Introduction to Functional Programming: Lecture 1

Introduction to
Functional Programming

Topics covered:

e Imperative programming

e Functional programming
The merits of functional programming
Historical remarks

Overview of the course

University of Cambridge, 15 January 1998




Introduction to Functional Programming: Lecture 1

Imperative programming

Imperative (or procedural) programs rely on

modifying a state by using a sequence of

commands.

The state is mainly modified by the assignment

command, written v = Eor v := E,

We can execute one command before another by
writing them in sequence, perhaps separated by a

semicolon: C5 ; Cs.

Commands can be executed conditionally using

if, and repeatedly using while.

Programs are a series of instructions on how to

modify the state.

Imperative languages, e.g. FORTRAN, Algol, C,
Modula-3 support this style of programming.

University of Cambridge, 15 January 1998




Introduction to Functional Programming: Lecture 1

An abstract view

We ignore input-output operations, and assume

that a program runs for a limited time, producing

a result.

We can consider the execution in an abstract way
as:

g —» 01 —>09 — *++ — Op

The program is started with the computer in an
initial state o(, including the inputs to the

program.

The program finishes with the computer in a final
state o,,, containing the output(s) of the program.

The state passes through a finite sequence of
changes to get from oy to 0, ; in general, each
command may modify the state.

University of Cambridge, 15 January 1998




Introduction to Functional Programming: Lecture 1

Functional programming

A functional program is simply an expression, and
executing the program means evaluating the

expression. We can relate this to the imperative

view by writing o,, = F[og].

e There is no state, i.e. there are no variables.

e Therefore there is no assignment, since there’s
nothing to assign to.

e And there is no sequencing and no repetition,

since one expression does not affect another.
But on the positive side:

e We can have recursive functions, giving

something comparable to repetition.

e Functions can be used much more flexibly,
e.g. we can have higher order functions.

Functional languages support this style of

programming.

University of Cambridge, 15 January 1998




Introduction to Functional Programming: Lecture 1

Example: the factorial

The factorial function can be written imperatively
in C as follows:

int fact(int n)

{ int x = 1;
while (n > 0)
{ x = x * n;

n-1;

X

whereas it would be expressed in ML as a

recursive function:

fun fact n =
if n = 0 then 1

else n * fact(n - 1);

University of Cambridge, 15 January 1998




Introduction to Functional Programming: Lecture 1

At first sight a language without variables,

assignment and sequencing looks very impractical.

We will show in this course how a lot of
interesting programming can be done in the

functional style.

Imperative programming languages have arisen as
an abstraction of the hardware, from machine

code, through assemblers and macro assemblers,
to FORTRAN and beyond.

Perhaps this is the wrong approach and we should
approach the task from the human side. Maybe

functional languages are better suited to people.

But what concrete reasons are there for preferring

functional languages?

University of Cambridge, 15 January 1998




Introduction to Functional Programming: Lecture 1

Merits of functional programming

By avoiding variables and assignments, we gain

the following advantages:

e (Clearer semantics. Programs correspond more

directly to abstract mathematical objects.

e More freedom in implementation, e.g.

parallelizability.
By the more flexible use of functions, we gain:

e Conciseness and elegance.

e Better parametrization and modularity of

prograims.

e Convenient ways of representing infinite data.

University of Cambridge, 15 January 1998




Introduction to Functional Programming: Lecture 1

Denotational semantics

We can identify our ML factorial function with an

abstract mathematical (partial) function Z — Z:

n! ifn>0

[fact](n) =

1 otherwise

where | denotes undefinedness, since for negative

arguments, the program fails to terminate.

Once we have a state, this simple interpretation
no longer works. Here is a C ‘function’ that
doesn’t correspond to any mathematical function:

int rand(void)
{ static int n = 0;

return n = 2147001325 *x n + 715136305;
}

This gives different results on successive calls!

University of Cambridge, 15 January 1998




Introduction to Functional Programming: Lecture 1

Semantics of imperative programs

In order to give a corresponding semantics to
imperative programs, we need to make the state

explicit. For example we can model commands as:

e Partial functions ¥ — ¥ (Strachey)

e Relations on ¥ x ¥ (Hoare)

e Predicate transformers, i.e. total functions
(X — bool) — (X — bool) (Dijkstra)

If we allow the goto statement, even these are not
enough, and we need a semantics based on

continuations (Wadsworth, Morris).
All these methods are quite complicated.

With functional programs, we have a real chance
of proving their correctness, or the correctness of

certain transformations or optimizations.

University of Cambridge, 15 January 1998




Introduction to Functional Programming: Lecture 1

Problems with functional programs

Functional programming is not without its
deficiencies. Some things are harder to fit into a

purely functional model, e.g.

e Input-output

e Interactive or continuously running programs

(e.g. editors, process controllers).

However, in many ways, infinite data structures

can be used to accommodate these things.

Functional languages also correspond less closely
to current hardware, so they can be less efficient,
and it can be hard to reason about their time and
space usage.

ML is not a pure functional language, so you can
use variables and assignments if required.
However most of our work is in the pure

functional subset.

University of Cambridge, 15 January 1998




Introduction to Functional Programming: Lecture 1

Historical remarks

Some of the ideas behind functional programming

go back a long way, e.g. to ‘lambda calculus’, a

logical formalism due to Alonzo Church, invented

in the 1930s before electronic computers.

The earliest real functional programming
language was LISP, invented by McCarthy in the
50s. However this had a number of defects, which

we will discuss later.

The modern trend really begins with ISWIM,
invented by Peter Landin in the 1960s.

The ML family started with Robin Milner’s
theorem prover ‘Edinburgh LCF’ in the late 70s.
The language we shall study is essentially (core)
Standard ML, but there are other important
dialects, notably CAML and Objective CAML.

University of Cambridge, 15 January 1998




Introduction to Functional Programming: Lecture 1

Overview of the course (1)

Practicalities of interacting with ML.

Key functional concepts, e.g. evaluation

strategy, higher order functions.
Polymorphic types.

Recursive functions and recursive structures.
Hints for effective programming.

Exceptions, references and other imperative

features.

Proving programs correct.

University of Cambridge, 15 January 1998




Introduction to Functional Programming: Lecture 1

Overview of the course (2)

We want to show the power of ML, so we’ll finish
with more substantial examples that illustrate

some of the possibilities:

Symbolic differentiation

Recursive descent parsing
A Prolog interpreter

A theorem prover

The code for these examples will be made

available on Thor.

University of Cambridge, 15 January 1998




