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Summary of talk

◮ The world of interactive theorem provers

◮ HOL Light and the LCF approach

◮ HOL Light in formal verification and pure mathematics

◮ Installation and OCaml basics

◮ The HOL Logic in OCaml
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◮ Agda

◮ Coq

◮ HOL (HOL Light, HOL4, ProofPower, HOL Zero)

◮ IMPS

◮ Isabelle

◮ Metamath

◮ Mizar

◮ Nuprl

◮ PVS

See Freek Wiedijk’s book The Seventeen Provers of the World
(Springer-Verlag lecture notes in computer science volume 3600)
for descriptions of many systems and proofs that

√
2 is irrational.
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Foundations
The choice of foundations is a difficult one, sometimes balancing
simplicity against flexibility or expressiveness:

◮ The ‘traditional’ or ‘standard’ foundation for mathematics is
set theory, and some provers do use that

◮ Metamath and Isabelle/ZF (standard ZF/ZFC)
◮ Mizar (Tarski-Grothendieck set theory)

◮ Partly as a result of their computer science interconnections,
many provers are based on type theory

◮ HOL family and Isabelle/HOL (simple type theory)
◮ Martin-Löf type theory (Agda, Nuprl)
◮ Calculus of inductive constructions (Coq)
◮ Other typed formalisms (IMPS, PVS)

◮ Some are even based on very simple foundations analogous to
primitive recursive arithmetic, without explicit quantifiers
(ACL2, NQTHM)

◮ There is now interest in a new foundational approach,
homotopy type theory, with experimental implementations.
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Software architecture

If we are trying to use interactive provers to make proofs more
reliable, then their own correctness may become an issue. How can
we achieve high levels of certainty about their foundations?
The reliability of a theorem prover increases dramatically if its
correctness depends only on a small amount of code.

◮ de Bruijn approach — generate proofs that can be certified by
a simple, separate checker.

◮ LCF approach — reduce all rules to sequences of primitive
inferences implemented by a small logical kernel.

The checker or kernel can be much simpler than the prover as a
whole.
There have even recently been papers about versions of Milawa (a
simplified ACL2) and HOL Light verified right down to machine
code.
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Proof languages

Directly invoking the primitive or derived rules tends to give proofs
that are procedural.
A declarative style (what is to be proved, not how) can be nicer:

◮ Easier to write and understand independent of the prover

◮ Easier to modify

◮ Less tied to the details of the prover, hence more portable

◮ However it can also be more verbose and less easy to script.

Mizar pioneered the declarative style of proof. Recently, several
other declarative proof languages have been developed, as well as
declarative shells round existing systems like HOL and Isabelle.
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Automation

One major obstacle to the wider use of proof assistants is the low
level of automation, so it can be a struggle to prove ‘obvious’
facts. There are some quite powerful automated techniques, e.g.

◮ Pure logic proof search (SAT, FOL, HOL)

◮ Decision procedures for numerical theories (linear arithmetic
and algebra, SMT).

◮ Quantifier elimination procedures

Many of these have been successfully integrated into proof
assistants without compromising their soundness, e.g.

◮ Reimplement algorithms to perform proofs as they proceed

◮ Have suitable ‘certificates’ produced by an external tool
checked in the inference kernel.

◮ Extend kernel with verified implementation (reflection).
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◮ Another serious obstacle is the lack of libraries of ‘basic’
results, meaning that when proving a major theorem one
needs constantly to be proving a stream of low-level lemmas.

◮ Sometimes flashy or exciting theorems (Brouwer fixed-point
theorem, the Picard theorems) aren’t as useful as less showy
ones (the change of variables formula for integrals etc.)

◮ Large formalizations (Odd Order Theorem, Flyspeck) have
motivated formalization of ‘foundational’ material as a
by-product, making similar efforts easier in future.

◮ The earliest large mathematical library, still perhaps the largest
is the Mizar Mathematical Library (MML), following the style
of mathematical papers with extracted text and references.

◮ Many theorem provers including Coq, HOL Light and
Isabelle/HOL (including the ‘archive of formal proofs’) also
have large and every-expanding mathematical libraries.
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HOL Light overview

◮ HOL Light is a member of the HOL family of provers,
descended from Mike Gordon’s original HOL system developed
in the 80s.

◮ An LCF-style proof checker for classical higher-order logic
built on top of (polymorphic) simply-typed λ-calculus.

◮ HOL Light is designed to have a particularly simple and clean
logical foundation.

◮ Written in Objective CAML (OCaml), a somewhat popular
variant of the ML family of languages.

◮ Has been used for floating-point algorithm verifications at
Intel and the verification of Hales’s proof of the Kepler
conjecture (Flyspeck).



The HOL family DAG

There are many HOL provers, of which HOL Light is just one, all
descended from Mike Gordon’s original HOL system in the late
1980s.
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◮ The key ideas of the LCF architecture were invented by Robin
Milner and his collaborators in Edinburgh in the 1970s.

◮ The original LCF-style prover was for Scott’s “Logic of
Computable Functions”, hence the name, but the approach is
not tied to any specific logic.

◮ LCF gives a very attractive mix of security and
extensibility/programmability.

◮ There have been quite a few LCF-style provers for various
logics, e.g. HOL, Nuprl, LAMBDA, Isabelle/HOL (and to
some extent Coq used the LCF approach).
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How an LCF-style prover works

A logical inference rule such as ⇒-elimination (modus ponens)

Γ ⊢ p ⇒ q ∆ ⊢ p

Γ ∪∆ ⊢ q

becomes a function, say MP : thm->thm->thm in the
metalanguage (OCaml in the case of HOL LIght)
For example, if th1 is the theorem ⊢ p ⇒ (q ⇒ p) and th2 is ⊢ p,
then MP th1 th2 gives ⊢ q ⇒ p.

◮ An abstract type of theorems can restrict the user to an
approved selection of primitive inference rules — all theorems
must be created with those.

◮ By layers of programming, much more high-level and
convenient derived inference rules can be programmed on top.
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HOL Light

HOL Light is an extreme case of the LCF approach. The entire
logical kernel is 430 lines of code:

◮ 10 rather simple primitive inference rules

◮ 2 conservative definitional extension principles

◮ 3 mathematical axioms (infinity, extensionality, choice)

Arguably, HOL Light is the computer-age descendant of
Whitehead and Russell’s Principia Mathematica:

◮ The logical basis is simple type theory, which was distilled
(Ramsey, Chwistek, Church) from PM’s original logic.

◮ Everything, even arithmetic on numbers, is done from first
principles by reduction to the primitive logical basis.



A formal proof from 1910

This is p379 of Whitehead and Russell’s Principia Mathematica.
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A formal proof from 2010
let PNT = prove

(‘((\n. &(CARD {p | prime p /\ p <= n}) / (&n / log(&n)))

---> &1) sequentially‘,

REWRITE_TAC[PNT_PARTIAL_SUMMATION] THEN

REWRITE_TAC[SUM_PARTIAL_PRE] THEN

REWRITE_TAC[GSYM REAL_OF_NUM_ADD; SUB_REFL; CONJUNCT1 LE] THEN

SUBGOAL_THEN ‘{p | prime p /\ p = 0} = {}‘ SUBST1_TAC THENL

[REWRITE_TAC[EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY] THEN

MESON_TAC[PRIME_IMP_NZ];

ALL_TAC] THEN

REWRITE_TAC[SUM_CLAUSES; REAL_MUL_RZERO; REAL_SUB_RZERO] THEN

MATCH_MP_TAC REALLIM_TRANSFORM_EVENTUALLY THEN

EXISTS_TAC

‘\n. ((&n + &1) / log(&n + &1) *

sum {p | prime p /\ p <= n} (\p. log(&p) / &p) -

sum (1..n)

(\k. sum {p | prime p /\ p <= k} (\p. log(&p) / &p) *

((&k + &1) / log(&k + &1) - &k / log(&k)))) / (&n / log(&n))‘ THEN

CONJ_TAC THENL

[REWRITE_TAC[EVENTUALLY_SEQUENTIALLY] THEN EXISTS_TAC ‘1‘ THEN SIMP_TAC[];

ALL_TAC] THEN

MATCH_MP_TAC REALLIM_TRANSFORM THEN

EXISTS_TAC

‘\n. ((&n + &1) / log(&n + &1) * log(&n) -

sum (1..n)

(\k. log(&k) * ((&k + &1) / log(&k + &1) - &k / log(&k)))) /

(&n / log(&n))‘ THEN

REWRITE_TAC[] THEN CONJ_TAC THENL

[REWRITE_TAC[REAL_ARITH

‘(a * x - s) / b - (a * x’ - s’) / b:real =

((s’ - s) - (x’ - x) * a) / b‘] THEN

REWRITE_TAC[GSYM SUM_SUB_NUMSEG; GSYM REAL_SUB_RDISTRIB] THEN

REWRITE_TAC[REAL_OF_NUM_ADD] THEN

MATCH_MP_TAC SUM_PARTIAL_LIMIT_ALT THEN
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Zooming in . . .

At least the theorems are more substantial:

let PNT = prove

(‘((\n. &(CARD {p | prime p /\ p <= n}) / (&n / log(&n)))

---> &1) sequentially‘,

REWRITE_TAC[PNT_PARTIAL_SUMMATION] THEN

REWRITE_TAC[SUM_PARTIAL_PRE] THEN

REWRITE_TAC[GSYM REAL_OF_NUM_ADD; SUB_REFL; CONJUNCT1 LE] THEN

Though whether formal proofs have become more digestible to the
non-expert is perhaps questionable . . .



HOL Light in formal
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Intel is best known as a hardware company, and hardware is still the
core of the company’s business. However this entails much more:

◮ Microcode

◮ Firmware

◮ Protocols

◮ Software

If the Intel Software and Services Group (SSG) were split off as a
separate company, it would be in the top 10 software companies
worldwide.



A diversity of verification problems

This gives rise to a corresponding diversity of verification problems,
and of verification solutions.

◮ Propositional tautology/equivalence checking (FEV)

◮ Symbolic simulation

◮ Symbolic trajectory evaluation (STE)

◮ Temporal logic model checking

◮ Combined decision procedures (SMT)

◮ First order automated theorem proving

◮ Interactive theorem proving

Most of these techniques (trading automation for generality /
efficiency) are in active use at Intel.



A spectrum of formal techniques

Traditionally, formal verification has been focused on complete
proofs of functional correctness.
But recently there have been notable successes elsewhere for
‘semi-formal’ methods involving abstraction or more limited
property checking.

◮ Airbus A380 avionics

◮ Microsoft SLAM/SDV

One can also consider applying theorem proving technology to
support testing or other traditional validation methods like path
coverage.
These are all areas of interest at Intel.



Models and their validation

We have the usual concerns about validating our specs, but also
need to pay attention to the correspondence between our models
and physical reality.

Actual system

Design model

Formal specification

Actual requirements

6

6

6
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Physical problems

Chips can suffer from physical problems, usually due to overheating
or particle bombardment (‘soft errors’).

◮ In 1978, Intel encountered problems with ‘soft errors’ in some
of its DRAM chips.

◮ The cause turned out to be alpha particle emission from the
packaging.

◮ The factory producing the ceramic packaging was on the
Green River in Colorado, downstream from the tailings of an
old uranium mine.

However, these are rare and apparently well controlled by existing
engineering best practice.
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The FDIV bug

Formal methods are more useful for avoiding design errors such as
the infamous FDIV bug:

◮ Error in the floating-point division (FDIV) instruction on some
early IntelPentium processors

◮ Very rarely encountered, but was hit by a mathematician
doing research in number theory.

◮ Intel eventually set aside US $475 million to cover the costs.

This did at least considerably improve investment in formal
verification.



Some HOL Light verifications

We have formally verified correctness of various floating-point
algorithms using HOL Light:

◮ Division and square root (Marstein-style, using fused
multiply-add to do Newton-Raphson or power series
approximation with delicate final rounding).

◮ Transcendental functions like log and sin (table-driven
algorithms using range reduction and a core polynomial
approximations).



The Kepler conjecture

The Kepler conjecture states that no arrangement of identical balls
in ordinary 3-dimensional space has a higher packing density than
the obvious ‘cannonball’ arrangement.
Hales, working with Ferguson, arrived at a proof in 1998:

◮ 300 pages of mathematics: geometry, measure, graph theory
and related combinatorics, . . .

◮ 40,000 lines of supporting computer code: graph enumeration,
nonlinear optimization and linear programming.

Hales submitted his proof to Annals of Mathematics . . .



The response of the reviewers

After a full four years of deliberation, the reviewers returned:

“The news from the referees is bad, from my perspective.
They have not been able to certify the correctness of the
proof, and will not be able to certify it in the future,
because they have run out of energy to devote to the
problem. This is not what I had hoped for.
Fejes Toth thinks that this situation will occur more and
more often in mathematics. He says it is similar to the
situation in experimental science — other scientists
acting as referees can’t certify the correctness of an
experiment, they can only subject the paper to
consistency checks. He thinks that the mathematical
community will have to get used to this state of affairs.”



The birth of Flyspeck

Hales’s proof was eventually published, and no significant error has
been found in it. Nevertheless, the verdict is disappointingly
lacking in clarity and finality.
As a result of this experience, the journal changed its editorial
policy on computer proof so that it will no longer even try to check
the correctness of computer code.
Dissatisfied with this state of affairs, Hales initiated a project
called Flyspeck to completely formalize the proof.



Flyspeck

Flyspeck = ‘Formal Proof of the Kepler Conjecture’.

“In truth, my motivations for the project are far more
complex than a simple hope of removing residual doubt
from the minds of few referees. Indeed, I see formal
methods as fundamental to the long-term growth of
mathematics. (Hales, The Kepler Conjecture)

In parallel, Hales has simplified the informal proof using ideas from
Marchal, significantly cutting down on the formalization work.
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A large team effort led by Hales brought Flyspeck to completion on
10th August 2014:
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Flyspeck: current status

A large team effort led by Hales brought Flyspeck to completion on
10th August 2014:

◮ All the ordinary mathematics has been formalized in HOL
Light: Euclidean geometry, measure theory, hypermaps, fans,
results on packings.

◮ The graph enumeration process has been verified (and
improved in the process) by Tobias Nipkow in Isabelle/HOL.

◮ A highly optimized way of formally proving the linear
programming part in HOL Light has been developed by Alexey
Solovyev, following earlier work by Steven Obua.

◮ A method has been developed by Alexey Solovyev to prove all
the nonlinear optimization results, running in many parallel
sessions of HOL Light.
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HOL Light and OCaml

◮ HOL Light is just an OCaml program, so installing HOL Light
means installing OCaml and loading HOL Light files into an
interactive session

◮ HOL Light uses camlp5 to make a few modifications to
OCaml’s usual concrete syntax, which makes things slightly
more complicated.

◮ There are also many similarities between OCaml (the
’metalogic’) and the higher-order logic of HOL (the ‘object
logic’), which can be both illuminating and confusing.
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The difficulty of installation varies with operating system. This
page is the main guide:

https://code.google.com/p/hol-light/source/browse/trunk/README
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Installation basics

The difficulty of installation varies with operating system. This
page is the main guide:

https://code.google.com/p/hol-light/source/browse/trunk/README

There is a debian package for HOL Light (thanks to Hendrik
Tews), so for debian and derivatives like Ubuntu you can simply do

sudo apt-get install hol-light

then start it up with the following (it takes a minute or so to load
everything in)

hol-light

For other OSs you will probably need to install OCaml, camlp5 and
then HOL Light itself separately.

https://code.google.com/p/hol-light/source/browse/trunk/README
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When using HOL Light, you are in the top-level read-eval-print
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The OCaml toplevel

When using HOL Light, you are in the top-level read-eval-print
loop of OCaml, a strongly typed functional programming language.

◮ OCaml presents the prompt ‘#’

◮ Enter phrases terminated by double semicolon ‘;;’ for
evaluation

The user enters

# 2 + 2;;

and OCaml responds with

val it : int = 4

#

It not only returns the value (4) but also infers the type (int) and
binds it to a name (it).



OCaml bindings

We can now use the name ‘it’ to stand for that expression:

# it * it;;

val it : int = 16
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OCaml bindings

We can now use the name ‘it’ to stand for that expression:

# it * it;;

val it : int = 16

We can also choose our own names for bindings using ‘let name =
expression’, with multiple parallel bindings separated by ‘and’:

# let a = 2 and b = 3;;

val a : int = 2

val b : int = 3

# let c = a - b;;

val c : int = -1

or make bindings local to an expression using ‘in’:

# let d = a / 2 in d + 6;;

val it : int = 7

# d;;

Error: Unbound value d
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Basic OCaml datatypes

A few basic built-in datatypes:

◮ Integers (int), which we’ve already seen, written in the usual
way. Note that these are machine integers with limited range.

◮ Floating-point values (float) written with the decimal point
like ‘1.0’. The operations on FP numbers are different, ’+.’
etc.

◮ Booleans (bool), with elements false and true and
operations like infix ‘&&’ and ‘||’

◮ Strings (string) written in "Double quotes" with ‘^’ as infix
concatenation.



Pairs and lists

OCaml has two especially important structured datatypes, though
the user can define more (and HOL Light defines its own for logical
concepts);

◮ Pairs, written with an infix ‘,’ (the parentheses are only
needed to establish precedence)

# 1,2;;

val it : int * int = (1, 2)
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Pairs and lists

OCaml has two especially important structured datatypes, though
the user can define more (and HOL Light defines its own for logical
concepts);

◮ Pairs, written with an infix ‘,’ (the parentheses are only
needed to establish precedence)

# 1,2;;

val it : int * int = (1, 2)

◮ Lists, written with semicolon as separator, and :: as ‘cons’:

# 1::2::[3;4];;

val it : int list = [1; 2; 3; 4]

Structured types can be nested in arbitrary ways (lists of pairs of
lists etc.) and OCaml automatically keeps track of the types.



OCaml functions

One can define functions in OCaml using either of the following
more or less equivalent forms:

◮ An explicit ‘lambda’ written ‘fun v -> e’, e.g.
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OCaml functions

One can define functions in OCaml using either of the following
more or less equivalent forms:

◮ An explicit ‘lambda’ written ‘fun v -> e’, e.g.

# let square = fun x -> x * x;;

val square : int -> int = <fun>

◮ An ordinary let-binding with parameters

# let square x = x * x;;

val square : int -> int = <fun>

Functions are applied just by juxtaposition; parentheses are only
needed to establish precedence

# square 12 + 1;;

val it : int = 145

# square (12 + 1);;

val it : int = 169



Recursion and pattern-matching

Function definitions can be recursive with the rec keyword, and
since OCaml is primarily a functional language, this is a major
control flow mechanism.

◮ The factorial function can be defined as

# let rec fact n = if n <= 0 then 1 else n * fact(n - 1);;

val fact : int -> int = <fun>

# fact 12;;

val it : int = 479001600

◮ The length of a list can be determined as follows; note the use
of pattern-matching ‘match . . . with’ clauses:

# let rec length l =

match l with

[] -> 0

| h::t -> 1 + length t;;

val length : ’a list -> int = <fun>

# length [1;2;3];;

val it : int = 3



Currying

OCaml allows function types to be nested, so one can implement
multiple-argument functions as functions returning functions
(‘currying’).

# let add x y = x + y;;

val add : int -> int -> int = <fun>

# let suc = add 1;;

val suc : int -> int = <fun>

# suc 2;;

val it : int = 3



Currying

OCaml allows function types to be nested, so one can implement
multiple-argument functions as functions returning functions
(‘currying’).

# let add x y = x + y;;

val add : int -> int -> int = <fun>

# let suc = add 1;;

val suc : int -> int = <fun>

# suc 2;;

val it : int = 3

Alternatively one can explicitly use a paired argument:

# let add(x,y) = x + y;;

val add : int * int -> int = <fun>

# add(1,3);;

val it : int = 4



Polymorphism

OCaml infers ‘most general’ types for functions according to an
elegant polymorphic type system, with ‘type variables’ used to
signify generality.

# let identity x = x;;

val identity : ’a -> ’a = <fun>



Polymorphism

OCaml infers ‘most general’ types for functions according to an
elegant polymorphic type system, with ‘type variables’ used to
signify generality.

# let identity x = x;;

val identity : ’a -> ’a = <fun>

Such a function can be applied to any specific instance (or a more
complex polymorphic type)

# identity 1;;

val it : int = 1

# identity false;;

val it : bool = false
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There are three key OCaml datatypes used to represent logical
entities in HOL:

◮ Higher-order logic types, hol_type. You can conveniently
create them using specially parsed backquotes with colon:

# ‘:bool‘;;
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Basic logical entities in OCaml

There are three key OCaml datatypes used to represent logical
entities in HOL:

◮ Higher-order logic types, hol_type. You can conveniently
create them using specially parsed backquotes with colon:

# ‘:bool‘;;

val it : hol_type = ‘:bool‘

◮ HOL terms, term, which can also be conveniently created via
special parsing support

# ‘1 + 2‘;;

val it : term = ‘1 + 2‘

◮ HOL theorems, which cannot be just created arbitrarily but
must be proved, e.g. the pre-existing theorem that addition is
commutative.

# ADD_SYM;;

val it : thm = |- !m n. m + n = n + m



Abstract type encapsulation

All the three core logical datatypes are effectively abstract data
types, so how you can form them is restricted to ensure logical
coherence

◮ You can only create HOL types that have been declared

# ‘:int triple‘;;

Exception: Failure "Unparsed input following type".
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Abstract type encapsulation

All the three core logical datatypes are effectively abstract data
types, so how you can form them is restricted to ensure logical
coherence

◮ You can only create HOL types that have been declared

# ‘:int triple‘;;

Exception: Failure "Unparsed input following type".

◮ You can only create well-typed HOL terms; here we try to add
1 and ‘false’ (the Booleans are written as F and T in HOL):

# ‘1 + F‘;;

Exception:

Failure

"typechecking error (initial type assignment): F has type bool, it cannot

used with type num".

◮ Theorems can only be created (ultimately) by applying a small
number of primitive rules
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HOL types

In general, a HOL type is either

◮ A polymorphic type variable

# ‘:A‘;;

val it : hol_type = ‘:A‘

◮ A compound type built up from basic types using a type
operator, like the function space ->, lists or pairs

# ‘:num->bool list‘;;

val it : hol_type = ‘:num->(bool)list‘

◮ Note that certain basic types like bool are considered as
nullary type operators.

The type system is very closely analogous to that of OCaml itself,
and HOL’s parser even uses similar algorithms to assign most
general polymorphic types.
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HOL terms
There are only four basic kinds of HOL term:

◮ Variables, with a specific type

# ‘p:bool‘;;

val it : term = ‘p‘

◮ Constants, again with a specific type that HOL Light will
usually infer, though it supports some degree of constant
overloading

# ‘1‘;;

val it : term = ‘1‘

◮ Applications, written with juxtaposition (this is the successor
function applied to 0):

# ‘SUC 0‘;;

val it : term = ‘SUC 0‘

◮ Abstractions or lambdas, written with a backslash

# ‘\x. x + 1‘;;

val it : term = ‘\x. x + 1‘



HOL Light primitive rules (1)

⊢ t = t
REFL

Γ ⊢ s = t ∆ ⊢ t = u
Γ ∪∆ ⊢ s = u

TRANS

Γ ⊢ s = t ∆ ⊢ u = v
Γ ∪∆ ⊢ s(u) = t(v)

MK COMB

Γ ⊢ s = t
Γ ⊢ (λx . s) = (λx . t)

ABS

⊢ (λx . t)x = t
BETA



HOL Light primitive rules (2)

{p} ⊢ p
ASSUME

Γ ⊢ p = q ∆ ⊢ p

Γ ∪∆ ⊢ q
EQ MP

Γ ⊢ p ∆ ⊢ q

(Γ− {q}) ∪ (∆− {p}) ⊢ p = q
DEDUCT ANTISYM RULE

Γ[x1, . . . , xn] ⊢ p[x1, . . . , xn]

Γ[t1, . . . , tn] ⊢ p[t1, . . . , tn]
INST

Γ[α1, . . . , αn] ⊢ p[α1, . . . , αn]

Γ[γ1, . . . , γn] ⊢ p[γ1, . . . , γn]
INST TYPE



HOL’s logical connectives

The usual logical connectives are given ASCII renderings:

⊥ F Falsity

⊤ T Truth

¬ ~ Not

∧ /\ And

∨ \/ Or

⇒ ==> Implies (‘if . . . then . . . ’)

⇔ <=> Iff (‘. . . if and only if . . . ’)

∀ ! For all

∃ ? There exists

∃! ?! There exists a unique



The definitions of the logical connectives
HOL Light is so foundational that even all the basic logical
connectives are defined in terms of equality:

⊤ = (λp. p) = (λp. p)

∧ = λp. λq. (λf . f p q) = (λf . f ⊤ ⊤)

⇒ = λp. λq. p ∧ q = p

∀ = λP . P = λx .⊤
∃ = λP . ∀q. (∀x . P(x) ⇒ q) ⇒ q

∨ = λp. λq. ∀r . (p ⇒ r) ⇒ (q ⇒ r) ⇒ r

⊥ = ∀p. p
¬ = λp. p ⇒ ⊥
∃! = λP . ∃P ∧ ∀x . ∀y . P x ∧ P y ⇒ (x = y)

The usual properties of the connectives are derived from the
primitive rules.
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Basic syntax functions
HOL Light provides many convenient function for manipulating the
basic logical entities, e.g.

◮ type_of to get the (HOL!) type of a term

# type_of ‘1‘;;

val it : hol_type = ‘:num‘

◮ Destructor functions dest_var, dest_const, dest_comb and
dest_abs to break down terms of various kinds

# dest_comb ‘SUC 0‘;;

val it : term * term = (‘SUC‘, ‘0‘)

◮ Corresponding constructors mk_var, mk_const, mk_comb and
mk_abs

# mk_var("p",‘:bool‘);;

val it : term = ‘p‘

◮ frees to get the free variables in a term

# frees ‘x + y + 1‘;;

val it : term list = [‘x‘; ‘y‘]



Representing more complex terms

All the expressions in logic and mathematics are ultimately
expressed using just those four basic terms, and one can explore
how it is done using the destructor functions

◮ Binary logical connectives are just curried functions of the
appropriate type:

# dest_comb ‘p /\ q‘;;

val it : term * term = (‘(/\) p‘, ‘q‘)

◮ Quantifiers are higher-order functions applied to an
abstraction

# dest_comb ‘!x. x < x + 1‘;;

val it : term * term = (‘(!)‘, ‘\x. x < x + 1‘)



Getting help

Note that one can also get help on any predefined HOL Light
functions using the help function, e.g.

# help "mk_abs";;



Getting help

Note that one can also get help on any predefined HOL Light
functions using the help function, e.g.

# help "mk_abs";;

There is also a full Reference manual with the same information.
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Summary of talk

◮ Basic and derived definitional principles

◮ Basic mathematical theories in HOL Light

◮ More advanced automation

◮ Tactic proofs

◮ A tour of the library
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Basic principle of constant definition

The only primitive constant for the logic itself is equality = with
polymorphic type α → α → bool.
Later we add the Hilbert ε : (α → bool) → α yielding the Axiom
of Choice.
All other constants are introduced using new_basic_definition,
the rule of constant definition: given a term t (closed, and with
some restrictions on type variables) and an unused constant name
c , we can define c and get the new theorem

⊢ c = t

This is an object-level definitional principle, in that c is a constant,
not some meta-level abbreviation. It is easy to see that this is
conservative, and in particular consistency-preserving.
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The only primitive type constructors for the logic itself are bool
(booleans) and fun (function space).
Later we add an infinite type ind (individuals) to assert the axiom
of infinity.
All other types are introduced by new_basic_type_definition,
the rule of type definition, to be in bijection with any nonempty
subset of an existing type.
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Again, this is conservative and consistency-preserving.
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HOL as a definitional framework

While Edinburgh LCF required theorems to be proved via the
primitive inference rules, it was usual to assert axioms to give the
definitions required, and it was quite easy to assert inconsistent
axioms.
One of the innovations of Gordon’s original HOL work was to
extend this ‘correct-by-construction’ approach to the definitions of
new concepts, which works very nicely in a general framework like
HOL, so:

◮ All proofs are done by primitive inferences

◮ All new types are defined not postulated.

This is the standard approach in mathematics, even if most of the
time people don’t bother about it (e.g. the construction of the real
numbers as Dedekind cuts or whatever).
Just using axioms was compared by Russell to theft in place of
honest toil.
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However, part of the motivation for just axiomatizing definitions is
that it’s often very convenient to use much higher-level principles,
e.g.

◮ Inductive definitions of sets and predicates

◮ Definition of inductive types (trees, lists etc.)

◮ Definition of primitive recursive functions over such types

◮ Definition of general recursive functions using wellfounded
orderings

Many other theorem provers build such principles in as primitive,
and very often get them wrong . . .
HOL Light supports all these and more using safely derived

definitional principles.
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Inductively defined relations
The new_inductive_definition function automates inductive
definitions, using a Knaster-Tarski type derivation under the
surface. It can cope with infinitary definitions, parameters, and
user-defined monotone operators.

# new_inductive_definition ‘E(0) /\ (!n. E(n) ==> E(n + 2))‘;;

val it : thm * thm * thm =

(|- E 0 /\ (!n. E n ==> E (n + 2)),

|- !E’. E’ 0 /\ (!n. E’ n ==> E’ (n + 2)) ==> (!a. E a ==> E’ a),

|- !a. E a <=> a = 0 \/ (?n. a = n + 2 /\ E n))

The function returns a triple of theorems:

◮ A ‘rule’ theorem (the inductively defined predicate is closed
under the rules)

◮ An ‘induction’ or minimality theorem (the inductively defined
predicate is the least such)

◮ A ‘cases’ theorem that each element arises by virtue of one of
the rules.
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Inductive/recursive datatypes
These are analogous to the concrete datatypes of OCaml and
similar languages. Examples include natural numbers, lists and
trees.
HOL Light’s define_type rule can handle nested constructors and
mutual recursion. For example, a simple type for binary trees with
natural numbers at the leaves:

# let btree_INDUCT,btree_RECURSION = define_type

"btree = Leaf num | Branch btree btree";;

The rule returns a pair of theorem, one justifying ‘structural
induction’ over the type:

val btree_INDUCT : thm =

|- !P. (!a. P (Leaf a)) /\ (!a0 a1. P a0 /\ P a1 ==> P (Branch a0 a1))

==> (!x. P x)

and the other justifying definition by primitive recursion

val btree_RECURSION : thm =

|- !f0 f1.

?fn. (!a. fn (Leaf a) = f0 a) /\

(!a0 a1. fn (Branch a0 a1) = f1 a0 a1 (fn a0) (fn a1))
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Recursive functions

HOL Light can automatically use the recursion theorems produced
by define_type to justify primitive recursive theorems.
Can also handle general recursive definitions, and in simple cases
can find an appropriate wellfounded ordering automatically:

let fib = define

‘fib 0 = 1 /\

fib 1 = 1 /\

fib (n + 2) = fib(n) + fib(n + 1)‘;;

val fib : thm =

|- fib 0 = 1 /\ fib 1 = 1 /\ fib (n + 2) = fib n + fib (n + 1)

Some tail-recursive cases can be justified even without an ordering:

define ‘collatz(n) = if n <= 1 then n

else if EVEN(n) then collatz(n DIV 2)

else collatz(3 * n + 1)‘;;



Basic mathematical theories in
HOL Light
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Cartesian products and pairs

We define a Cartesian product constructor written as infix ‘#’ (not
’* as in OCaml).
This takes two types α and β and gives us the Cartesian product
α× β.
As with OCaml, the pairing function is an infix comma, and
parentheses are not needed except to establish precedence.

# type_of ‘1,2‘;;

val it : hol_type = ‘:num#num‘

The projections are FST and SND.
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Natural numbers

The axiom of infinity (INFINITY_AX) asserts that there is a
function from the type of ‘individuals’ to itself that is injective but
not surjective (Dedekind’s definition of infinity)

This means the type of individuals is big enough to hold the
natural numbers, and they are carved out as an inductively defined
predicate to use in a type definition.

This gives the type of natural numbers :num, a function SUC (the
image under the bijection of the function postulated by
INFINITY_AX) and a constant zero (some value not in the range
of SUC).
All the usual arithmetical operations are defined and the usual
properties proved, making heavy use of definition by recursion and
proof by recursion, e.g. the primitive recursive definition of
addition:

val it : thm = |- (!n. 0 + n = n) /\ (!m n. SUC m + n = SUC (m + n))
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Natural number constants

The ‘constants’ 0, 1, 2, 3, 4, . . . are not in fact constants, but
prettyprinted forms of composite terms. We use two basic
constants for the functions n 7→ 2n and n 7→ 2n + 1:

BIT0 = |- BIT0 n = n + n

BIT1 = |- BIT1 n = SUC(n + n)

These are used to encode numbers in a binary notation, e,g. 6 as

BIT0 (BIT1 (BIT1 _0)

An outer identity constant NUMERAL is applied, which among other
things avoids confusing cases where one number is a subterm of
another one. So for example:

# dest_comb ‘14‘;;

val it : term * term = (‘NUMERAL‘, ‘BIT0 (BIT1 (BIT1 (BIT1 _0)))‘)



Natural number arithmetic
Most arithmetic operations in this representation can be evaluated
by applying theorems as rewrite rules

ARITH_ADD =

|- (!m n. NUMERAL m + NUMERAL n = NUMERAL (m + n)) /\

_0 + _0 = _0 /\

(!n. _0 + BIT0 n = BIT0 n) /\

(!n. _0 + BIT1 n = BIT1 n) /\

(!n. BIT0 n + _0 = BIT0 n) /\

(!n. BIT1 n + _0 = BIT1 n) /\

(!m n. BIT0 m + BIT0 n = BIT0 (m + n)) /\

(!m n. BIT0 m + BIT1 n = BIT1 (m + n)) /\

(!m n. BIT1 m + BIT0 n = BIT1 (m + n)) /\

(!m n. BIT1 m + BIT1 n = BIT0 (SUC (m + n)))

ARITH_SUC =

|- (!n. SUC (NUMERAL n) = NUMERAL (SUC n)) /\

SUC _0 = BIT1 _0 /\

(!n. SUC (BIT0 n) = BIT1 n) /\

(!n. SUC (BIT1 n) = BIT0 (SUC n))

Optimized derived rules can do most arithmetic fairly efficiently,
way slower than machine arithmetic or bignums, but fast enough
for most purposes.
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Real numbers (1)

We say a function x : N → N (i.e. a sequence of natural numbers)
is nearly additive if there is a bound B with

∀m, n. |xm+n − (xm + xn)| ≤ B

This turns out to be equivalent to being ‘nearly multiplicative’, i.e.
for some B :

∀m, n. |mxn − nxm| ≤ B(m + n)

Intuitively, it may help to think of xn/n converging to a real
number. We can turn this round and use it as a definition of
(nonnegative) real numbers.
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Real numbers (2)

Nonnegative reals are defined as equivalence classes of nearly
multiplicative sequences. The operations are very easy, for two
sequences xn and yn:

◮ Addition is just pointwise addition n 7→ xn + yn

◮ Multiplication is actually function composition n 7→ xyn .

Taking appropriate equivalence classes of pairs (thinking of (x , y)
as x − y) gives the positive and negative reals.

We prove the ‘complete ordered field’ properties and thereafter
never look back inside the actual definition, so the precise
definition used doesn’t really matter.
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Sets

In some sense sets in HOL are trivial: we don’t have a special type
operator for sets over a type α, but just use predicates, i.e.
functions of type α → bool.
But for familiarity of notation we define a membership relation IN

|- !P x. x IN P <=> P x

as well as a derived syntax (printed in the familiar way by the
prettyprinter) for set comprehensions {f (x) | P(x)} for ‘the set of
f (x) such that P(x)’, and the usual set operations, e.g.

|- s UNION t = {x | x IN s \/ x IN t}
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completely automatically (and with the usual proof generation).

◮ Tautology checker

◮ First-order automation (MESON, Holyhammer)
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More automated derived rules

HOL Light does have quite a few quite highly automated derived
rules that can prove non-trival properties in the right domains
completely automatically (and with the usual proof generation).

◮ Tautology checker

◮ First-order automation (MESON, Holyhammer)

◮ Basic set theory

◮ Algebra via Gröbner bases

◮ Linear arithmetic

◮ . . .

To become productive at formal proof, it’s worth appreciating what
can and cannot be done by these automated methods.
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Tautology checker

You can prove basic propositional tautologies with TAUT

TAUT ‘p /\ q <=> p <=> q <=> p \/ q‘;;

This uses a fairly naive algorithm, but Hasan Amjad has developed
far more efficient tautology checkers (in the Minisat directory)
based on the use of external SAT solvers Minisat or zchaff:

◮ Convert the problem to standard format and call the SAT
solver

◮ Use the proof trace returned to generate a HOL Light proof.

The HOL Light proof generation time is not usually much more
than the existing search time for the SAT solver.
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First-order automation

HOL Light has a simple first-order prover MESON based on model
elimination, which can dispose of much purely first-order
reasoning, e.g.

MESON[]

‘(!x y z. P x y /\ P y z ==> P x z) /\

(!x y z. Q x y /\ Q y z ==> Q x z) /\

(!x y. P x y ==> P y x) /\

(!x y. P x y \/ Q x y)

==> (!x y. P x y) \/ (!x y. Q x y)‘;;

Cezary Kaliszyk and Josef Urban have created a much more
powerful framework for first-order automation including many
off-the-shelf first order provers and a framework for machine
learning, which you can even use over a Web interface:
http://cl-informatik.uibk.ac.at/software/hh/

http://cl-informatik.uibk.ac.at/software/hh/
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Basic set automation

HOL Light has a basic automated prover for facts of set theory:
SET_RULE.
The code is basically trivial: rewrite away all the set operations
and use first-order automation. Nevertheless it is extremely useful:

SET_RULE ‘t SUBSET s ==> t = s INTER t‘;;

SET_RULE ‘~(s SUBSET {b}) <=> ?a. ~(a = b) /\ a IN s‘;;

SET_RULE ‘(!x y. f x = f y ==> x = y) ==> (!x s. f x IN IMAGE f s <=> x IN s)‘;;

This is used frequently to generate such handy obvious facts that
would otherwise be distracting in the middle of a real proof.
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of several convenient algebraic rules like INT_RING, REAL_FIELD,
COMPLEX_FIELD:
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Algebra via Gröbner bases

HOL Light includes a Gröbner basis procedure which is at the core
of several convenient algebraic rules like INT_RING, REAL_FIELD,
COMPLEX_FIELD:

# REAL_FIELD ‘!x. &0 < x ==> &1 / x - &1 / (x + &1) = &1 / (x * (x + &1))‘;;

val it : thm = |- !x. &0 < x ==> &1 / x - &1 / (x + &1) = &1 / (x * (x + &1))

Here is “Vieta’s substitution” for cubic equations, completely
automatically:

REAL_RING

‘p = (&3 * a1 - a2 pow 2) / &3 /\

q = (&9 * a1 * a2 - &27 * a0 - &2 * a2 pow 3) / &27 /\

x = z + a2 / &3 /\

x * w = w pow 2 - p / &3

==> (z pow 3 + a2 * z pow 2 + a1 * z + a0 = &0 <=>

if p = &0 then x pow 3 = q

else (w pow 3) pow 2 - q * (w pow 3) - p pow 3 / &27 = &0)‘;;
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There is also a highly efficient implementation of linear
programming due to Alexey Solovyev that is used extensively in
Flyspeck.

# REAL_ARITH ‘!x y:real. x < y ==> x < (x + y) / &2 /\ (x + y) / &2 < y‘;;

val it : thm = |- !x y. x < y ==> x < (x + y) / &2 /\ (x + y) / &2 < y

# REAL_ARITH ‘!x y:real. (abs(x) - abs(y)) <= abs(x - y)‘;;

val it : thm = |- !x y. abs x - abs y <= abs (x - y)

These can also handle non-linear terms and division by constants in
easy cases, e.g.

REAL_ARITH ‘(&1 + x) * (&1 - x) * (&1 + x pow 2) < &1 ==> &0 < x pow 4‘;;

ARITH_RULE ‘x < 2 EXP 30 ==> (429496730 * x) DIV (2 EXP 32) = x DIV 10‘;;
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Basic facts of linear arithmetic are painful to prove by hand, but
HOL Light has quite effective decision procedures for small cases.
There is also a highly efficient implementation of linear
programming due to Alexey Solovyev that is used extensively in
Flyspeck.

# REAL_ARITH ‘!x y:real. x < y ==> x < (x + y) / &2 /\ (x + y) / &2 < y‘;;

val it : thm = |- !x y. x < y ==> x < (x + y) / &2 /\ (x + y) / &2 < y

# REAL_ARITH ‘!x y:real. (abs(x) - abs(y)) <= abs(x - y)‘;;

val it : thm = |- !x y. abs x - abs y <= abs (x - y)

These can also handle non-linear terms and division by constants in
easy cases, e.g.

REAL_ARITH ‘(&1 + x) * (&1 - x) * (&1 + x pow 2) < &1 ==> &0 < x pow 4‘;;

ARITH_RULE ‘x < 2 EXP 30 ==> (429496730 * x) DIV (2 EXP 32) = x DIV 10‘;;

However in general these are limited to linear problems and only
(implicitly or explicitly) universal quantified formulas.



Quantifier elimination for linear arithmetic

Examples/cooper.ml has Cooper’s algorithm for integer
quantifier elimination as a derived rule, which can handle arbitrary
quantifier structure:

# COOPER_RULE ‘!n. n >= 8 ==> ?a b. n = 3 * a + 5 * b‘;;

val it : thm = |- !n. n >= 8 ==> (?a b. n = 3 * a + 5 * b)



Quantifier elimination for linear arithmetic

Examples/cooper.ml has Cooper’s algorithm for integer
quantifier elimination as a derived rule, which can handle arbitrary
quantifier structure:

# COOPER_RULE ‘!n. n >= 8 ==> ?a b. n = 3 * a + 5 * b‘;;

val it : thm = |- !n. n >= 8 ==> (?a b. n = 3 * a + 5 * b)

Here’s an example where we can prove ‘covering congruence’
results more or less automatically:

let COVERING_CONGRUENCES_1 = prove

(‘!n. (n == 0) (mod 2) \/

(n == 0) (mod 3) \/

(n == 1) (mod 4) \/

(n == 3) (mod 8) \/

(n == 7) (mod 12) \/

(n == 23) (mod 24)‘,

GEN_TAC THEN REWRITE_TAC[num_congruent; int_congruent] THEN

SPEC_TAC(‘&n:int‘,‘x:int‘) THEN CONV_TAC COOPER_CONV);;



Quantifier elimination for real arithmetic

Rqe contains a derived quantifier elimination procedure for real
arithmetic written by Sean McLaughlin. It is quite powerful in
principle:

REAL_QELIM_CONV

‘!a b c. (?x. a * x pow 2 + b * x + c = &0) <=>

a = &0 /\ (~(b = &0) \/ c = &0) \/

~(a = &0) /\ b pow 2 >= &4 * a * c‘;;



Quantifier elimination for real arithmetic

Rqe contains a derived quantifier elimination procedure for real
arithmetic written by Sean McLaughlin. It is quite powerful in
principle:

REAL_QELIM_CONV

‘!a b c. (?x. a * x pow 2 + b * x + c = &0) <=>

a = &0 /\ (~(b = &0) \/ c = &0) \/

~(a = &0) /\ b pow 2 >= &4 * a * c‘;;

This seems to be one of the cases where insisting on full LCF-style
proof generation really slows things down, so this can be quite
time-consuming on large problems.



Nonlinear arithmetic using sum-of-squares

For purely universal nonlinear problems there is a procedure based
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Nonlinear arithmetic using sum-of-squares

For purely universal nonlinear problems there is a procedure based
on sums of squares (building on the work of Pablo Parrilo) which is
often much more efficient.
It relies on an external semidefinite programming engine like
CSDP, but generates an algebraic certificate that can be verified
very efficiently in HOL Light.

# SOS_RULE ‘1 <= x /\ 1 <= y ==> 1 <= x * y‘;;

val it : thm = |- 1 <= x /\ 1 <= y ==> 1 <= x * y

Under the surface the algebraic certificate involves rearranging
expressions into sums of squares.



More SOS examples

There is also a conversion that will just explicitly rewrite
expressions as sums of squares:

# SOS_CONV

‘&2 * x pow 4 + &2 * x pow 3 * y - x pow 2 * y pow 2 + &5 * y pow 4‘;;

val it : thm =

|- &2 * x pow 4 + &2 * x pow 3 * y - x pow 2 * y pow 2 + &5 * y pow 4 =

&1 / &2 * (&2 * x pow 2 + x * y + -- &1 * y pow 2) pow 2 +

&1 / &2 * (x * y + y pow 2) pow 2 +

&4 * y pow 2 pow 2



More SOS examples

There is also a conversion that will just explicitly rewrite
expressions as sums of squares:

# SOS_CONV

‘&2 * x pow 4 + &2 * x pow 3 * y - x pow 2 * y pow 2 + &5 * y pow 4‘;;

val it : thm =

|- &2 * x pow 4 + &2 * x pow 3 * y - x pow 2 * y pow 2 + &5 * y pow 4 =

&1 / &2 * (&2 * x pow 2 + x * y + -- &1 * y pow 2) pow 2 +

&1 / &2 * (x * y + y pow 2) pow 2 +

&4 * y pow 2 pow 2

SOS is quite good at the kinds of inequalities you find in math
olympiad problems:

REAL_SOS

‘!a b c:real.

a >= &0 /\ b >= &0 /\ c >= &0

==> &3 / &2 * (b + c) * (a + c) * (a + b) <=

a * (a + c) * (a + b) +

b * (b + c) * (a + b) +

c * (b + c) * (a + c)‘;;



Nonlinear inequality reasoning with formal interval
arithmetic

As part of the Flyspeck project Alexey Solovyev developed a highly
efficient formal implementation of interval arithmetic
(Formal_ineqs),

verify_ineq default_params 5

‘-- &10 <= x0 /\ x0 <= &40 /\ &40 <= x1 /\ x1 <= &100 /\

-- &70 <= x2 /\ x2 <= -- &40 /\ -- &70 <= x3 /\ x3 <= &40 /\

&10 <= x4 /\ x4 <= &20 /\ -- &10 <= x5 /\ x5 <= &20 /\

-- &30 <= x6 /\ x6 <= &110 /\ -- &110 <= x7 /\ x7 <= -- &30

==> -- &1 * x0 * x5 pow 3 + &3 * x0 * x5 * x6 pow 2 - x2 * x6 pow 3 +

&3 * x2 * x6 * x5 pow 2 - x1 * x4 pow 3 + &3 * x1 * x4 * x7 pow 2 -

x3 * x7 pow 3 + &3 * x3 * x7 * x4 pow 2 - &9563453 / &10000000

< &232480000‘;;



Nonlinear inequality reasoning with formal interval
arithmetic

As part of the Flyspeck project Alexey Solovyev developed a highly
efficient formal implementation of interval arithmetic
(Formal_ineqs),

verify_ineq default_params 5

‘-- &10 <= x0 /\ x0 <= &40 /\ &40 <= x1 /\ x1 <= &100 /\

-- &70 <= x2 /\ x2 <= -- &40 /\ -- &70 <= x3 /\ x3 <= &40 /\

&10 <= x4 /\ x4 <= &20 /\ -- &10 <= x5 /\ x5 <= &20 /\

-- &30 <= x6 /\ x6 <= &110 /\ -- &110 <= x7 /\ x7 <= -- &30

==> -- &1 * x0 * x5 pow 3 + &3 * x0 * x5 * x6 pow 2 - x2 * x6 pow 3 +

&3 * x2 * x6 * x5 pow 2 - x1 * x4 pow 3 + &3 * x1 * x4 * x7 pow 2 -

x3 * x7 pow 3 + &3 * x3 * x7 * x4 pow 2 - &9563453 / &10000000

< &232480000‘;;

Besides being amazingly efficient, it can also handle several
transcendental functions, e.g.

verify_ineq default_params 5

‘&0 <= x /\ x <= &1 ==> atn x - x / (&1 + #0.28 * x * x) < #0.005‘;;



Divisibility properties

HOL Light has a convenient rule for proving a class of basic
disibility properties over natural numbers

NUMBER_RULE

‘~(gcd(a,b) = 0) /\ a = a’ * gcd(a,b) /\ b = b’ * gcd(a,b)

==> coprime(a’,b’)‘;;
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Divisibility properties

HOL Light has a convenient rule for proving a class of basic
disibility properties over natural numbers

NUMBER_RULE

‘~(gcd(a,b) = 0) /\ a = a’ * gcd(a,b) /\ b = b’ * gcd(a,b)

==> coprime(a’,b’)‘;;

or integers

INTEGER_RULE ‘!x y. coprime(x * y,x pow 2 + y pow 2) <=> coprime(x,y)‘;;

INTEGER_RULE ‘coprime(a,b) ==> ?x. (x == u) (mod a) /\ (x == v) (mod b)‘;;

Internally this is using Gröbner bases once again (see Harrison
“Automating Elementary Number-Theoretic Proofs using Gröbner
bases”).
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Goal-directed proofs

Another idea introduced by Milner in LCF was the use of
goal-directed or backward proof.

◮ Start with the goal to be proved and apply ‘tactics’ to break
the goal into simpler subgoals, which eventually get solved.

◮ Internally, HOL Light remembers the corresponding proof and
applies the forward rules once the proof is complete.

Even with the use of powerful forward rules, most people find this
goal-directed style more convenient. It is the usual way of proving
results in HOL Light.
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Setting up goals

HOL Light has a simple way (going back to Cambridge LCF) of
setting up a “current goal” and applying tactics.

A new goal can be established using g:

g ‘x >= x - 3 /\ (f(x + 1) + 3 < f(y + 1) + 3 ==> ~(x = y))‘;;

Apply tactics using e (“expand”), e.g. CONJ_TAC that breaks a
conjunctive goal into two conjuncts:

# e CONJ_TAC;;

val it : goalstack = 2 subgoals (2 total)

‘f (x + 1) + 3 < f (y + 1) + 3 ==> ~(x = y)‘

‘x >= x - 3‘



Solving subgoals
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We can solve the first subgoal with ARITH_TAC (a tactic variant of
ARITH_RULE)

# e ARITH_TAC;;

val it : goalstack = 1 subgoal (1 total)
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# e ARITH_TAC;;

val it : goalstack = 1 subgoal (1 total)

‘f (x + 1) + 3 < f (y + 1) + 3 ==> ~(x = y)‘

and the other with first-order logic noting the fact that < is
irreflexive

# e(MESON_TAC[LT_REFL]);;

0..0..solved at 2

val it : goalstack = No subgoals



Solving subgoals
We can solve the first subgoal with ARITH_TAC (a tactic variant of
ARITH_RULE)

# e ARITH_TAC;;

val it : goalstack = 1 subgoal (1 total)

‘f (x + 1) + 3 < f (y + 1) + 3 ==> ~(x = y)‘

and the other with first-order logic noting the fact that < is
irreflexive

# e(MESON_TAC[LT_REFL]);;

0..0..solved at 2

val it : goalstack = No subgoals

We can get at the final theorem now all goals are solved with
top_thm()

# top_thm();;

val it : thm = |- x >= x - 3 /\ (f (x + 1) + 3 < f (y + 1) + 3 ==> ~(x = y))
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Converting rules to tactics

Many forward inference rules have tactic variants, and those that
don’t can often be converted by CONV_TAC, which takes either

◮ A rule that proves a proposition like CONV_RULE

◮ A rule (called a conversion that proves a term equal to
another one)

and applies it in a tactic framework, e.g. CONV_TAC REAL_ARITH.



The duality between rules and tactics

Most of the (primitive or derived) logical inference that work
forward on theorems like CONJ:

Γ ⊢ p ∆ ⊢ q

Γ ∪∆ ⊢ p ∧ q



The duality between rules and tactics

Most of the (primitive or derived) logical inference that work
forward on theorems like CONJ:

Γ ⊢ p ∆ ⊢ q

Γ ∪∆ ⊢ p ∧ q

have natural tactic variants (here CONJ_TAC) that apply the rule
‘backwards’.
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Some useful tactics

◮ REWRITE_TAC and ASM_REWRITE_TAC — rewrite the goal with
a list of theorems (including the assumptions).

◮ SIMP_TAC and ASM_SIMP_TAC — more powerful versions of
rewriting using context

◮ MATCH_MP_TAC — use a theorem of the form ⊢ p ⇒ q with
matching to reduce goal q′ to p′

◮ INDUCT_TAC — apply induction on natural numbers

◮ STRIP_TAC — break down a goal moving hypotheses into
assumption list etc.

◮ ASSUME_TAC and MP_TAC — introduce an existing theorem as
a hypothesis

There are also ‘tacticals’ for combining tactics in various ways, e.g.
THEN to apply them one after the other, REPEAT to apply them
repeatedly.



A simple example (1)

Let’s prove the formula for the sum of the first n natural numbers:

# g ‘!n. nsum(1..n) (\i. i) = (n * (n + 1)) DIV 2‘;;

val it : goalstack = 1 subgoal (1 total)

‘!n. nsum (1..n) (\i. i) = (n * (n + 1)) DIV 2‘



A simple example (1)

Let’s prove the formula for the sum of the first n natural numbers:

# g ‘!n. nsum(1..n) (\i. i) = (n * (n + 1)) DIV 2‘;;

val it : goalstack = 1 subgoal (1 total)

‘!n. nsum (1..n) (\i. i) = (n * (n + 1)) DIV 2‘

We apply induction and rewrite both goals with the recursive
definition of sums:

# e(INDUCT_TAC THEN REWRITE_TAC[NSUM_CLAUSES_NUMSEG]);;

val it : goalstack = 2 subgoals (2 total)

0 [‘nsum (1..n) (\i. i) = (n * (n + 1)) DIV 2‘]

‘(if 1 <= SUC n then nsum (1..n) (\i. i) + SUC n else nsum (1..n) (\i. i)) =

(SUC n * (SUC n + 1)) DIV 2‘

‘(if 1 = 0 then 0 else 0) = (0 * (0 + 1)) DIV 2‘



A simple example (2)
The first goal is trivial

# e ARITH_TAC;;

val it : goalstack = 1 subgoal (1 total)

0 [‘nsum (1..n) (\i. i) = (n * (n + 1)) DIV 2‘]

‘(if 1 <= SUC n then nsum (1..n) (\i. i) + SUC n else nsum (1..n) (\i. i)) =

(SUC n * (SUC n + 1)) DIV 2‘



A simple example (2)
The first goal is trivial

# e ARITH_TAC;;

val it : goalstack = 1 subgoal (1 total)

0 [‘nsum (1..n) (\i. i) = (n * (n + 1)) DIV 2‘]

‘(if 1 <= SUC n then nsum (1..n) (\i. i) + SUC n else nsum (1..n) (\i. i)) =

(SUC n * (SUC n + 1)) DIV 2‘

The other one can be solved by ASM_ARITH_TAC, or we can first
rewrite with the assumptions via ASM_REWRITE_TAC then use
ARITH_TAC again:

# e(ASM_REWRITE_TAC[] THEN ARITH_TAC);;

val it : goalstack = No subgoals



A simple example (2)
The first goal is trivial

# e ARITH_TAC;;

val it : goalstack = 1 subgoal (1 total)

0 [‘nsum (1..n) (\i. i) = (n * (n + 1)) DIV 2‘]

‘(if 1 <= SUC n then nsum (1..n) (\i. i) + SUC n else nsum (1..n) (\i. i)) =

(SUC n * (SUC n + 1)) DIV 2‘

The other one can be solved by ASM_ARITH_TAC, or we can first
rewrite with the assumptions via ASM_REWRITE_TAC then use
ARITH_TAC again:

# e(ASM_REWRITE_TAC[] THEN ARITH_TAC);;

val it : goalstack = No subgoals

and so

# top_thm();;

val it : thm = |- !n. nsum (1..n) (\i. i) = (n * (n + 1)) DIV 2



Packaging tactic proofs

Even if they are developed interactively via ‘g’ and ‘e’ steps, it’s
common to package up the tactics into blocks using a prove

function.

let OUR_LEMMA = prove

(‘!n. nsum(1..n) (\i. i) = (n * (n + 1)) DIV 2‘,

INDUCT_TAC THEN ASM_REWRITE_TAC[NSUM_CLAUSES_NUMSEG] THEN ARITH_TAC);;
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Packaging tactic proofs

Even if they are developed interactively via ‘g’ and ‘e’ steps, it’s
common to package up the tactics into blocks using a prove

function.

let OUR_LEMMA = prove

(‘!n. nsum(1..n) (\i. i) = (n * (n + 1)) DIV 2‘,

INDUCT_TAC THEN ASM_REWRITE_TAC[NSUM_CLAUSES_NUMSEG] THEN ARITH_TAC);;

I tend to construct the proof in this format in the editor as I work
and just paste it into HOL interactively. Mark Adams has a tool
called Tactician for converting between the forms:

http://www.proof-technologies.com/tactician/

For a video of me proving a slightly larger theorem interactively in
a competition, see

http://www.math.kobe-u.ac.jp/icms2006/icms2006-video/video/v103.html

http://www.proof-technologies.com/tactician/
http://www.math.kobe-u.ac.jp/icms2006/icms2006-video/video/v103.html
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Some of the basic library files

HOL Light has quite a few library files developing some branches of
mathematics in more detail, e.g.

◮ Library/prime.ml and Library/pocklington.ml —
divisibility properties, prime numbers, certifying the primality
of particular numbers

◮ Library/card.ml — Notions of cardinal arithmetic, just
using injections and surjections to compare sets.

◮ Library/wo.ml — Common Axiom of Choice equivalents like
the wellordering principle and Zorn’s lemma

◮ Library/rstc.ml — Reflexive, symmetric and transitive
closures of binary relations.
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◮ Unity — Chandy-Misra Unity theory (Flemming Andersen)



Some “great 100 theorems”
http://www.cs.ru.nl/~freek/100/

http://www.cs.ru.nl/~freek/100/


Some “great 100 theorems”
http://www.cs.ru.nl/~freek/100/

HOL Light currently has 86 of them; those that are not already
buried in other library files are in the subdirectory 100, e.g.

http://www.cs.ru.nl/~freek/100/


Some “great 100 theorems”
http://www.cs.ru.nl/~freek/100/

HOL Light currently has 86 of them; those that are not already
buried in other library files are in the subdirectory 100, e.g.

◮ 100/cayley_hamilton.ml — The Cayley-Hamilton theorem

http://www.cs.ru.nl/~freek/100/


Some “great 100 theorems”
http://www.cs.ru.nl/~freek/100/

HOL Light currently has 86 of them; those that are not already
buried in other library files are in the subdirectory 100, e.g.

◮ 100/cayley_hamilton.ml — The Cayley-Hamilton theorem

◮ 100/constructible.ml — Impossibility of angle trisection
or cube construction using geometric constructions

http://www.cs.ru.nl/~freek/100/


Some “great 100 theorems”
http://www.cs.ru.nl/~freek/100/

HOL Light currently has 86 of them; those that are not already
buried in other library files are in the subdirectory 100, e.g.

◮ 100/cayley_hamilton.ml — The Cayley-Hamilton theorem

◮ 100/constructible.ml — Impossibility of angle trisection
or cube construction using geometric constructions

◮ 100/dirichlet.ml — Dirichlet’s theorem on primes in
arithmetic progression

http://www.cs.ru.nl/~freek/100/


Some “great 100 theorems”
http://www.cs.ru.nl/~freek/100/

HOL Light currently has 86 of them; those that are not already
buried in other library files are in the subdirectory 100, e.g.

◮ 100/cayley_hamilton.ml — The Cayley-Hamilton theorem

◮ 100/constructible.ml — Impossibility of angle trisection
or cube construction using geometric constructions

◮ 100/dirichlet.ml — Dirichlet’s theorem on primes in
arithmetic progression

◮ 100/e_is_transcendental.ml — Proof that e is
transcendental (Jesse Bingham)

http://www.cs.ru.nl/~freek/100/


Some “great 100 theorems”
http://www.cs.ru.nl/~freek/100/

HOL Light currently has 86 of them; those that are not already
buried in other library files are in the subdirectory 100, e.g.

◮ 100/cayley_hamilton.ml — The Cayley-Hamilton theorem

◮ 100/constructible.ml — Impossibility of angle trisection
or cube construction using geometric constructions

◮ 100/dirichlet.ml — Dirichlet’s theorem on primes in
arithmetic progression

◮ 100/e_is_transcendental.ml — Proof that e is
transcendental (Jesse Bingham)

◮ 100/fourier.ml — Basic results about Fourier series

http://www.cs.ru.nl/~freek/100/


Some “great 100 theorems”
http://www.cs.ru.nl/~freek/100/

HOL Light currently has 86 of them; those that are not already
buried in other library files are in the subdirectory 100, e.g.

◮ 100/cayley_hamilton.ml — The Cayley-Hamilton theorem

◮ 100/constructible.ml — Impossibility of angle trisection
or cube construction using geometric constructions

◮ 100/dirichlet.ml — Dirichlet’s theorem on primes in
arithmetic progression

◮ 100/e_is_transcendental.ml — Proof that e is
transcendental (Jesse Bingham)

◮ 100/fourier.ml — Basic results about Fourier series

◮ 100/minkowski.ml — Minkowski’s classic geometry of
numbers theorem

http://www.cs.ru.nl/~freek/100/


Some “great 100 theorems”
http://www.cs.ru.nl/~freek/100/

HOL Light currently has 86 of them; those that are not already
buried in other library files are in the subdirectory 100, e.g.

◮ 100/cayley_hamilton.ml — The Cayley-Hamilton theorem

◮ 100/constructible.ml — Impossibility of angle trisection
or cube construction using geometric constructions

◮ 100/dirichlet.ml — Dirichlet’s theorem on primes in
arithmetic progression

◮ 100/e_is_transcendental.ml — Proof that e is
transcendental (Jesse Bingham)

◮ 100/fourier.ml — Basic results about Fourier series

◮ 100/minkowski.ml — Minkowski’s classic geometry of
numbers theorem

◮ 100/pnt.ml — The Prime Number Theorem

http://www.cs.ru.nl/~freek/100/


Some “great 100 theorems”
http://www.cs.ru.nl/~freek/100/

HOL Light currently has 86 of them; those that are not already
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or cube construction using geometric constructions
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◮ 100/e_is_transcendental.ml — Proof that e is
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◮ 100/fourier.ml — Basic results about Fourier series

◮ 100/minkowski.ml — Minkowski’s classic geometry of
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◮ 100/pnt.ml — The Prime Number Theorem

◮ 100/polyhedron.ml — Euler’s polyhedron formula
V + F − E = 2
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File Lines Contents

misc.ml 756 Background stuff
metric .ml 2566 Metric spaces and general topology
vectors.ml 9789 Basic vectors, linear algebra
determinants.ml 3797 Determinant and trace
topology.ml 25105 Topology of euclidean space
convex.ml 15509 Convex sets and functions
paths.ml 19900 Paths, simple connectedness etc.
polytope.ml 8890 Faces, polytopes, polyhedra etc.
degree.ml 9066 Degree theory, retracts etc.
derivatives.ml 2885 Derivatives
clifford.ml 979 Geometric (Clifford) algebra
integration.ml 22362 Integration
measure.ml 20264 Lebesgue measure



Multivariate theories continued

From this foundation complex analysis is developed and used to
derive convenient theorems for R as well as more topological
results.

File Lines Contents

complexes.ml 2051 Complex numbers
canal.ml 3756 Complex analysis
transcendentals.ml 7584 Real & complex transcendentals
realanalysis.ml 16620 Some analytical stuff on R

moretop.ml 7216 Further topological results
cauchy.ml 19771 Complex line integrals
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Multivariate theories continued

From this foundation complex analysis is developed and used to
derive convenient theorems for R as well as more topological
results.

File Lines Contents

complexes.ml 2051 Complex numbers
canal.ml 3756 Complex analysis
transcendentals.ml 7584 Real & complex transcendentals
realanalysis.ml 16620 Some analytical stuff on R

moretop.ml 7216 Further topological results
cauchy.ml 19771 Complex line integrals

Credits: JRH, Marco Maggesi, Valentina Bruno, Graziano Gentili,
Gianni Ciolli, Lars Schewe, . . .
It would be desirable to generalize more of the material to general
topological spaces, metric spaces, measure spaces etc.
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The Brouwer fixed point theorem:
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==> ?x. x IN s /\ f x = x
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|- !f:real^N->real^N s.

compact s /\ convex s /\ ~(s = {}) /\

f continuous_on s /\ IMAGE f s SUBSET s

==> ?x. x IN s /\ f x = x

The Borsuk homotopy extension theorem:

|- !f:real^M->real^N g s t u.

closed_in (subtopology euclidean t) s /\

(ANR s /\ ANR t \/ ANR u) /\

f continuous_on t /\ IMAGE f t SUBSET u /\

homotopic_with (\x. T) (s,u) f g

==> ?g’. homotopic_with (\x. T) (t,u) f g’ /\

g’ continuous_on t /\

IMAGE g’ t SUBSET u /\

!x. x IN s ==> g’(x) = g(x)
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Some examples from convexity

The Krein-Milman (Minkowski) theorem

|- !s:real^N->bool.

convex s /\ compact s

==> s = convex hull {x | x extreme_point_of s}

Approximation of convex sets by polytopes w.r.t. Hausdorff
distance:

|- !s:real^N->bool e.

bounded s /\ convex s /\ &0 < e

==> ?p. polytope p /\ s SUBSET p /\ hausdist(p,s) < e
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Kirszbraun’s theorem on extension of Lipschitz functions:

|- !f:real^M->real^N s B.

&0 <= B /\

(!x y. x IN s /\ y IN s ==> norm(f x - f y) <= B * norm(x - y))

==> (?g. (!x y. norm(g x - g y) <= B * norm(x - y)) /\

(!x. x IN s ==> g x = f x))
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|- !f:real^M->real^N s B.

&0 <= B /\

(!x y. x IN s /\ y IN s ==> norm(f x - f y) <= B * norm(x - y))

==> (?g. (!x y. norm(g x - g y) <= B * norm(x - y)) /\

(!x. x IN s ==> g x = f x))

The Lebesgue differentiation theorem

|- !f:real^1->real^N s.

is_interval s /\ f has_bounded_variation_on s

==> negligible {x | x IN s /\ ~(f differentiable at x)}



Some examples from measure theory

Steinhaus’s theorem:

|- !s:real^N->bool.

lebesgue_measurable s /\ ~negligible s

==> ?d. &0 < d /\ ball(vec 0,d) SUBSET {x - y | x IN s /\ y IN s}
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Steinhaus’s theorem:

|- !s:real^N->bool.

lebesgue_measurable s /\ ~negligible s

==> ?d. &0 < d /\ ball(vec 0,d) SUBSET {x - y | x IN s /\ y IN s}

Luzin’s theorem:

|- !f:real^M->real^N s e.

measurable s /\ f measurable_on s /\ &0 < e

==> ?k. compact k /\ k SUBSET s /\ measure(s DIFF k) < e /\

f continuous_on k



Some examples from complex analysis

The Little Picard theorem:

|- !f:complex->complex a b.

f holomorphic_on (:complex) /\

~(a = b) /\ IMAGE f (:complex) INTER {a,b} = {}

==> ?c. f = \x. c



Some examples from complex analysis

The Little Picard theorem:

|- !f:complex->complex a b.

f holomorphic_on (:complex) /\

~(a = b) /\ IMAGE f (:complex) INTER {a,b} = {}

==> ?c. f = \x. c

The Riemann mapping theorem:

|- !s:complex->bool.

open s /\ simply_connected s <=>

s = {} \/ s = (:complex) \/

?f g. f holomorphic_on s /\

g holomorphic_on ball(Cx(&0),&1) /\

(!z. z IN s ==> f z IN ball(Cx(&0),&1) /\ g(f z) = z) /\

(!z. z IN ball(Cx(&0),&1) ==> g z IN s /\ f(g z) = z)



Thank you!


