
Introduction to Functional Programming: Lecture 12 1
Introduction toFunctional ProgrammingJohn HarrisonUniversity of CambridgeLecture 12ML examples IV:Prolog and Theorem Proving

Topics covered:� Prolog terms: parsing and printing� Uni�cation and Prolog backtracking� Prolog examples� A simple theorem prover� Theorem proving examples
John Harrison University of Cambridge, 11 February 1997

Introduction to Functional Programming: Lecture 12 2
Overview

Prolog is another `declarative' language, popularin Arti�cial Intelligence research.You will learn more about it in the lecture course`Prolog for Arti�cial Intelligence'.It is a logic programming language, and is said tobe `relational' rather than functional.Its standard search strategy, backward chainingwith uni�cation and backtracking, is useful for awide range of applications including databases,expert systems and theorem provers.We will show how to implement a cut-downProlog interpreter in ML.We will then use the same tools and techniques tobuild a simple theorem prover.
John Harrison University of Cambridge, 11 February 1997

Introduction to Functional Programming: Lecture 12 3
Prolog terms

Prolog code and data is represented using auniform system of �rst order terms.We will represent this using a recursive typesimilar to the one used for mathematicalexpressions.type term = Var of string| Fn of string * (term list);;Note that we treat constants as nullary functions,i.e. functions that take an empty list ofarguments.Where we would formerly have used Const s, wewill now use Fn(s,[]).Note that we will treat functions of di�erentarities (di�erent numbers of arguments) asdistinct, even if they have the same name.
John Harrison University of Cambridge, 11 February 1997

Introduction to Functional Programming: Lecture 12 4
Lexical analysis (1)

In Prolog, identi�ers that begin with an uppercase letter or an underscore are treated asvariables, while other alphanumeric identi�ers,along with numerals, are treated as constants.For example X and Answer are variables while xand john are constants.We will lump all symbolic identi�ers together asconstants too, but we will distinguish thepunctuation symbols: left and right brackets,commas and semicolons.Non-punctuation symbols are collected togetherinto the longest strings possible, so symbolicidenti�ers need not consist only of one character.type token = Variable of string| Constant of string| Punctuation of string;;
John Harrison University of Cambridge, 11 February 1997

Introduction to Functional Programming: Lecture 12 5
Lexical analysis (2)let lex =let several p = many (some p) inlet collect(h,t) = h^(itlist (prefix ^) t "") inlet upper_alpha s = "A" <= s & s <= "Z" or s = "_"and lower_alpha s = "a" <= s & s <= "z" or"0" <= s & s <= "9"and punct s = s = "(" or s = ")" or s = "[" ors = "]" or s = "," or s = "."and space s = s = " " or s = "\n" or s = "\t" inlet alnum s = upper_alpha s or lower_alpha s inlet symbolic s = not space s & not alnum s ¬ punct s inlet rawvariable = some upper_alpha ++ several alnum>> (Variable o collect)and rawconstant = (some lower_alpha ++ several alnum|| some symbolic ++ several symbolic)>> (Constant o collect)and rawpunct = some punct >> Punct inlet token = (rawvariable || rawconstant || rawpunct)++ several space >> fst inlet tokens = (several space ++ many token) >> snd inlet alltokens = (tokens ++ finished) >> fst infst o alltokens o explode;;

John Harrison University of Cambridge, 11 February 1997

Introduction to Functional Programming: Lecture 12 6
Parsing and printing

The printer is exactly the same as before.The parser is almost the same as before; again weallow some operators like addition to be writtenin�x. We also allow a special syntax for lists.We regard [x1,x2,...,xn] as shorthand forcons(x1,cons(x2,...,cons(xn,nil)))where cons is the function corresponding to a listconstructor, just like :: in ML. The printerwrites it as an in�x dot. Also, [H|T] is allowedinstead of cons(H,T).A Prolog rule is of one of these forms:term.term :- term; : : : ; term.We have a parser for these, returning aterm * term list.John Harrison University of Cambridge, 11 February 1997

Introduction to Functional Programming: Lecture 12 7
Uni�cation

Prolog uses a set of rules to solve a current goal bytrying to match one of the rules against the goal.A rule consisting of a single term can solve a goalimmediately.In the case of a rule term :- term1; : : : ; termn., ifthe goal matches term, then Prolog needs to solveeach termi as a subgoal in order to �nish theoriginal goal.However, goals and rules do not have to beexactly the same. Instead, Prolog assignsvariables in both to make them match up. Thisprocess is called uni�cation.This means that we can end up proving a specialcase of the original goal, e.g. P (f(X)) instead ofP (Y).
John Harrison University of Cambridge, 11 February 1997

Introduction to Functional Programming: Lecture 12 8
Uni�cation: examples and algorithm

To unify f(g(X); Y) and f(g(a); X) we need toset X = a and Y = a. Then both terms aref(g(a); a).To unify f(a;X; Y) and f(X; a; Z) we need to setX = a and Y = Z, and then both terms aref(a; a; Z).It is impossible to unify f(X) and X.There is a systematic procedure for �nding a mostgeneral uni�er.Roughly, one descends the two terms recursivelyin parallel, and on �nding a variable on eitherside, assigns it to whatever the term on the otherside is.One needs to check that the variable hasn'talready been assigned to something else, and thatit doesn't occur in the term being assigned to it(as in the last example above).John Harrison University of Cambridge, 11 February 1997

Introduction to Functional Programming: Lecture 12 9
Uni�cation: codeWe have a set of existing instantiations, and welook each variable up to see if it is alreadyassigned before proceeding.let rec unify tm1 tm2 insts =match tm1 withVar(x) ->(try let tm1' = assoc x insts inunify tm1' tm2 instswith Not_found ->augment (x,tm2) insts)| Fn(f1,args1) ->match tm2 withVar(y) ->(try let tm2' = assoc y insts inunify tm1 tm2' instswith Not_found ->augment (y,tm1) insts)| Fn(f2,args2) ->if f1 = f2then itlist2 unify args1 args2 instselse raise (error "functions do not match");;We use the existing instantiations as anaccumulator.John Harrison University of Cambridge, 11 February 1997

Introduction to Functional Programming: Lecture 12 10
Augmenting instantiationslet rec occurs_in x =fun (Var y) -> x = y| (Fn(_,args)) -> exists (occurs_in x) args;;let rec subst insts = fun(Var y) -> (try assoc y insts with Not_found -> tm)| (Fn(f,args)) -> Fn(f,map (subst insts) args);;let raw_augment =let augment1 theta (x,s) =let s' = subst theta s inif occurs_in x s & not(s = Var(x))then raise (error "Occurs check")else (x,s') infun p insts -> p::(map (augment1 [p]) insts);;let augment (v,t) insts =let t' = subst insts t in match t' withVar(w) -> if w <= v thenif w = v then instselse raw_augment (v,t') instselse raw_augment (w,Var(v)) insts| _ -> if occurs_in v t'then raise (error "Occurs check")else raw_augment (v,t') insts;;John Harrison University of Cambridge, 11 February 1997

Introduction to Functional Programming: Lecture 12 11
BacktrackingProlog proceeds by depth-�rst search, but it maybacktrack: even if a rule uni�es successfully, if allthe remaining goals cannot be solved under theresulting instantiations, then another initial ruleis tried. Thus we consider the whole list of goalsrather than one at a time:let rec first f =fun [] -> raise (error "No rules applicable")| (h::t) -> try f h with error _ -> first f t;;let rec expand n rules insts goals =first (fun rule ->if goals = [] then insts elselet conc,asms =rename_rule (string_of_int n) rule inlet insts' = unify conc (hd goals) insts inlet local,global = partition(fun (v,_) -> occurs_in v conc orexists (occurs_in v) asms) insts' inlet goals' = (map (subst local) asms) @(tl goals) inexpand (n + 1) rules global goals') rules;;John Harrison University of Cambridge, 11 February 1997

Introduction to Functional Programming: Lecture 12 12
Other details

Note that we produce fresh variables for the ruleseach time:let rec rename s =fun (Var v) -> Var("~"^v^s)| (Fn(f,args)) -> Fn(f,map (rename s) args);;let rename_rule s (conc,asms) =(rename s conc,map (rename s) asms);;Finally, we package everything up:type outcome = No | Yes of (string * term) list;;let prolog rules goal =try let insts = expand 0 rules [] [goal] inYes(filter (fun (v,_) -> occurs_in v goal)insts)with error _ -> No;;This says either that the goal cannot be solved, orthat it can be solved with the giveninstantiations. Note that we only return oneanswer in this case, but this is easy to �x.John Harrison University of Cambridge, 11 February 1997

Introduction to Functional Programming: Lecture 12 13
Prolog examples (1)#let rules = parse_rules"male(albert).male(edward).female(alice).female(victoria).parents(edward,victoria,albert).parents(alice,victoria,albert).sister_of(X,Y) :-female(X),parents(X,M,F),parents(Y,M,F).";;rules : (term * term list) list =[`male(albert)`, []; `male(edward)`, [];`female(alice)`, []; `female(victoria)`, [];`parents(edward,victoria,albert)`, [];`parents(alice,victoria,albert)`, [];`sister_of(X,Y)`,[`female(X)`; `parents(X,M,F)`; `parents(Y,M,F)`]]#prolog rules ("sister_of(alice,edward)");;- : outcome = Yes []#prolog rules (parse_term "sister_of(alice,X)");;- : outcome = Yes ["X", `edward`]#prolog rules (parse_term "sister_of(X,Y)");;- : outcome = Yes ["Y", `edward`; "X", `alice`]John Harrison University of Cambridge, 11 February 1997

Introduction to Functional Programming: Lecture 12 14
Prolog examples (2)

#let r = parse_rules"append([],L,L).append([H|T],L,[H|A]) :- append(T,L,A).";;r : (term * term list) list =[`append([],L,L)`, [];`append(H . T,L,H . A)`, [`append(T,L,A)`]]#prolog r (parse_term "append([1,2],[3],[1,2,3])");;- : outcome = Yes []#prolog r (parse_term "append([1,2],[3,4],X)");;- : outcome = Yes ["X", `1 . (2 . (3 . (4 . [])))`]#prolog r (parse_term "append([3,4],X,X)");;- : outcome = No#prolog r (parse_term "append([1,2],X,Y)");;- : outcome = Yes ["Y", `1 . (2 . X)`]Prolog is less `directional' than ML. However ithas its limitations, e.g. the following will loopinde�nitely:#prolog r (parse_term "append(X,[3,4],X)");;
John Harrison University of Cambridge, 11 February 1997

Introduction to Functional Programming: Lecture 12 15
Prolog-style theorem proving

With a few minor changes, Prolog-style searchcan be used for general theorem proving.Examples of such provers include PTTP (Stickel,1988) and leanTAP (Beckert and Possega 1994).Uni�cation is an e�cient method for decidinghow to specialize universally quanti�ed variables(Prawitz, Robinson 1960).For example, given the facts that8X: p(X)) q(X) and p(f(a)), we can unify thetwo expressions involving p and thus discover thatwe need to set X to f(a). By contrast, the veryearliest theorem provers tried all possible terms!Usually, depth-�rst search would go into anin�nite loop, so we need to modify the Prologstrategy slightly. We will use depth �rst iterativedeepening.
John Harrison University of Cambridge, 11 February 1997

Introduction to Functional Programming: Lecture 12 16
Manipulating formulas

We will simply use our terms to denote formulas,introducing new constants for the logicaloperators. Many of these are written in�x.Operator Meaning~(p) not pp & q p and qp | q p or qp --> q p implies qp <-> q p if and only if qforall(X,p) for all X, pexists(X,p) there exists an X such that pAn alternative would be to introduce a separatetype of formulas, but this would require separateparsing and printing support. We will avoid this,for the sake of simplicity.
John Harrison University of Cambridge, 11 February 1997

Introduction to Functional Programming: Lecture 12 17
Preprocessing formulas

It's convenient if the main part of the prover neednot cope with implications and `if and only if's.Therefore we �rst de�ne a function thateliminates these in favour of the other connectives.let rec proc tm =match tm withFn("~",[t]) -> Fn("~",[proc t])| Fn("&",[t1; t2]) -> Fn("&",[proc t1; proc t2])| Fn("|",[t1; t2]) -> Fn("|",[proc t1; proc t2])| Fn("-->",[t1; t2]) ->proc (Fn("|",[Fn("~",[t1]); t2]))| Fn("<->",[t1; t2]) ->proc (Fn("&",[Fn("-->",[t1; t2]);Fn("-->",[t2; t1])]))| Fn("forall",[x; t]) -> Fn("forall",[x; proc t])| Fn("exists",[x; t]) -> Fn("exists",[x; proc t])| t -> t;;The next step is to push the negations down theformula, putting it into so-called `negation normalform' (NNF).John Harrison University of Cambridge, 11 February 1997

Introduction to Functional Programming: Lecture 12 18
NNF code

We de�ne two mutually recursive functions thatcreate NNF for a formula, and its negation.let rec nnf_p tm =match tm withFn("~",[t]) -> nnf_n t| Fn("&",[t1; t2]) -> Fn("&",[nnf_p t1; nnf_p t2])| Fn("|",[t1; t2]) -> Fn("|",[nnf_p t1; nnf_p t2])| Fn("forall",[x; t]) -> Fn("forall",[x; nnf_p t])| Fn("exists",[x; t]) -> Fn("exists",[x; nnf_p t])| t -> tand nnf_n tm =match tm withFn("~",[t]) -> nnf_p t| Fn("&",[t1; t2]) -> Fn("|",[nnf_n t1; nnf_n t2])| Fn("|",[t1; t2]) -> Fn("&",[nnf_n t1; nnf_n t2])| Fn("forall",[x; t]) -> Fn("exists",[x; nnf_n t])| Fn("exists",[x; t]) -> Fn("forall",[x; nnf_n t])| t -> Fn("~",[t]);;We will convert the negation of the input formulainto negation normal form, and the main proverwill then try to derive a contradiction from it.John Harrison University of Cambridge, 11 February 1997

Introduction to Functional Programming: Lecture 12 19
The main prover

At each stage, the prover has a current formula, alist of formulas yet to be considered, and a list ofliterals. It is trying to reach a contradiction.If the current formula is p & q, then consider pand q separately, i.e. make p the current formulaand add q to the formulas to be considered.If the current formula is p | q, then try to get acontradiction from p and then from q.If the current formula is forall(X,p), invent a newvariable to replace X: the right value can bediscovered later by uni�cation.If the current formula is exists(X,p), invent a newconstant to replace X.Otherwise, the formula must be a literal, so try tounify it with a contradictory literal.If this fails, add it to the list of literals, andproceed with the next formula.John Harrison University of Cambridge, 11 February 1997

Introduction to Functional Programming: Lecture 12 20
Continuations

We desire a similar backtracking strategy toProlog: only if the current instantiations allow allremaining goals to be solved do we accept it.We could use lists again, but instead we usecontinuations. A continuation is a function that ispassed to another function and can be called fromwithin it to `perform the rest of the computation'.In our case, it takes a list of instantiations andtries to solve the remaining goals under theseinstantiations.Thus, rather than explicitly trying to solve allremaining goals, we simply try calling thecontinuation.

John Harrison University of Cambridge, 11 February 1997

Introduction to Functional Programming: Lecture 12 21
Prover codelet rec prove fm unexp pl nl n cont i =if n < 0 then raise (error "No proof") elsematch fm withFn("&",[p;q]) ->prove p (q::unexp) pl nl n cont i| Fn("|",[p;q]) ->prove p unexp pl nl n(prove q unexp pl nl n cont) i| Fn("forall",[Var x; p]) ->let v = mkvar() inprove (subst [x,Var v] p) (unexp@[fm])pl nl (n - 1) cont i| Fn("exists",[Var x; p]) ->let v = mkvar() in prove(subst [x,Fn(v,[])] p)unexp pl nl (n - 1) cont i| Fn("~",[t]) ->(try first (fun t' -> let i' = unify t t' i incont i') plwith error _ -> prove (hd unexp) (tl unexp)pl (t::nl) n cont i)| t ->(try first (fun t' -> let i' = unify t t' i incont i') nlwith error _ -> prove (hd unexp) (tl unexp)(t::pl) nl n cont i);;John Harrison University of Cambridge, 11 February 1997

Introduction to Functional Programming: Lecture 12 22
Prover examples (1)We set up the �nal prover as follows:let prover =let rec prove_iter n t =try let insts = prove t [] [] [] n I [] inlet globinsts = filter(fun (v,_) -> occurs_in v t) insts inn,globinstswith error _ -> prove_iter (n + 1) t infun t -> prove_iter 0 (nnf_n(proc(parse_term t)));;It tries to �nd the proof with the fewest universalinstantiations. It returns the number requiredand any toplevel instantiations.#let P1 = prover "p --> q <-> ~(q) --> ~(p)";;P1 : int * (string * term) list = 0, []#let P13 = prover "p | q & r <-> (p | q) & (p | r)";;P13 : int * (string * term) list = 0, []#let P16 = prover "(p --> q) | (q --> p)";;P16 : int * (string * term) list = 0, []#let P18 = prover "exists(Y,forall(X,p(Y)-->p(X)))";;P18 : int * (string * term) list = 2, []#let P19 = prover "exists(X,forall(Y,forall(Z,(p(Y)-->q(Z))-->p(X)-->q(X))))";;P19 : int * (string * term) list = 6, []John Harrison University of Cambridge, 11 February 1997

Introduction to Functional Programming: Lecture 12 23
Prover examples (2)A bigger example is the following:#let P55 = prover"lives(agatha) & lives(butler) & lives(charles) &(killed(agatha,agatha) | killed(butler,agatha) |killed(charles,agatha)) &(forall(X,forall(Y,killed(X,Y) --> hates(X,Y) & ~(richer(X,Y))))) &(forall(X,hates(agatha,X)--> ~(hates(charles,X)))) &(hates(agatha,agatha) & hates(agatha,charles)) &(forall(X,lives(X) & ~(richer(X,agatha))--> hates(butler,X))) &(forall(X,hates(agatha,X) --> hates(butler,X))) &(forall(X,~(hates(X,agatha)) | ~(hates(X,butler))| ~(hates(X,charles))))--> killed(agatha,agatha)";;P55 : int * (string * term) list = 6, []In fact, the prover can work out `whodunit':#let P55' = prover"......--> killed(X,agatha)";;P55' : int * (string * term) list = 6, ["X", `agatha`]John Harrison University of Cambridge, 11 February 1997

