parse_term "append([3,4],X,X)");;

- : outcome = No

#prolog r (parse_term "append([1,2],X,Y)");;

- : outcome = Yes ["Y", ‘1 . (2 . X)‘]

Prolog is less ‘directional’ than ML. However it
has its limitations, e.g. the following will loop

indefinitely:

#prolog r (parse_term "append(X,[3,4],X)");;

University of Cambridge, 11 February 1997

Introduction to Functional Programming: Lecture 12

Prolog-style theorem proving

With a few minor changes, Prolog-style search

can be used for general theorem proving.

Examples of such provers include PTTP (Stickel,
1988) and lean TP (Beckert and Possega 1994).

Unification is an efficient method for deciding

how to specialize universally quantified variables
(Prawitz, Robinson 1960).

For example, given the facts that

VX.p(X) = q(X) and p(f(a)), we can unify the
two expressions involving p and thus discover that
we need to set X to f(a). By contrast, the very

earliest theorem provers tried all possible terms!

Usually, depth-first search would go into an
infinite loop, so we need to modify the Prolog
strategy slightly. We will use depth first iterative

deepening.

University of Cambridge, 11 February 1997

Introduction to Functional Programming: Lecture 12

Manipulating formulas

We will simply use our terms to denote formulas,

introducing new constants for the logical

operators. Many of these are written infix.

Operator Meaning

"(p) not p

p&q p and q

plq p or q

p-——>q p implies q

p <->q p if and only if g

forall(X,p) | for all X, p

exists(X,p) | there exists an X such that p

An alternative would be to introduce a separate

type of formulas, but this would require separate
parsing and printing support. We will avoid this,
for the sake of simplicity.

University of Cambridge, 11 February 1997

Introduction to Functional Programming: Lecture 12

Preprocessing formulas

It’s convenient if the main part of the prover need

not cope with implications and ‘if and only if’s.

Therefore we first define a function that
eliminates these in favour of the other connectives.

let rec proc tm =
match tm with

Fn(""",[t]) -> Fn(""", [proc tl])
Fn("&",[t1; t2]) -> Fn("&", [proc t1; proc t2])
Fn("|",[t1; t2]) -> Fn("|", [proc t1; proc t2])
Fn("-->",[t1; t2]) ->

proc (Fn("|",[Fn("~",[t1]); t21))
Fn("<->",[t1; t2]) ->

proc (Fn("&",[Fn("-->",[t1; t2]);

Fn("-->",[t2; t1]1)]1))

Fn("forall",[x; t]) -> Fn("forall",[x; proc tl])
Fn("exists",[x; t]) -> Fn("exists", [x; proc t])
t -> t;;

The next step is to push the negations down the

formula, putting it into so-called ‘negation normal
form” (NNF).

University of Cambridge, 11 February 1997

Introduction to Functional Programming: Lecture 12

NNF code

We define two mutually recursive functions that

create NNF for a formula, and its negation.

let rec nnf_p tm =
match tm with

Fn("~",[t]) -> nnf_n t

Fn("&",[t1; t2]) -> Fn("&",[nnf_p t1; nnf_p t2])
Fn("|",[t1; t2]) -> Fn("|",[nnf_p t1; nnf_p t2])
Fn("forall",[x; t]) -> Fn("forall",[x; nnf_p t])
Fn("exists",[x; t]) -> Fn("exists",[x; nnf_p t])
t >t

and nnf_n tm =
match tm with
Fn(""",[t]) -> nnf p t

| Fn("&",[t1; t2]) -> Fn("|",[nnf_n t1; nnf_n t2])
| Fn("|",[t1; t2]) -> Fn("&",[nnf_n t1; nnf_n t2])
| Fn("forall",[x; t]) -> Fn("exists",[x; nnf_n t])
| Fn("exists",[x; t]) -> Fn("forall",[x; nnf_n t])
| t => Fn(""",[t]);;

We will convert the negation of the input formula
into negation normal form, and the main prover

will then try to derive a contradiction from it.

University of Cambridge, 11 February 1997

Introduction to Functional Programming: Lecture 12

The main prover

At each stage, the prover has a current formula, a

list of formulas yet to be considered, and a list of
literals. It is trying to reach a contradiction.

If the current formula is p & q, then consider p
and q separately, i.e. make p the current formula

and add q to the formulas to be considered.

If the current formula is p | q, then try to get a
contradiction from p and then from q.

If the current formula is forall(X,p), invent a new
variable to replace X: the right value can be

discovered later by unification.

If the current formula is exists(X,p), invent a new

constant to replace X.

Otherwise, the formula must be a literal, so try to

unify it with a contradictory literal.

If this fails, add it to the list of literals, and

proceed with the next formula.

University of Cambridge, 11 February 1997

Introduction to Functional Programming: Lecture 12

Continuations

We desire a similar backtracking strategy to
Prolog: only if the current instantiations allow all
remaining goals to be solved do we accept it.

We could use lists again, but instead we use

continuations. A continuation is a function that is
passed to another function and can be called from
within it to ‘perform the rest of the computation’.

In our case, it takes a list of instantiations and
tries to solve the remaining goals under these

instantiations.
Thus, rather than explicitly trying to solve all
remaining goals, we simply try calling the

continuation.

University of Cambridge, 11 February 1997

Introduction to Functional Programming: Lecture 12

Prover code

let rec prove fm unexp pl nl n cont i =
if n < O then raise (error "No proof") else
match fm with
Fn("&",[p;ql) ->
prove p (q::unexp) pl nl n cont i
Fn("|",[p;ql) ->
prove p unexp pl nl n
(prove q unexp pl nl n cont) i
Fn("forall", [Var x; pl) ->

let v = mkvar() in

prove (subst [x,Var v] p) (unexp@[fm])

pl n1 (n - 1) cont i
Fn("exists", [Var x; pl) ->
let v = mkvar() in prove(subst [x,Fn(v,[]1)] p)
unexp pl nl (n - 1) cont i
Fn(""",[t]) ->
(try first (fun t’ -> let i’ = unify t t’ i in
cont i’) pl
with error _ -> prove (hd unexp) (tl unexp)
pl (t::nl) n cont i)
| t ->
(try first (fun t’ -> let i’ = unify t t’ i in
cont i’) nl
with error _ -> prove (hd unexp) (tl unexp)
(t::pl) nl n cont i);;

University of Cambridge, 11 February 1997

Introduction to Functional Programming: Lecture 12

Prover examples (1)

We set up the final prover as follows:

let prover =
let rec prove_iter n t =
try let insts = prove t [1 [1 [I n I [] in
let globinsts = filter
(fun (v,_) -> occurs_in v t) insts in
n,globinsts
with error _ -> prove_iter (n + 1) t in

fun t -> prove_iter 0 (nnf_n(proc(parse_term t)));;

It tries to find the proof with the fewest universal
instantiations. It returns the number required

and any toplevel instantiations.

#let P1 = prover "p --> q <-> “(q) --> “(P)";;

P1 : int * (string * term) list = 0, []

#let P13 = prover "p | q & r <> (p |l @ & (p | ©)";;

P13 : int * (string * term) list = 0, []

#let P16 = prover "(p --> q) | (q —=> p)";;

P16 : int * (string * term) list = 0, []

#let P18 = prover "exists(Y,forall(X,p(Y)-->p(X)))";;

P18 : int * (string * term) list = 2, []

#let P19 = prover "exists(X,forall(Y,forall(Z,
(p(Y)-->q(Z2))-->p(X)-->q(X))))";;

P19 : int * (string * term) list = 6, []

University of Cambridge, 11 February 1997

Introduction to Functional Programming: Lecture 12

Prover examples (2)

A bigger example is the following:

#let P55 = prover
"lives(agatha) & lives(butler) & lives(charles) &
(killed(agatha,agatha) | killed(butler,agatha) |
killed(charles,agatha)) &
(forall(X,forall(Y,
killed(X,Y) --> hates(X,Y) & ~(richer(X,Y))))) &
(forall(X,hates(agatha,X)

--> “(hates(charles,X)))) &

(hates (agatha,agatha) & hates(agatha,charles)) &
(forall(X,lives(X) & ~(richer(X,agatha))

--> hates(butler,X))) &
(forall(X,hates(agatha,X) --> hates(butler,X))) &
(forall(X, (hates(X,agatha)) | ~“(hates(X,butler))

| ~(hates(X,charles))))

--> killed(agatha,agatha)";;
P55 : int * (string * term) list = 6, []

In fact, the prover can work out ‘whodunit’:

#let P55’ = prover

--> killed(X,agatha)";;
P55’ : int * (string * term) list = 6, ["X", ‘agatha‘]

University of Cambridge, 11 February 1997

