
Introduction to Functional Programming: Lecture 11 1
Introduction toFunctional ProgrammingJohn HarrisonUniversity of CambridgeLecture 11ML examples III:A Prolog interpreter

Topics covered:� Prolog terms: parsing and printing� Uni�cation and Prolog backtracking� Prolog examples
John Harrison University of Cambridge, 6 February 1998



Introduction to Functional Programming: Lecture 11 2
Overview

Prolog is another `declarative' language, popularin Arti�cial Intelligence research.You will learn more about it in the lecture course`Prolog for Arti�cial Intelligence'.It is a logic programming language, and is said tobe `relational' rather than functional.Its standard search strategy, backward chainingwith uni�cation and backtracking, is useful for awide range of applications including databases,expert systems and theorem provers.We will show how to implement a cut-downProlog interpreter in ML.Later, we will then use the same tools andtechniques to build a simple theorem prover.
John Harrison University of Cambridge, 6 February 1998



Introduction to Functional Programming: Lecture 11 3
Prolog terms

Prolog code and data is represented using auniform system of �rst order terms.We will represent this using a recursive typesimilar to the one used for mathematicalexpressions.datatype term =Var of string| Fn of string * (term list);Note that we treat constants as nullary functions,i.e. functions that take an empty list ofarguments.Where we would formerly have used Const s, wewill now use Fn(s,[]).Note that we will treat functions of di�erentarities (di�erent numbers of arguments) asdistinct, even if they have the same name.
John Harrison University of Cambridge, 6 February 1998



Introduction to Functional Programming: Lecture 11 4
Auxiliary functions (1)

Again we use some auxiliary functions:fun itlist f [] b = b| itlist f (h::t) b =f h (itlist f t b);fun assoc a ((x,y)::rest) =if a = x then y else assoc a rest;fun exists p l = itlist(fn h => fn a => p(h) orelse a)l false;fun fst(x,y) = x;fun snd(x,y) = y;val explode = map str o explode;
John Harrison University of Cambridge, 6 February 1998



Introduction to Functional Programming: Lecture 11 5
Auxiliary functions (2)fun itlist2 f [] [] b = b| itlist2 f (h1::t1) (h2::t2) b =f h1 h2 (itlist2 f t1 t2 b);load "Int";val string_of_int = Int.toString;fun filter p l = itlist(fn x => fn s =>if p x then x::s else s) l [];fun partition p l =(filter p l,filter (fn x => not(p x)) l);As well as this, we use many of the parsercombinators etc. that were given in the lastlecture. And we have a special exception for errormessages:exception error of string;John Harrison University of Cambridge, 6 February 1998



Introduction to Functional Programming: Lecture 11 6
Lexical analysis (1)

In Prolog, identi�ers that begin with an uppercase letter or an underscore are treated asvariables, while other alphanumeric identi�ers,along with numerals, are treated as constants.For example X and Answer are variables while xand john are constants.We will lump all symbolic identi�ers together asconstants too, but we will distinguish thepunctuation symbols: left and right brackets,commas and semicolons.Non-punctuation symbols are collected togetherinto the longest strings possible, so symbolicidenti�ers need not consist only of one character.datatype token =Variable of string| Constant of string| Punct of string;John Harrison University of Cambridge, 6 February 1998



Introduction to Functional Programming: Lecture 11 7
Lexical analysis (2)val lex = letfun several p = many (some p)fun collect(h,t) =h^(itlist (fn s1 => fn s2 => s1^s2) t "")fun upper_alpha s ="A" <= s andalso s <= "Z" orelse s = "_"fun lower_alpha s = "a" <= s andalso s <= "z"orelse "0" <= s andalso s <= "9"fun punct s = s = "(" orelse s = ")" orelse s = "["orelse s = "]" orelse s = "," orelse s = "."fun space s = s = " " orelse s = "\n" orelse s = "\t"fun alnum s = upper_alpha s orelse lower_alpha sfun symbolic s = not (space s) andalso not (alnum s)andalso not (punct s)val rawvariable = some upper_alpha ++ several alnum>> (Variable o collect)val rawconstant = (some lower_alpha ++ several alnum|| some symbolic ++ several symbolic)>> (Constant o collect)val rawpunct = some punct >> Punctval token = (rawvariable || rawconstant || rawpunct)++ several space >> fstval tokens = (several space ++ many token) >> sndval alltokens = (tokens ++ finished) >> fstin fst o alltokens o explode end;John Harrison University of Cambridge, 6 February 1998



Introduction to Functional Programming: Lecture 11 8
Parsing and printing

The printer is exactly the same as before.The parser is almost the same as before; again weallow some operators like addition to be writtenin�x. We also allow a special syntax for lists.We regard [x1,x2,...,xn] as shorthand forcons(x1,cons(x2,...,cons(xn,nil)))where cons is the function corresponding to a listconstructor, just like :: in ML. The printerwrites it as an in�x dot. Also, [H|T] is allowedinstead of cons(H,T).A Prolog rule is of one of these forms:term.term :- term; : : : ; term.We have a parser for these, returning aterm * term list.John Harrison University of Cambridge, 6 February 1998



Introduction to Functional Programming: Lecture 11 9
Uni�cation

Prolog uses a set of rules to solve a current goal bytrying to match one of the rules against the goal.A rule consisting of a single term can solve a goalimmediately.In the case of a rule term :- term1; : : : ; termn., ifthe goal matches term, then Prolog needs to solveeach termi as a subgoal in order to �nish theoriginal goal.However, goals and rules do not have to beexactly the same. Instead, Prolog assignsvariables in both to make them match up. Thisprocess is called uni�cation.This means that we can end up proving a specialcase of the original goal, e.g. P (f(X)) instead ofP (Y ).
John Harrison University of Cambridge, 6 February 1998



Introduction to Functional Programming: Lecture 11 10
Uni�cation: examples and algorithm

To unify f(g(X); Y ) and f(g(a); X) we need toset X = a and Y = a. Then both terms aref(g(a); a).To unify f(a;X; Y ) and f(X; a; Z) we need to setX = a and Y = Z, and then both terms aref(a; a; Z).It is impossible to unify f(X) and X.There is a systematic procedure for �nding a mostgeneral uni�er.Roughly, one descends the two terms recursivelyin parallel, and on �nding a variable on eitherside, assigns it to whatever the term on the otherside is.One needs to check that the variable hasn'talready been assigned to something else, and thatit doesn't occur in the term being assigned to it(as in the last example above).John Harrison University of Cambridge, 6 February 1998



Introduction to Functional Programming: Lecture 11 11
Uni�cation: codeWe have a set of existing instantiations, and welook each variable up to see if it is alreadyassigned before proceeding.fun unify (tm1 as Var(x)) tm2 insts =(let val tm1' = assoc x instsin unify tm1' tm2 instsend handle Not_found => augment (x,tm2) insts)| unify (tm1 as Fn(f1,args1)) (Var y) insts =(let val tm2' = assoc y instsin unify tm1 tm2' instsend handle Not_found => augment (y,tm1) insts)| unify (tm1 as Fn(f1,args1)) (Fn(f2,args2)) insts =if f1 = f2then itlist2 unify args1 args2 instselse raise (error "functions do not match");We use the existing instantiations as anaccumulator. Other functions to augmentinstantiation lists are:fun occurs_in x (Var y) = (x = y)| occurs_in x (Fn(_,args)) =exists (occurs_in x) args;

John Harrison University of Cambridge, 6 February 1998



Introduction to Functional Programming: Lecture 11 12
Augmenting instantiationsfun subst insts (tm as Var y) =(assoc y insts handle Not_found => tm)| subst insts (Fn(f,args)) =Fn(f,map (subst insts) args);local fun augment1 theta (x,s) =let val s' = subst theta sin if occurs_in x s andalso not(s = Var(x))then raise (error "Occurs check")else (x,s') end infun raw_augment p insts =p::(map (augment1 [p]) insts) end;fun augment (v,t) insts =let val t' = subst insts tin case t' ofVar(w) => if w <= v thenif w = v then instselse raw_augment (v,t') instselse raw_augment (w,Var(v)) insts| _ => if occurs_in v t'then raise (error "Occurs check")else raw_augment (v,t') instsend;John Harrison University of Cambridge, 6 February 1998



Introduction to Functional Programming: Lecture 11 13
BacktrackingProlog proceeds by depth-�rst search, but it maybacktrack: even if a rule uni�es successfully, if allthe remaining goals cannot be solved under theresulting instantiations, then another initial ruleis tried. Thus we consider the whole list of goalsrather than one at a time:fun first f [] = raise (error "No rules applicable")| first f (h::t) = f h handle error _ => first f t;fun expand n rules insts goals =first (fn rule =>if goals = [] then insts elselet val (conc,asms) =rename_rule (string_of_int n) ruleval insts' = unify conc (hd goals) instsval (loc,glob) = partition(fn (v,_) => occurs_in v conc orelseexists (occurs_in v) asms) insts'val goals' = (map (subst loc) asms) @(tl goals)in expand (n + 1) rules glob goals'end) rules;John Harrison University of Cambridge, 6 February 1998



Introduction to Functional Programming: Lecture 11 14
Other details

Note that we produce fresh variables for the ruleseach time:fun rename s (Var v) = Var("~"^v^s)| rename s (Fn(f,args)) = Fn(f,map (rename s) args);fun rename_rule s (conc,asms) =(rename s conc,map (rename s) asms);Finally, we package everything up:datatype outcome = No | Yes of (string * term) list;fun prolog rules goal =let val insts = expand 0 rules [] [goal]in Yes(filter (fn (v,_) => occurs_in v goal)insts)end handle error _ => No;This says either that the goal cannot be solved, orthat it can be solved with the giveninstantiations. Note that we only return oneanswer in this case, but this is easy to �x.
John Harrison University of Cambridge, 6 February 1998



Introduction to Functional Programming: Lecture 11 15
Prolog examples (1)- val rules = parse_rules"male(albert). \\ male(edward). \\ female(alice). \\ female(victoria). \\ parents(edward,victoria,albert). \\ parents(alice,victoria,albert). \\ sister_of(X,Y) :- \\ female(X), \\ parents(X,M,F), \\ parents(Y,M,F).";> val rules =[(`male(albert)`,[]), (`male(edward)`,[]),(`female(alice)`,[]), (`female(victoria)`,[]),(`parents(edward,victoria,albert)`,[]),(`parents(alice,victoria,albert)`,[]),(`sister_of(X,Y)`,[`female(X)`, `parents(X,M,F)`, `parents(Y,M,F)`]]: (term * term list) list- prolog rules ("sister_of(alice,edward)");> val it = Yes [] : outcome- prolog rules (parse_term "sister_of(alice,X)");> val it = Yes [("X",`edward`)] : outcome- prolog rules (parse_term "sister_of(X,Y)");> val it = Yes [("Y",`edward`), ("X",`alice`)] : outcomeJohn Harrison University of Cambridge, 6 February 1998



Introduction to Functional Programming: Lecture 11 16
Prolog examples (2)

- val r = parse_rules"append([],L,L). \\ append([H|T],L,[H|A]) :- append(T,L,A).";- val r = [`append([],L,L)`, [];`append(H . T,L,H . A)`, [`append(T,L,A)`]]: (term * term list) list- prolog r (parse_term "append([1,2],[3],[1,2,3])");> val it = Yes [] : outcome- prolog r (parse_term "append([1,2],[3,4],X)");> val it = Yes ["X", `1 . (2 . (3 . (4 . [])))`]: outcome- prolog r (parse_term "append([3,4],X,X)");> val it = No;- prolog r (parse_term "append([1,2],X,Y)");> val it = Yes ["Y", `1 . (2 . X)`] : outcomeProlog is less `directional' than ML. However ithas its limitations, e.g. the following will loopinde�nitely:- prolog r (parse_term "append(X,[3,4],X)");
John Harrison University of Cambridge, 6 February 1998


