Introduction to Functional Programming: Lecture 11

Introduction to
Functional Programming

Topics covered:

e Prolog terms: parsing and printing
e Unification and Prolog backtracking

e Prolog examples

University of Cambridge, 6 February 1998

Introduction to Functional Programming: Lecture 11

Overview

Prolog is another ‘declarative’ language, popular

in Artificial Intelligence research.

You will learn more about it in the lecture course

‘Prolog for Artificial Intelligence’.

It is a logic programming language, and is said to
be ‘relational’ rather than functional.

Its standard search strategy, backward chaining
with unification and backtracking, is useful for a
wide range of applications including databases,

expert systems and theorem provers.

We will show how to implement a cut-down

Prolog interpreter in ML.

Later, we will then use the same tools and

techniques to build a simple theorem prover.

University of Cambridge, 6 February 1998

Introduction to Functional Programming: Lecture 11

Prolog terms

Prolog code and data is represented using a

uniform system of first order terms.

We will represent this using a recursive type
similar to the one used for mathematical

expressions.

datatype term =
Var of string

| Fn of string * (term list);

Note that we treat constants as nullary functions,
i.e. functions that take an empty list of

arguments.

Where we would formerly have used Const s, we

will now use Fn(s, []1).

Note that we will treat functions of different
arities (different numbers of arguments) as

distinct, even if they have the same name.

University of Cambridge, 6 February 1998

Introduction to Functional Programming: Lecture 11

Auxiliary functions (1)

Again we use some auxiliary functions:

fun itlist f [] b =Db
| itlist £ (h::t) b =
f h (itlist f t b);

fun assoc a ((x,y)::rest) =

if a = x then y else assoc a rest;
fun exists p 1 = 1itlist
(fn h => fn a => p(h) orelse a)
1 false;
fun fst(x,y) X

fun snd(x,y) = y;

val explode = map str o explode;

John Harrison University of Cambridge, 6 February 1998

Introduction to Functional Programming: Lecture 11

Auxiliary functions (2)

fun itlist2 £ [1 [1 b =D
| itlist2 £ (hil::t1) (h2::t2) b =
f hl1 h2 (itlist2 f t1 t2 b);

load "Int";

val string_of_int = Int.toString;

fun filter p 1 = itlist
(fn x => fn s =>
if p x then x::s else s) 1 [];

fun partition p 1 =
(filter p 1,filter (fn x => not(p x)) 1)|;

As well as this, we use many of the parser
combinators etc. that were given in the last
lecture. And we have a special exception for error

messages:

exception error of string;

University of Cambridge, 6 February 1998

Introduction to Functional Programming: Lecture 11

Lexical analysis (1)

In Prolog, identifiers that begin with an upper
case letter or an underscore are treated as
variables, while other alphanumeric identifiers,

along with numerals, are treated as constants.

For example X and Answer are variables while x

and john are constants.

We will lump all symbolic identifiers together as
constants too, but we will distinguish the
punctuation symbols: left and right brackets,

commas and semicolons.

Non-punctuation symbols are collected together
into the longest strings possible, so symbolic

identifiers need not consist only of one character.

datatype token =
Variable of string
| Constant of string

| Punct of string;

University of Cambridge, 6 February 1998

Introduction to Functional Programming: Lecture 11

Lexical analysis (2)

val lex = let

fun several p = many (some p)

fun collect(h,t) =
h”(itlist (fn s1 => fn s2 => s17s2) t "")
fun upper_alpha s =
"A" <= s andalso s <= "Z" orelse s = "_"
fun lower_alpha s = "a" <= s andalso s <= "z"
orelse "O" <= s andalso s <= "9"
fun punct s = s = "(" orelse s = ")" orelse s = "["
orelse s = "]" orelse s = "," orelse s = "."
fun space s = s =" " orelse s = "\n" orelse s = "\t"
fun alnum s = upper_alpha s orelse lower_alpha s
fun symbolic s = not (space s) andalso not (alnum s)
andalso not (punct s)
val rawvariable = some upper_alpha ++ several alnum
>> (Variable o collect)
val rawconstant = (some lower_alpha ++ several alnum
|| some symbolic ++ several symbolic)
>> (Constant o collect)
val rawpunct = some punct >> Punct
val token = (rawvariable || rawconstant || rawpunct)
++ several space >> fst
val tokens = (several space ++ many token) >> snd
val alltokens = (tokens ++ finished) >> fst
in fst o alltokens o explode end;

John Harrison University of Cambridge, 6 February 1998

Introduction to Functional Programming: Lecture 11

Parsing and printing

The printer is exactly the same as before.

The parser is almost the same as before; again we
allow some operators like addition to be written

infix. We also allow a special syntax for lists.

We regard [x1,x2,...,xn] as shorthand for

cons(x1l,cons(x2,...,cons(xn,nil)))

where cons is the function corresponding to a list
constructor, just like :: in ML. The printer
writes it as an infix dot. Also, [H|T] is allowed
instead of cons(H,T).

A Prolog rule is of one of these forms:

term.

term term, ..., term.

We have a parser for these, returning a

term * term list.

University of Cambridge, 6 February 1998

Introduction to Functional Programming: Lecture 11

Prolog uses a set of rules to solve a current goal by

trying to match one of the rules against the goal.

A rule consisting of a single term can solve a goal

immediately.

In the case of a rule term :- termq, ..., term,., if
the goal matches term, then Prolog needs to solve
each term; as a subgoal in order to finish the

original goal.

However, goals and rules do not have to be
exactly the same. Instead, Prolog assigns
variables in both to make them match up. This

process is called unification.

This means that we can end up proving a special
case of the original goal, e.g. P(f(X)) instead of
P(Y).

University of Cambridge, 6 February 1998

Introduction to Functional Programming: Lecture 11

Unification: examples and algorithm

To unify f(g(X),Y) and f(g(a), X) we need to
set X =a and Y = a. Then both terms are

f(g(a),a).
To unify f(a, X,Y) and f(X,a,Z) we need to set
X =aand Y = Z, and then both terms are

fla,a, 7).
It is impossible to unify f(X) and X.

There is a systematic procedure for finding a most

general unifier.

Roughly, one descends the two terms recursively
in parallel, and on finding a variable on either
side, assigns it to whatever the term on the other
side is.

One needs to check that the variable hasn’t
already been assigned to something else, and that
it doesn’t occur in the term being assigned to it
(as in the last example above).

University of Cambridge, 6 February 1998

Introduction to Functional Programming: Lecture 11

Unification: code

We have a set of existing instantiations, and we

look each variable up to see if it is already

assigned before proceeding.

fun unify (tml as Var(x)) tm2 insts =
(let val tml’ = assoc x insts
in unify tml’ tm2 insts
end handle Not_found => augment (x,tm2) insts)
| unify (tml as Fn(fl,argsl)) (Var y) insts =
(let val tm2’ = assoc y insts
in unify tml tm2’ insts
end handle Not_found => augment (y,tml) insts)
unify (tml as Fn(fl,argsl)) (Fn(f2,args2)) insts
if f1 = £2
then itlist2 unify argsl args2 insts

else raise (error "functions do not match");

We use the existing instantiations as an
accumulator. Other functions to augment
instantiation lists are:

fun occurs_in x (Var y) = (x = y)

| occurs_in x (Fn(_,args)) =

exists (occurs_in x) args;

University of Cambridge, 6 February 1998

Introduction to Functional Programming: Lecture 11

Augmenting instantiations

fun subst insts (tm as Var y) =

(assoc y insts handle Not_found => tm)

| subst insts (Fn(f,args)) =
Fn(f,map (subst insts) args);

local fun augmentl theta (x,s) =
let val s’ = subst theta s
in if occurs_in x s andalso not(s = Var(x))
then raise (error "Occurs check")
else (x,s8’) end in
fun raw_augment p insts =

p::(map (augmentl [p]) insts) end;

fun augment (v,t) insts =
let val t’ = subst insts t
in case t’ of
Var(w) => if w <= v then
if w = v then insts

else raw_augment (v,t’) insts
else raw_augment (w,Var(v)) insts

_ => 1if occurs_in v t’

then raise (error "Occurs check")

else raw_augment (v,t’) insts

University of Cambridge, 6 February 1998

Introduction to Functional Programming: Lecture 11

Backtracking

Prolog proceeds by depth-first search, but it may
backtrack: even if a rule unifies successtully, if all

the remaining goals cannot be solved under the

resulting instantiations, then another initial rule

is tried. Thus we consider the whole list of goals

rather than one at a time:

fun first f [] = raise (error "No rules applicable")
| first £ (h::t) = f h handle error _ => first f t;
fun expand n rules insts goals =
first (fn rule =>
if goals = [] then insts else
let val (conc,asms) =
rename_rule (string_of_int n) rule
val insts’ = unify conc (hd goals) insts
val (loc,glob) = partition
(fn (v,_) => occurs_in v conc orelse
exists (occurs_in v) asms) insts’
val goals’ = (map (subst loc) asms) @
(tl goals)
in expand (n + 1) rules glob goals’

end) rules;

John Harrison University of Cambridge, 6 February 1998

Introduction to Functional Programming: Lecture 11

Other details

Note that we produce fresh variables for the rules

each time:

fun rename s (Var v) = Var(""""v~s)
| rename s (Fn(f,args)) = Fn(f,map (rename s) args);
fun rename_rule s (conc,asms) =

(rename s conc,map (rename s) asms);

Finally, we package everything up:

datatype outcome = No | Yes of (string * term) list;

fun prolog rules goal =
let val insts = expand O rules [] [goall
in Yes(filter (fn (v,_) => occurs_in v goal)
insts)

end handle error => No;

This says either that the goal cannot be solved, or
that it can be solved with the given
instantiations. Note that we only return one
answer in this case, but this is easy to fix.

University of Cambridge, 6 February 1998

Introduction to Functional Programming: Lecture 11

Prolog examples (1)

- val rules = parse_rules
"male (albert).
\ male(edward) .

female(alice).
female(victoria).
parents(edward,victoria,albert).
parents(alice,victoria,albert).
sister_of (X,Y) :-
female (X),
parents(X,M,F),
parents(Y,M,F).";
> val rules =
[(‘male(albert) ‘,[]), (‘male(edward)‘,[]),
(‘female(alice)‘,[1), (‘female(victoria)‘,[]),

(‘parents(edward,victoria,albert) ¢, []),

s~ - - s s 7

(‘parents(alice,victoria,albert) ‘,[]),
(‘sister_of (X,Y) ¢,
[‘female(X) ¢, ‘parents(X,M,F)‘, ‘parents(Y,M,F) ‘1]
(term * term list) list

prolog rules ("sister_of(alice,edward)");

val it = Yes [] : outcome

prolog rules (parse_term "sister_of(alice,X)");

val it = Yes [("X", ‘edward‘)] : outcome

prolog rules (parse_term "sister_of(X,Y)");
val it = Yes [("Y", ‘edward‘), ("X",‘alice‘)] : outcohe

University of Cambridge, 6 February 1998

Introduction to Functional Programming: Lecture 11

Prolog examples (2)

val r = parse_rules
"append([],L,L). \
\ append([H|T],L,[H|A]) :- append(T,L,A).";
val r = [‘append([],L,L)‘, [];
‘append(H . T,L,H . A)‘, [‘append(T,L,A)‘]]

(term * term list) list

prolog r (parse_term "append([1,2],[3],[1,2,3]1)");

val it = Yes [] : outcome

prolog r (parse_term "append([1,2],[3,41,X)");

val it = Yes ["X", ‘1 . (2 . (3 . (4 . [1HN“]
: outcome

prolog r (parse_term "append([3,4],X,X)");

val it No;

prolog r (parse_term "append([1,2],X,Y)");

val it Yes ["Y", ‘1 . (2 . X)‘] : outcome

Prolog is less ‘directional’ than ML. However it
has its limitations, e.g. the following will loop

indefinitely:

- prolog r (parse_term "append(X,[3,4]1,X)");

University of Cambridge, 6 February 1998

