
Introduction to Functional Programming: Lecture 10 1
Introduction toFunctional ProgrammingJohn HarrisonUniversity of CambridgeLecture 10ML examples II:Recursive Descent Parsing

Topics covered:� The parsing problem� Recursive descent� Parsers in ML� Higher order parser combinators� E�ciency and limitations.
John Harrison University of Cambridge, 5 February 1998

Introduction to Functional Programming: Lecture 10 2
Grammar for terms

We would like to have a parser for our terms, sothat we don't have to write them in terms of typeconstructors.term �! name(termlist)j namej (term)j numeralj -termj term + termj term * termtermlist �! term,termlistj term
Here we have a grammar for terms, de�ned by aset of production rules.John Harrison University of Cambridge, 5 February 1998

Introduction to Functional Programming: Lecture 10 3
Ambiguity

The task of parsing, in general, is to reverse this,i.e. �nd a sequence of productions that couldgenerate a given string.Unfortunately the above grammar is ambiguous,since certain strings can be produced in severalways, e.g.term �! term + term�! term + term * termand term �! term * term�! term + term * termThese correspond to di�erent `parse trees'.E�ectively, we are free to interpret x + y * zeither as x + (y * z) or (x + y) * z.
John Harrison University of Cambridge, 5 February 1998

Introduction to Functional Programming: Lecture 10 4
Encoding precedences

We can encode operator precedences byintroducing extra categories, e.g.atom �! name(termlist)j namej numeralj (term)j -atommulexp �! atom * mulexpj atomterm �! mulexp + termj mulexptermlist �! term,termlistj termNow it's unambiguous. Multiplication has higherprecedence and both in�xes associate to the right.John Harrison University of Cambridge, 5 February 1998

Introduction to Functional Programming: Lecture 10 5
Recursive descent

A recursive descent parser is a series of mutuallyrecursive functions, one for each syntacticcategory (term, mulexp etc.).The mutually recursive structure mirrors that inthe grammar.This makes them quite easy and natural to write| especially in ML, where recursion is theprincipal control mechanism.For example, the procedure for parsing terms, sayterm will, on encountering a - symbol, make arecursive call to itself to parse the subterm, andon encountering a name followed by an openingparenthesis, will make a recursive call totermlist. This in itself will make at least onerecursive call to term, and so on.
John Harrison University of Cambridge, 5 February 1998

Introduction to Functional Programming: Lecture 10 6
Parsers in ML

We assume that a parser accepts a list of inputcharacters or tokens of arbitrary type.It returns the result of parsing, which has someother arbitrary type, and also the list of inputobjects not yet processed. Therefore the type of aparser is:
(�)list ! � � (�)list

For example, when given the input characters(x + y) * z the function atom will process thecharacters (x + y) and leave the remainingcharacters * z. It might return a parse tree forthe processed expression using our earlierrecursive type, and hence we would have:atom "(x + y) * z" =Fn("+",[Var "x", Var "y"]),"* z"John Harrison University of Cambridge, 5 February 1998

Introduction to Functional Programming: Lecture 10 7
Parser combinators

In ML, we can de�ne a series of combinators forplugging parsers together and creating newparsers from existing ones.By giving some of them in�x status, we can makethe ML parser program look quite similar instructure to the original grammar.First we declare an exception to be used whereparsing fails:exception Noparse;p1 ++ p2 applies p1 �rst and then applies p2 tothe remaining tokens; many keeps applying thesame parser as long as possible.p >> f works like p but then applies f to theresult of the parse.p1 || p2 tries p1 �rst, and if that fails, tries p2.These are automatically in�x, in decreasing orderof precedence.John Harrison University of Cambridge, 5 February 1998

Introduction to Functional Programming: Lecture 10 8
De�nitions of the combinatorsfun ++ (parser1,parser2) input =let val (result1,rest1) = parser1 inputval (result2,rest2) = parser2 rest1in ((result1,result2),rest2)end;fun many parser input =let val (result,next) = parser inputval (results,rest) = many parser nextin ((result::results),rest)end handle Noparse => ([],input);fun >> (parser,treatment) input =let val (result,rest) = parser inputin (treatment(result),rest) end;fun || (parser1,parser2) input =parser1 inputhandle Noparse => parser2 input;John Harrison University of Cambridge, 5 February 1998

Introduction to Functional Programming: Lecture 10 9
Auxiliary functionsWe make some of these in�x:infixr 8 ++; infixr 7 >>; infixr 6 ||;We will use the following general functions below:fun itlist f [] b = b| itlist f (h::t) b =f h (itlist f t b);fun K x y = x;fun fst(x,y) = x;fun snd(x,y) = y;val explode = map str o explode;

John Harrison University of Cambridge, 5 February 1998

Introduction to Functional Programming: Lecture 10 10
Atomic parsers

We need a few primitive parsers to get us started.fun some p [] = raise Noparse| some p (h::t) =if p h then (h,t)else raise Noparse;fun a tok = some (fn item => item = tok);fun finished input =if input = [] then (0,input)else raise Noparse;The �rst two accept something satisfying p, andsomething equal to tok, respectively. The last onemakes sure there is no unprocessed input.

John Harrison University of Cambridge, 5 February 1998

Introduction to Functional Programming: Lecture 10 11
Lexical analysis

First we want to do lexical analysis, i.e. split theinput characters into tokens. This can also bedone using our combinators, together with a fewcharacter discrimination functions. First wedeclare the type of tokens:datatype token = Name of string| Num of string| Other of string;We want the lexer to accept a string and producea list of tokens, ignoring spaces, e.g.- lex "sin(x + y) * cos(2 * x + y)";> val it =[Name "sin", Other "(", Name "x", Other "+",Name "y", Other ")", Other "*", Name "cos",Other "(", Num "2", Other "*", Name "x",Other "+", Name "y", Other ")"] : token list;
John Harrison University of Cambridge, 5 February 1998

Introduction to Functional Programming: Lecture 10 12
De�nition of the lexerval lex = letfun several p = many (some p)fun lowercase_letter s = "a" <= s andalso s <= "z"fun uppercase_letter s = "A" <= s andalso s <= "Z"fun letter s =lowercase_letter s orelse uppercase_letter sfun alpha s = letter s orelse s = "_" orelse s = "'"fun digit s = "0" <= s andalso s <= "9"fun alphanum s = alpha s orelse digit sfun space s = s = " " orelse s = "\n" orelse s = "\t"fun collect(h,t) =h^(itlist (fn s1 => fn s2 => s1^s2) t "")val rawname =some alpha ++ several alphanum>> (Name o collect)val rawnumeral =some digit ++ several digit>> (Num o collect)val rawother = some (K true) >> Otherval token =(rawname || rawnumeral || rawother) ++several space >> fstval tokens = (several space ++ many token) >> sndval alltokens = (tokens ++ finished) >> fstin fst o alltokens o explode end;John Harrison University of Cambridge, 5 February 1998

Introduction to Functional Programming: Lecture 10 13
Parsing terms

In order to parse terms, we start with some basicparsers for single tokens of a particular kind:fun name (Name s::rest) = (s,rest)| name _ = raise Noparse;fun numeral (Num s::rest) = (s,rest)| numeral _ = raise Noparse;fun other (Other s::rest) = (s,rest)| other _ = raise Noparse;Now we can de�ne a parser for terms, in a formvery similar to the original grammar. The maindi�erence is that each production rule hasassociated with it some sort of special action totake as a result of parsing.
John Harrison University of Cambridge, 5 February 1998

Introduction to Functional Programming: Lecture 10 14
The term parser (take 1)fun atom input= (name ++a (Other "(") ++ termlist ++ a (Other ")")>> (fn (f,(_,(a,_))) => Fn(f,a))|| name>> (fn s => Var s)|| numeral>> (fn s => Const s)|| a (Other "(") ++ term ++ a (Other ")")>> (fst o snd)|| a (Other "-") ++ atom>> snd) inputand mulexp input= (atom ++ a(Other "*") ++ mulexp>> (fn (a,(_,m)) => Fn("*",[a,m]))|| atom) inputand term input= (mulexp ++ a(Other "+") ++ term>> (fn (a,(_,m)) => Fn("+",[a,m]))|| mulexp) inputand termlist input= (term ++ a (Other ",") ++ termlist>> (fn (h,(_,t)) => h::t)|| term>> (fn h => [h])) input;John Harrison University of Cambridge, 5 February 1998

Introduction to Functional Programming: Lecture 10 15
Examples

Let us package everything up as a single parsingfunction:val parser =fst o (term ++ finished >> fst) o lex;To see it in action, we try with and without theprinter (see above) installed:- parser "sin(x + y) * cos(2 * x + y)";> val it =Fn("*",[Fn("sin", [Fn("+", [Var "x", Var "y"])]),Fn("cos", [Fn("+", [Fn("*",[Const "2", Var "x"]), Var "y"])])]): term- installPP print_term;> val it = () : unit- parser "sin(x + y) * cos(2 * x + y)";> val it = `sin(x + y) * cos(2 * x + y)` : term
John Harrison University of Cambridge, 5 February 1998

Introduction to Functional Programming: Lecture 10 16
Automating precedence parsingWe can easily let ML construct the `�xed-up'grammar from our dynamic list of in�xes:fun binop opr parser input =let val (result as (atom1,rest1)) = parser inputin if rest1 <> [] andalso hd rest1 = Other opr thenlet val (atom2,rest2) =binop opr parser (tl rest1)in (Fn(opr,[atom1, atom2]),rest2) endelse result end;fun findmin l = itlist(fn (p1 as (_,pr1)) => fn (p2 as (_,pr2)) =>if pr1 <= pr2 then p1 else p2) (tl l) (hd l);fun delete x (h::t) =if h = x then t else h::(delete x t);fun precedence ilist parser input =if ilist = [] then parser input elselet val opp = findmin ilistval ilist' = delete opp ilistin binop (fst opp) (precedence ilist' parser) inputend;John Harrison University of Cambridge, 5 February 1998

Introduction to Functional Programming: Lecture 10 17
The term parser (take 2)Now the main parser is simpler and more general.fun atom input= (name ++a (Other "(") ++ termlist ++ a (Other ")")>> (fn (f,(_,(a,_))) => Fn(f,a))|| name>> (fn s => Var s)|| numeral>> (fn s => Const s)|| a (Other "(") ++ term ++ a (Other ")")>> (fst o snd)|| a (Other "-") ++ atom>> snd) inputand term input = precedence (!infixes) atom inputand termlist input= (term ++ a (Other ",") ++ termlist>> (fn (h,(_,t)) => h::t)|| term >> (fn h => [h])) input;This will dynamically construct the precedenceparser using the list of in�xes active when it isactually used. Now the basic grammar is simpler.John Harrison University of Cambridge, 5 February 1998

Introduction to Functional Programming: Lecture 10 18
Backtracking and reprocessing

Some productions for the same syntactic categoryhave a common pre�x. Note that our productionrules for term have this property:term �! name(termlist)j namej � � �We carefully put the longer production �rst inour actual implementation, otherwise success inreading a name would cause the abandonment ofattempts to read a parenthesized list ofarguments.However, this backtracking can lead to ourprocessing the initial name twice.This is not very serious here, but it could be intermlist.
John Harrison University of Cambridge, 5 February 1998

Introduction to Functional Programming: Lecture 10 19
An improved treatment

We can easily replace:fun ...and termlist input= (term ++ a (Other ",") ++ termlist>> (fn (h,(_,t)) => h::t)|| term>> (fn h => [h])) input;withlet ...and termlist input= (term ++many (a (Other ",") ++ term >> snd)>> (fn (h,t) => h::t)) input;This gives another improvement to the parser,which is now more e�cient and slightly simpler.The �nal version is:
John Harrison University of Cambridge, 5 February 1998

Introduction to Functional Programming: Lecture 10 20
The term parser (take 3)

fun atom input= (name ++a (Other "(") ++ termlist ++ a (Other ")")>> (fn (f,(_,(a,_))) => Fn(f,a))|| name>> (fn s => Var s)|| numeral>> (fn s => Const s)|| a (Other "(") ++ term ++ a (Other ")")>> (fst o snd)|| a (Other "-") ++ atom>> snd) inputand term input = precedence (!infixes) atom inputand termlist input= (term ++ many (a (Other ",") ++ term >> snd)>> (fn (h,t) => h::t)) input;

John Harrison University of Cambridge, 5 February 1998

Introduction to Functional Programming: Lecture 10 21
General remarksWith care, this parsing method can be usede�ectively. It is a good illustration of the power ofhigher order functions.The code of such a parser is highly structured andsimilar to the grammar, therefore easy to modify.However it is not as e�cient as LR parsers;ML-Yacc is capable of generating good LRparsers automatically.Recursive descent also has trouble with leftrecursion. For example, if we had wanted to makethe addition operator left-associative in ourearlier grammar, we could have used:term �! term + mulexpj mulexpThe naive transcription into ML would loopinde�nitely. However we can often replace suchconstructs with explicit repetitions.John Harrison University of Cambridge, 5 February 1998

