First Order Logic in Practice

First Order Logic
in Practice

Background: interaction and automation
Why do we need first order automation?
First order automation for richer logics
Which problems arise in practice?

Do the existing methods work?

Final remarks

University of Cambridge, 27 October 1997

First Order Logic in Practice

The spectrum of theorem provers

AUT MATH (de Bruijn)
(Milner)
(Trybulec)

(wre, Rushby, Shankar)

ETHE (Letz et al.)
tter (McCune)

University of Cambridge, 27 October 1997

First Order Logic in Practice

Interaction plus Automation

It’s a very natural idea for interactive theorem
provers to include automation for filling in the

intermediate steps.

The idea goes back at least to the SAM
(semi-automated mathematics) project in the late
60s.

Nowadays many of the leading interactive systems

include automation. There are many different

aspects of reasoning that may be automated, e.g.

Pure logic (first /higher order with/without
equality)

Linear arithmetic (or nonlinear arithmetic)
Algebraic simplification

Rewriting, completion and other equality

reasoning

Inductive proofs

University of Cambridge, 27 October 1997

First Order Logic in Practice

What kind of automation?

Different interactive systems tend to focus on

some of these in particular, because they are

considered more important and/or easier to

implement. For example:

e Isabelle — mainly automation of logical and
equality reasoning. No decision procedures
for arithmetic.

PVS — decision procedures for important
theories such as linear arithmetic, tightly
coupled using congruence closure. Minimal

support for pure logic.

HOL — automation for logical and equality
reasoning and linear arithmetic, as well as
Boyer-Moore style automation of induction
proofs. But minimal integration of these

different provers.

Which are really the most important?

University of Cambridge, 27 October 1997

First Order Logic in Practice

Logical v theory reasoning (1)

The simple answer is that all of these can be
important, some more than others, depending on
the application. Different applications might

include:

. Formalizing abstract algebra (e.g. general

results about commutative rings)

. Formalizing more concrete mathematics (e.g.

particular Taylor expansions)

. Verifying abstract system models (e.g.
security protocols)

. Verifying concrete system models (e.g.

floating point arithmetic)

For example, logical reasoning is typically more
important for (1) and (3), algebraic simplification
for (2) and linear arithmetic for (4). Of course,

these are just vague general rules.

University of Cambridge, 27 October 1997

First Order Logic in Practice

Logical v theory reasoning (2)

But we can in general say that automating theory

reasoning is more important. Why?

e Explicit proofs of, say, facts of linear

arithmetic (e.g. |r —y| > ||z| — |y||) tend to

be almost unbearably dull and tedious.

e The logical reasoning in an argument is
usually relatively interesting, and fairly

simple.

Our own recent work bears this out — we use
both logical and theory reasoning but would
much prefer to give up the former than the latter.

Why, then, should we be interested in logical
automation? Well, even if it’s not the most useful
form, it is still useful. But there is a deeper reason

why logical automation is particularly significant.

University of Cambridge, 27 October 1997

First Order Logic in Practice

A Declarative Proof Style

We have said that the logical structures of typical
theorems are reasonably simple and interesting.
However sometimes the precise choreographing of
logical steps is quite tedious when one theorem

‘obviously’ follows from a given set of premisses.

Mizar allows the user merely to state the

premisses, and finds the proof itself, using an
optimized special case of tableaux as well as

simple techniques for equality reasoning.

This opens up the possibility of stating proofs in
a much less prescriptive and more declarative
style, which arguably leads to a number of
advantages in readability, maintainability and
indeed writability.

The same advantages can be had in many other
interactive systems, given adequate logical

automation.

University of Cambridge, 27 October 1997

First Order Logic in Practice

Richer logics

Many of the leading interactive systems like HOL
and PVS are based on a higher-order logic.

It would seem that we need to automate higher
order logic, as in Andrews’s system TPS, not first

order logic.

Ideally yes, but (empirically) first order
automation is sufficient for many of the problems
that arise in practice, using the well-known
mechanical reduction of higher order to first order

logic.

First order logic has the advantage that there are
well engineered ‘off-the-shelf’ techniques (and

systems) to handle it.

University of Cambridge, 27 October 1997

First Order Logic in Practice

HOL to FOL

There are some significant choices in the

reduction of higher order to first order logic.

e How to deal with higher order features such

as lambda abstractions. A translation of

P\ z. tlz]] to Vf. (Vx. f(x) = t[x]) = P[f]?

How to cope with the polymorphic types used
in several higher order theorem provers.
Preserve the type information or throw it

away! How do we ensure soundness?

How to reduce the problem to the normal
form required by the first order prover. For
example, there are many different ways of

splitting up the problem into subproblems.

How to handle equality reasoning, which is
very important in practice. Naive equality
axioms? Brand’s transformation?

Paramodulation in the first order prover?

University of Cambridge, 27 October 1997

First Order Logic in Practice

Practical Problems

Traditionally, first order provers have been used
for elegant examples in relatively simple
axiomatic systems. Often the set of axioms, and

even their formulation, is picked very caretully.

The current test suites for first order provers, e.g.
TPTP, tend to reflect this bias.

The problems we need to solve in our work tend

to be different. They are sometimes (not always)

shallow, but involve relatively big and intricate
terms, and large amounts of irrelevant

information.

We suggest compiling a new list of problems from
real applications of first order reasoning. It would
be possible to do this semi-automatically.

We have already compiled a list of a few hundred
examples from our own work. Preparing a

TPTP-style public test suite would be quite
possible, or adding them to the new FOF' suite.

University of Cambridge, 27 October 1997

First Order Logic in Practice

Do existing methods work?

But there would be little point in making

different test suites unless they demanded

significantly different qualities in a prover.

There is one obvious difference: we want to solve
routine problems quickly, rather than very hard

problems in hours or days.

Moreover, our problems may test the sensitivity
of systems to very large terms, even when those
terms are irrelevant to the proof, and the ability

to discriminate among a large database of axioms.

Systematic testing of different systems on our
problems would be interesting, but we haven’t
done this yet. We use a version of MESON (see
CADE-13 paper).

One interesting point has come to light: we find
that on average, naive equality axioms are better
than Brand’s transformation. Apparently on

more standard test problems, the opposite is true.

University of Cambridge, 27 October 1997

First Order Logic in Practice

Final remarks

e When there are well-established methods for
handling a class of problems, e.g. first order
theorem provers, model checkers, computer

algebra systems and linear programming

tools, it’s always worth reflecting on the

potential for using them as subsystems of

interactive provers.

Often the ‘interactive’ and ‘first order
automation’ communities communicate too
little. Interactive provers can provide real
applications in which to put first order
automation to work, and automation can be
the key to some interesting new approaches to
interactive proof such as a declarative proof
style. If we try to create test suites of more
‘practical’ problems, we can still compare

systems in a meaningful way.

University of Cambridge, 27 October 1997

